
Superv i sory Contro l of Fini te State Machines

A. Aziz 1., F. Balarin 2, R. K. Brayton 1 , M. D. DiBenedetto 3, A. Saldanha 2,
A. L. Sangiovanni-Vincentelli 1

1 Dept. of EECS, University of California,
Berkeley, CA, USA

Cadence Berkeley Laboratories,
Berkeley, CA, USA

3 Dpt. di Informatica e Sistemistica,
Universits di Roma "La Sapienza",

Rome, Italy

Abs t rac t . We address a problem of finding a finite state machine (FSM),
which composed with a given FSM, satisfies a given specification. The
composition we use is the standard synchronous automata composition
restricted to cases which correctly model hardware interconnection. For
the satisfaction relation, we use language containment. We present a pro-
cedure that will generate a solution (if one exists) which is maximal, i.e.
contains behaviors of all other solutions.

1 I n t r o d u c t i o n

We consider the problem of finding a controller Q for a given plant P such
that put together, P and Q conform to some specification .s The plant and
the controller are (possibly incompletely specified) finite state machines. The
specification M is given by a deterministic finite state automaton. "Putt ing
together" corresponds to the standard synchronous composition of automata,
and the notion of conformance is language containment. Our main result is the
procedure that either returns the empty set (if the problem does not have a
solution), or returns a finite state machine that is maximal, in the sense that it
includes behaviors of all solutions to the problem.

Similar problems have been considered in the control community under the
label "model matching" [5, 6], in the discrete event system (DES) community
under the label "supervisory control" [18, 15], in concurrency theory they ap-
pear as "scheduler synthesis" [17] and "equation solving" [12, 10], and in the
logic synthesis community as "interacting FSM synthesis" [16, 1], Compared to
model matching approaches [5, 6] we limit somewhat the choice of possible con-
trollers. The limitation is not serious in hardware context, because it rules out
only those circuits that form a loop of combinational gates when composed with
P (avoiding combinational loops is considered good design practice). On the
positive side, we allow more general specifications of P and A4, and provide a

* Supported by SRC under contract 95-DC-324A.

280

uniform methodology that is applicable to various model matching problems.
This general framework also strictly subsumes the problem considered in [16].
Compared to supervisory control of DES [15], our approach offers the advantage
of being compatible with finite state machine techniques that have seen continu-
ous developments in the past three decades (e.g. [11, 16]), provides more natural
model of reactive system (an argument also made in [2]), and allows significantly
simpler development of results.

We have chosen language containment as a satisfaction relation because it
allows loose specifications, where a range of behaviors may be acceptable. Here
we differ from most of the previous approaches in the process algebra settings,
where a much stronger relation, typically some form of bisimulation equivalence
is used [12, 10]. The"exception is [9] which riflers a general framework where the
satisfaction relation is not set a priori, but can be defined by a formula in a
logi~ that can express, among other relations, both simulation and bisimulation.
However, the procedure presented in [9] generates only a single solution. We
believe that it is advantageous to separate the solution process in two stages:
first, all the possible solutions are characterized (which is the topic of this paper),
and then one is chosen according to some optimality criteria (e.g. minimum state
using [11]).

In the rest of this paper, we first review relevant elements of the theory
of finite state automata (section 2). Then, we define finite state machines in
section 3. In section 4 we develop our results in a simplified setting, and then we
generalize them in section 5.

2 D e t e r m i n i s t i c F i n i t e S t a t e A u t o m a t a

A deterministic finite stale automaton (DFA) over some finite alphabet X is a
4-tuple (S, so, 6, F), where S is some (finite and nonempty) set of states, so E S

is the initial state, 6 : (S x X) ~-* S is a partial function called the transition
function, and F C_ S is the set of final states. The transition function is extended
to strings in X* as follows (where e denotes an empty string):

6(s, c) = 8 Vs e S ,
6(s, x x) = x) , Vs e s, v x e x*, w x ,

where 6(s, Xz) is defined only if both 6(s, X) and 6(6(s, X), x) are.
As a notational convention, we use calligraphic letters to denote alphabets,

capitals to denote strings, and lower case letters to denote symbols in the alpha-
bet. Also, given two strings X = (ZlX2..- xn) 6 X* and Y = (YlY2"'" Yn) E Y*,
we write (X, Y) to denote the string:

((xl, ul)(2, y2).-. (x , , u,)) e (x x y)* .

The language of some DFA A ---- (S, so, 6, F) over X (denoted I:(A)) is the
set of all strings X E X* satisfying 5(So, X) E F. Given some languag e a~4 ___
(X • Y)*, the projection of M on 2(is defined by:

A/I J.x = {X E X* [3Y e Y* such that (X ,V) e .M} .

281

I f A = (S, s0,5, F) i s a DFA over X and S' C S is some subset of states, then
the restriction of A to S' is the automaton AIs, = (S' U {so}, so, ~,S ~ t3 F) ,
where (for all states s E S' U {So} and all x E X):

= { x) if s z s' and x) Z S ' ,
undefined otherwise,

Note that Z(AIs,) is always contained in s and that E(A[s,) is empty if
S' does not contain so.

3 F i n i t e S t a t e M a c h i n e s

D e f i n i t i o n 1. A DFA A --- (S, so, 8, F) defined over an alphabet 9=' • y is said
to be a finite state machine (FSM), over input alphabet X and output alphabet
Y, if:

1. all the states in S are reachable and final (i.e. F = S), and
2. for all states s E S and all input letters x E X there exists an output letter

y E Y such that ~(s, z, y) is defined.

For brevity, we say that a FSM is defined over X ~ y whenever its input al-
phabet is X and its output alphabet is y . Not every regular language is definable
by a FSM, as stated in the following proposition:

P r o p o s i t i o n 2 . A regular language ,4el C (X • is the language of some FSM
defined over X ~ Y if and only if:

1. • is prefix-closed, and
2. for all strings (X, Y) E J~4 and all input letters x E X there exists an output

letter y E 3) such that (Xx, Yy) E .h4.

The condition 2 above is similar to the notion of controllability in [15]: at
any point of time, for any input (which we cannot control), there must be some
output defined.

Note that even though all FSM's are DFA's, some of them are considered
non-deterministic in the FSM literature (called pseudo non-deterministic in [16]),
because for any given state and input, there may exist more than one choice of
outputs and next states. To avoid confusion, we use the term "complete specifi-
cation" for this stronger notion of determinism.

D e f i n i t i o n 3 . A FSM (S, So, 6, S) is said to be a completely specified finite state
machine (CSFSM) if for all states s E S and all input letters x E X there exists
a unique output letter y E 3) such that 5(s, x, y) is defined.

CSFSM's have straightforward interpretations as sequential circuits that in-
clude combinational gates and latches. Of special interest is a class of circuits
known as Moore machines where no purely combinational paths exist from the

282

inputs to the outputs. This is important because it ensures that connecting
sequential circuits together can never create a loop consisting only of combina-
tional gates. Even though such loops can sometimes be used to optimize circuits,
in general it is considered good design practice to avoid them, because cyclic cir-
cuits are harder to analyze and can have undesired oscillatory behaviors.

It turns out that DFA composition is a good model of an interconnection of
sequential circuits, as long as the interconnection introduces no combinational
loops. To model the behavior of such loops accurately, more complicated models
have to be developed (e.g. [4]). Guided by the design practice, we decided to
avoid combinational loops: we recognize a class of FSM's that corresponds to
Moore circuits, and define a restricted notion of pair-wise composition where at
least one of the FSM's has to be Moore (at least with respect to those inputs
that actuMly participate in the composition).

D e f i n i t i o n 4 . A FSM (S, so, 8, S) over (X • 32) ~-* ~2 is said to be Moore in 32 if
for every state s E S and.all (x, y, v) E X • Y • 1): 6(s, x, y, v) is defined if and
only if ~(s, ~, y~, v) is defined for all y~ E Y.

Intuitively, in every state, the output value is independent of y inputs, i.e.
if v is a possible output vMue on input x, then it must be so regardless of the
value of y. Of course, the next state may depend on y. Since the output does not
depend on y inputs, it is possible to implement such a behavior with a Moore
circuit, i.e. without a combinationM path form y inputs, to the outputs. We will
assume that the implementation of Moore FSM's is restricted to such circuits.
Again, it is easy to characterize languages definable by Moore FSM's.

P r o p o s i t i o n 5 . A regular language .~4 C (X • y • •)* is the language of some
FSM defined over (X • 32) ~ Y which is Moore in y if and only if:

1 . . M is prefix-closed, and
2. for all strings (X, Y, V) E .lYe, and all (x, y) E X x y there ezists v e ~) such

that:
(X z , Yy, Vv) E .It4 ,

3. for all strings (X, Yy , V) e A/t, and all y~ e 32:

(x, Yy', v) �9 M

Now, we are ready to define the composition of FSM's, which (when defined)
corresponds to the standard DFA composition:

D e t l n i t i o n 6 . Given a FSM A = (S, so, 5A, S) defined over (X • 32) ~-~ 12 and
a FSM B -- (Q, q0, 5B, Q) defined over]2 ~-. 32, such that either A is Moore in
32 or B is Moore in]2, the composition A | B is an automaton over X • 32 • ~2
defined as follows:

A | = (S • ,

283

where ~A~B i (S • Q x X x y x 12) ~ (S x Q) is defined by:

 A| q, x, V, v) = V, v), B(q, v, V))

whenever 6 A (s, x, y, v) and 6B (q, v, y) are both defined.

It is easy to check that the composition has the language intersection prop-
erty:

Z;(A | B) = {(X, Y, V) [(X, Y, V) E I:(A), (Y, V) E s (1)

Another important property is stated in the following lemma:

L e m m a T . The restriction of A | B to reachable states is a FSM over X ~-~
(y x v).

Proof. Condition 1 in Definition 1 is trivially satisfied. To prove condition 2,
consider the following two cases:

1. A is Moore in Y. Given a state (s, q) of A | B and an input letter x E ~l" let
v E Y be such that ~A(S, x, y~, v) is defined for some y~ E Y and let y E 32 be
such that/~B (q, Y, v) is defined (by Definition 1, such y and v always exist).
By Definition 4, 6A(s, x, y, v) is also defined, and thus so is i~AeB(s, q, z, y, v).

2. B is Moore in 12. Given a state (s, q) of A | B and an input letter x E X let
y E Y be such that $n(q, y, v ~) is defined for some v I E 12 and let v E V be
such that/hA(S, x, y, v) is defined. By Definition 4, &B(q, Y, v) is also defined,
and thus so is ~A@B(S, q, gg, y, v).

[]

Note that without a restriction that one of the FSM's be Moore, it would be
possible for a composition not to be a FSM. That could happen in the case where
connecting corresponding circuits creates a combinational cycle. By adding this
restriction we make sure that whenever composition is defined, it has a clear
physical interpretation.

4 S u p e r v i s o r y C o n t r o l

In this section we consider the control problem shown in Figure 1. In this case,
the controller Q sets all the inputs to the plant P and can observe (but not
modify) all the outputs. The desired behavior is specified in terms of x and y
(as indicated by the dashed box in Figure 1). This formulation corresponds to
the strong model matching problem [6]. A more general formulation is analyzed
in section 5.

D e f i n i t i o n 8 . Given a FSM P over ~) ~ 3) and a language Ad C (X • y)*, P
is said to be M-controllable if there exists a FSM Q defined over (X x Y) ~-+ 12
(called a M-contro l ler of P) such that:

s 1 7 4 ~x• c_ M . (2)

2C

284

M
[v

Fig. 1. A simple supervisory control problem.

y

Implicit in (2) is that P | Q is defined, i.e. that either P is Moore in]] or Q
is Moore in y . Conditions similar to (2) appear in different formalisms as well.
In some, one also has to check the "lower bound", i.e for any sequence of inputs
there exists some sequence of outputs in the language of P | By Lemma 7 such
a check is not necessary in our case, because that property is satisfied whenever
P | Q is defined.

Still, caution should be taken in case P is not completely specified, and Q is
not Moore in y . Incomplete specification of P typically comes from one of two
sources, which should be approached differently:

1. Unfinished design: P could be incompletely specified because some design
decisions have not been made yet. In this case, we must make sure that any
later design decision preserves the property that (modified) P is Moore in]2.

2. Abstraction: P could be incompletely specified because it is an abstract
model (obtained, for example, by hiding some inputs) of a physical circuit
(say P~). It might be the case that the abstraction P is Moore in 1; even
though the circuit PJ is not. Since Q will eventually be composed with P~
rather than a model P, we should either verify that pr is Moore in ~), or
require that Q is Moore in y .

Theorem 9. I f P is a FSM over)2 ~ 3) and M C (X x 3))* is an arbitrary
language, then a FSM Q over (X x y) ~-* Y is a M-controller of P if and only
if P | Q is defined and:

(V , Y) � 9 1 4 9 for a l l (X ,Y ,V) � 9 . (3)

Proof. Assume P | Q is defined and (3) holds. It follows from (1) that s |
Q) ~x• AA. Conversely, assume there exists (X,Y, V) E f~(Q) such that
(V,Y) E s and (X ,Y) q~ M. By (1), (X ,Y) �9 s 1 7 4 l x x y , and hence Q
is not a M-cont ro l le r of P. o

4.1 Construct ing the Most General Controller

If the language .&4 in Theorem 9 is the language of a given DFA M, then it is
not hard to construct a DFA with the language:

{(X, Y, V) E (X x y x V)* I (V, Y) E s Y) E s . (4)

285

If p and m are the number of states of P and M respectively, then a stan-
dard procedure for constructing such an automaton (e.g. [8]) yields a DFA with
(p + 1)(m + 1) states. However, since P | Q is a FSM and thus has a prefix-
closed language, it is enough to consider the maximal prefix-closed subset of (4).
Here, we present a procedure that yields a DFA (denoted P ==~ M) with such
a language, and p m + 1 states. Let P -- (S, so, ~p, S) and M = (Q, q0, 6M, F)
be given and assume without loss of generality 4 that F contains q0. The set of
states of P =~ M is R = (S • F) U {@} where @ is a distinguished state not
in S • Q. The initial state is (so, q0), all the states are final, and the transition

function 6 i (R • 2" • y • V) ~-~ R is defined by:

(s', q') if r = (s, q) E S • F, s' = Be(s, v, y), and
q' = ~M(q,z,Y) e F ,

8 (r , z , y , v) = @ if r = @ , o r r = (s , q) E S • and
6p(s, v, y) is not defined,

undefined otherwise.

It follows from Theorem 9 that the problem of finding a s of
some FSM P can be reduced to one of the following two problems:

- Find a CSFSM Q (if it exists) such that s c s =~ M).
- Find a CSFSM Q (if it exists) such that Z(Q) c_ ~(P :=~ M), and Q is Moore

in 3/.

The first problem arises when P is Moore in Y. Otherwise we need to construct
a FSM Q which is Moore in 3). We devote the rest of this section to these two
problems. In both cases we are able to define procedures which eliminate states
and transitions of P :r M, in such a way that if P is not s
then the procedures eliminate all the states; otherwise they yield a FSM that is
a s of P , and whose language includes the languages of all other
/ : (M)-cont ro l le r s of P .

4 . 2 C o n t r o l o f M o o r e F S M ~ s

In this section we address the problem of finding (or proving the absence of) a
CSFSM whose language is contained in the language of a given DFA. This prob-
lem can be seen as special case of the problem, where one looks for a CSFSM
contained (in terms of languages) in a given w-automaton. The solution to this
problem was first suggested by Buchi and Landweber [3]. Unfortunately, that
approach is based on Muller automata, which makes it unsuitable for DFA's,
because the interpretation of a DFA as a Muller automaton requires exponen-
tially many Muller acceptance conditions. A better solution for our purposes was
suggested by Rabin [14], who constructs a tree automaton that accepts exactly

4 If q0 ~/F, then the empty string is not in s Since s | Q) always contains
the empty string, we conclude that P (or any other FSM for that matter) is not
/:(M)-controllable.

286

those trees which represents infinite unfoldings of CSFSM's, which are solu-
tions to the problem. Checking for language emptiness of such a tree automaton
solves the problem. Pnueli and Rosner [13] proposed an algorithm for checking
language emptiness of Rabin tree automata that runs in O((nm)m) , where n
is the number of states and m is the number of acceptance conditions of the
original co-automaton. The algorithm is constructive, i.e. if the language is not
empty, it returns one CSFSM accepted by the tree automaton. Any DFA whose
states are all final (in particular P --* M) can be treated as co-automata with
a single Rabin acceptance condition. Thus, the Pnueli-Rosner algorithm runs in
linear time in our case.

Here, we present an alternative algorithm which does not require tree au-
tomata. We do so because our approach extends easily to the similar problem
for Moore CSFSM, as shown in the next section.

L e m m a l 0 . Let A = (S, so,6, F) be a DFA over 2d x y , and let ~b be a solution
to the fix-point equation:

r = {s �9 F [Vx �9 ,if 3y �9 y such that 6 (s , x , y) �9 r (5)

that contains the initial state so. Then the restriction of A to reachable states in
~9 is a FSM defined over X ~ y .

Proof. Let S t denote a subset of r reachable from so. All states of S are reach-
able (by assumption) and final (by (5)). Thus, condition 1 in Definition 1 holds.
Condition 2 follows immediately from (5). U

It is easy to see that the set of solutions of (5) is finite (because F is finite),
non-empty (because empty set is always a solution) and closed under union, and
thus there always a unique maxima] solution which contains all other solutions.

T h e o r e m l l . Let A = (S, so,6, F) be a DFA over X • 3) and let S be the set
containing all the states in the maximal solution of (5) which are reachable from
so. Then, for any FSM B over X ~-~ y : if s C E(A), then also E(B) C
s

Proof. Let a FSM B be such that s C E(A), and let S' C S be defined by:

S' = {s[s = 6(s0, X, Y) for some (X, Y) �9 f-.(B)} .

Obviously, the states in S j are all reachable and final, and E(B) C_ s). Also,
S' is a solution to (5), because (by definition) for every s �9 S' there must exist
(X, Y) �9 E(B) such that s = 5(s0, X, Y), and by Proposition 2, for every such
(X,Y) and every x �9 X, there exists y �9 y such that ~(6(s0, X, Y), x, y) �9 S'.
It follows that S' C S, and thus E(AIs,) C_ s). []

It is interesting to note that E(AI$) not only contains all the CSFSM-
definable languages contained in s but ~lso contains nothing else, as stated
in the following proposition:

287

Proposition12. I f A and S are as in Theorem 11, then for any (X,Y) E
Z(A[R) there exists a CSFSM B such that (X, Y) E I~(B) C E.(AIR).

Proof. Let T C_ S ~ • X • y • S t be the set containing all the transitions in
the accepting run of some (X, Y) E/~(AIR), and assume for a moment that T
does not contain any pairs of transitions with same states and A" value, but with
different y values. Then, we can eliminate from AIR as much transitions not in
T as necessary, to create a CSFSM in which (X, Y) has the same run as in AIR.

The conditions that any two transitions in T with different y values must
also differ in states or 2f values can always be satisfied by unfolding AIR finitely
many times, so that equivalent (but different) copies of some states are created.

[]

It is well known that the maximal solution of (5) can be computed by setting
r = F , and then iteratively computing:

r = { s E C k l V x e X 3 y e 3 ; s u c h t h a t 6 (s , x , y) ECk} ,

until r = r The number of iterations is obviously bounded by the number
of states in F. By Theorem 11, if the solution so obtained does not contain so,
then A does not contain the language of any FSM. Otherwise, s contains
the languages of all the solutions. Choosing one that is the best (according to a
given criterion, e.g. minimum state) is a separate, well studied problem which is
provably hard, but for which efficient (in practice) algorithms exist (e.g. [11, 16]).

The language s) corresponds to the notion of "supremal controllable sub-
language" of [15]. This is a perfect point to illustrate relative simplicity of our
approach: Wohnam and Ramadge has devoted a whole paper [18] to fix-point
characterization of S t that corresponds to (5).

4.3 C o n t r o l o f A r b i t r a r y F S M ' s

In this section we address the problem of finding (or proving the absence of) a
Moore CSFSM whose language is contained in the language of a given DFA. A
similar problem was considered by Golaszewski and Kurshan [7] in the frame-
work of w-languages (they use the term "lockup-free" to describe the Moore
property). We improve on this approach by explicitly constructing a FSM that
is a solution, and that contains (in term of languages) all other solutions.

L e m m a l 3 . Let A = (S, so,~,F) be a DFA over ,Y • y • l;, and let r be a
solution to the fix-point equation:

r = { s ~ F l V x ~ X 3 v ~ V V y ~ y s u c h t h a t ~ (s , x , y , v) ~ r (6)

that contains the initial state so. Then the restriction of A to reachable subset
of r is a FSM defined over (X x Y) ~-* Y.

Proof. Let S' denote a subset of r reachable from so. All states of S' are reach-
able (by assumption) and final (by (6)). Thus, condition 1 in Definition 1 holds.
Condition 2 is implied by (6). []

288

Again, the set of solutions of (6) is finite, non-empty and closed under union,
so there exists a unique maximal solution. Note that AIs, is not necessarily
Moore in Y. However, it may be made so by eliminating some transitions, as
described by the following lemma:

L e m m a 1 4 . Let A = (S, so,6, F) be a DFA over X x 3) x 12, let S be the set
containing all the stales in the maximal solution of (6) which are reachable from
so, and let el be the automaton obtained from AI~ by modifying its transition
function as follows:

{ 6Al~(s ,x ,y ,v) i f6a l~(s ,x ,y%) is defined for a l ly ~ e Y
6 j (s , x, y, v) = undefined otherwise.

I f so E S, then A is a FSM over (X x 3/) ~-* 12, and it is Moore in 32.
(7)

Proof. All states of el are reachable (by assumption) and final (by (6)). By (6),
condition 2 in Definition 1 holds even after some transitions are eliminated by (7).
Thus, el is a FSM over (X x 3)) ~-~ 12. Definition 4 is satisfied by (7). []

Similarly to the case of arbitrary FSM's, the following two results claim that
/:(el) is exactly equal to the union of languages of all CSFSM's B satisfying
/:(B) _C/:(A):

T h e o r e m 15. Let A and el be as in Lemma 14. Then, for any FSM B over
(92 x Y) ~-* 12 which is Moore in Y: if Z (B) C_ s then also f~(B) C_ f~(el).

Proof. Similar to Theorem 11. In

P r o p o s i t i o n l 6 . I f el is as in Lemma 14, then for every (X, Y, V) E/:(el) there
exists a CSFSM B which is Moore in y , such that (X, Y, V) e I:(B) C l:(ft).

Proof. Similar to Proposition 12. []

Similarly to (5), the maximal solution to (6) can be computed iteratively
in at most IF[iterations, and if that solution contains so, then various FSM
optimization techniques can be applied to find a CSFSM that is a satisfactory
solution to the problem.

4.4 T h e C a t a n d M o u s e P r o b l e m

To illustrate the proposed procedure we use a version of the "cat and mouse
problem", originally introduced in [15]. A cat and a mouse are placed in a maze
with 5 rooms. The movement between rooms is restricted, and restrictions are
different for the cat and the mouse, as summarized in Figure 2. The controller
can further restrict the movement by placing a barricade between two rooms,
preventing thus both the cat and t h e mouse from moving between these two
rooms. The control objective is to prevent the cat and the mouse from ever
being in the same room.

289

- / 1 - / 2 - / 1 - / 2 1,4/5 2,4/3 or5 2,0/3 ~'

- / 3 - / 4 - / 3 - / 4 3,4/5 - , - /~
CAT MOUSE CONTROLLER

Fig. 2. The plant and the controller for the cat and mouse problem. The labei x/y
indicates that in a given state on the input x, the output can be set to y. The symbol
- denotes any value, and the expression !n denotes any value except n.

In this example, the plant is the composition of the cat and mouse FSM's
shown in Figure 2. Both automata have the same input that indicates the po-
sition of the barricade, and both automata indicate a choice of the next state
at their output . The specification is a single-state DFA with a self-loop which is
enabled only if the cat and the mouse differ in their choices of next states. This
example, is a special case of the problem in Figure 1 (x variables are missing).

It is easy to check that the cat and the mouse FSM's are not Moore, therefore
the procedure from the previous section has to be applied. We have implemented
that procedure, and the implementation has generated the solution shown in
Figure 2. To enhance readability, we have omitted transitions to the @ state. It
is implicit in Figure 2 that from any state and for any input that is not specified,
there exists a transition to the @ state, on which any output can be generated.
The controller in Figure 2 is Moore and it contains the languages of all the Moore
solutions to the cat and mouse problem. In particular, it contains two constant
solutions: 3 which keeps the cat forever in room 2, and 5 which keeps the mouse
forever in room 4. Computing the solution required less than a second of CPU
time on a SUN SPARCstation 5.

5 G e n e r a l i z e d S u p e r v i s o r y C o n t r o l

In this section we discuss a generalization of our approach where we retain from
the original model:

- external inputs to the system (denoted x in Figure 1, but renamed x3 in
Figure 3),

- control inputs to the plant (denoted v in Figure 1, but renamed z4 in Fig-
ure 3), and

- measurable external outputs of the plant (denoted y in Figure 1, but renamed
Y2 in Figure 3),

and add to it:

290

- measurable disturbances to the plant (denoted x2 in Figure 3),
- un-measurable disturbances to the plant (denoted Xl),
- un-measurable outputs of the plant (denoted yl),
- internal outputs of the plant (denoted Y4), which may be used by a controller,

but are otherwise of no interest, and
- outputs that a controller has to generate (denoted Y3).

The desired behavior in this case is specified in terms of xl - xa, and Yl - Ya.
This general formulation subsumes a series of model matching, rectification,
and supervisory control problems. The definition of the compostion needs to be
adjusted for this case, but the basic idea remains the same: the composition is
defined only if one of the machines is Moore in inputs generated by the other
machine.

Xl

X2

X3

AJ

b Y2
I >i_ IX4

Fig. 3. A generalized supervisory control problem.

T h e o r e m 17. I f P is a FSM over (X1 • X2 x X4) ~-* (3)t • 3)2 • 3)4), and
M C_ (Xt • X2 • X3 • Yl • Y2 • Y3)* is an arbitrary language, then a FSM Q
over (X2 • X3 • Y2 • J;4) ~-+ (,1'4 x 3;z) is a M-controller of P if and only if
P | Q is defined and s is contained in:

{(X2,Xa, Y2,Y4, X4,Y3) IVXt �9 Xf VYt �9 :

(Xt,X2,X4,Y1,Y2,Y4) •s or (X t ,X2 ,Xa , Y1,Y2, Y3) � 9 �9 (S)

Proof. Similar to Theorem 9. [3

If ,s is specified by a DFA (say M), then we construct a DFA with the
language (8) as follows:

1. construct a DFA Rt such that s = s U s (similar to the con-
struction of P =:~ M in section 4, the size of R1 is linear in the sizes of P
and M),

2. construct a DFA R~ such that s -- E(RI) (with appropriate representa-
tion of final states, this is a constant-time operation, which does not change
the size of R1),

291

3. construct a DFA R3 such that Z:(R3) = Z:(R2) ~x2•215215215215 (this
step m a y incur an exponential blow-up),

4. construct a DFA R4 such that Z:(R4) = /~(R3) (a constant-time, constant-
size operation),

I t is not hard to check that the language of R4 is exactly (8). Once we construct
such a DFA, we can apply the procedures described in sections 4.2 and 4.3 to
search for appropriate Q.

Acknowledgements

We are grateful to Jerry Butch, Ken McMillan and Vigyan Singhal for many
useful discussions and comments.

References

1. Adrian Aziz and Robert K. Brayton. Synthesizing interacting finite state machines.
Technical Report UCB/ERL M94/96, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley, December 1994.

2. S. Balemi, G. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. Franklin. Supervisory
control of a rapid thermal multiprocessor. IEEE Transactions on Automatic Con-
trol, 38(7):1040-1059, July 1993.

3. J. Richard Buchi and Lawrence H. Landweber. Solving sequential conditions
by finite-state strategies. Transactions of the American Mathematical Society,
138:295-311, April 1969.

4. J.R. Burch, D.L. Dill, E. Wolf, and G. DeMicheh. Modeling hierarcical combi-
national circuits. In Digest of Technical Papers of the 1993 1EEE International
Conference on CAD, pages 612-617, November 1993.

5. M.D. DiBenedetto, A. Saldanha, and A. Sangiovanni-Vincentelli. Model matching
for finite state machines. In Proceedings of the IEEE Conference on Decision and
Control, December 1994.

6. M.D. DiBenedetto, A. Saldanha, and A. Sangiovanni-Vincentelli. Strong model
matching for finite state machines. In Proc. of Euorpean Control Conference,
September 1995.

7. C.H. Golasze~vski and R.P. Kurshan. Task-driven supervisory control of discrete
event systems. In Edmund M. Clarke and Robert P. Kurshan, editors, Proceedings
of the Workshop on Computer-Aided Verification, volume 531 of LNCS, pages 282-
291. Springer-Verlag, June 1990.

8. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, languages and
Computation. Addison Wesley, 1979.

9. O.H. Jensen, J.T. Lang, C. Jeppesen, and K.G. Larsen. Model construction for
implicit specifications in modal logic. Lecture Notes in Computer Science, 715,
1993.

10. B. Jonsson and K.G. Larsen. On the complexity of equation solving in process
algebra. Lecture Notes in Computer Science, 493, 1991. In Proceedings of TAP-
SO1~T'91.

292

11. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. A fully implicit
algorithm for exact state minimization. In Proceedings of the 31th ACM/IEEE
Design Automation Conference, pages 684-690, June 1994.

12. J. Parrow. Submodule construction as equation solving in CCS. Theoretical Com-
puter Science, 68, 1989.

13. Amir Pneuli and Roni Rosner. On the synthesis of a reactive module. In Proc.
Principles of Programming Languages, 1989.

14. M.O. Rabin. Automata on infinite trees an Church's problem, volume 13 of Re-
gional Conference Series in Mathematics. American Mathematical Society, 1972.

15. P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings
of the IEEE, 77(1):81-98, January 1989.

16. Yosinori Watanabe. Logic Optimization of Interacting Components in Synchonous
Digital System. PhD thesis, University of California, Berkeley, 1994. UCB/ERL
Mem. No. M94/32.

17. H. Wong-Toi and D.L. Dill. Synthesizing processes and schedulers from temporal
specifications. In Edmund M. Clarke and Robert P. Kurshan, editors, Proceedings
of the Workshop on Computer-Aided Verification, volume 531 of LNCS, pages 272-
281. Springer-Verlag, June 1990.

18. W. Wonham and P. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM Journal of Control and Optimization, 25(3):637-659, May
1987.

