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Abs t r ac t .  Hybrid systems model discrete programs that are embedded in 
continuous environments. Model-checking tools are available for the analysis 
of linear hybrid systems, whose continuous variables are bounded by piecewise- 
linear trajectories. Most embedded programs, however, operate in nonlinear 
environments. We present, analyze, and apply two algorithms for translating 
nonlinear hybrid systems into linear hybrid systems. 

The clock translation replaces nonlinear variables by clock variables; the 
rate translation approximates nonlinear variables by piecewise-linear envelopes. 
Both translations are sound for teachability; that is, if we establish a safety 
property of the translated linear system, we may conclude that the original 
nonlinear system satisfies the property. The clock translation is also complete 
for reachability; that is, the original system and the translated system sat- 
isfy the same safety properties. The two translations apply to incomparable 
classes of nonlinear hybrid systems. From the clock translation we obtain a 
new decidability result for hybrid systems. 

With the help of HYTECH, a symbolic model checker for linear hybrid 
systems, we automatically verify a nonlinear railroad gate control program 
using the clock translation, and a nonlinear temperature control program using 
the rate translation. 

1 I n t r o d u c t i o n  

Hybrid systems are digital real-time systems that are embedded in analog environ- 
ments. Due to the rapid development of digital-processor technology, hybrid systems 
directly control much of what we depend on in our daily lives. Many hybrid systems, 
ranging from automobiles to aircraft, operate in safety-critical situations and there- 
fore call for rigorous analysis techniques. Consequently, the formal specification and 
verification of hybrid systems has become an active area of research [7]. The symbolic 
model-checking approach, in particular, has been successfully extended from discrete 
systems [5] to real-time systems [9] and linear hybrid systems [1, 4]. While the sym- 
bolic model-checking method developed in these papers is limited to piecewise-linear 
dynamics, many typical real-time parameters (e.g., temperature) behave in a nonlinear 
fashion. The present paper extends the model-checking approach to the analysis of 
certain nonlinear systems. ~ 

* This research was supported in part by the NSF grant CCR-9200794, by the AFOSR 
contract F49620-93-1-0056, and by the DARPA grant NAG2-892. 

2 Control theory, of course, has a long tradition of analyzing what we call nonlinear 
hybrid systems (in control theory, the term linearity usually refers to differential 
equations, not trajectories). There, however, the number of discrete modes of a con- 
troller is typically quite small. Model checking, on the other hand, allows the analysis 
of controllers that are defined by arbitrary finite-state programs. While the control 
theorists start with complex environments--differential equations--and steadily in- 
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We model hybrid systems as hybrid automata [2, 10] (Section 2). A hybrid automa- 
ton operates with a finite control over a da ta  space of both discrete and continuous 
variables. The discrete variables are updated by automaton transitions; the continuous 
variables evolve according to differential equations. In [4], we introduced the symbolic 
model checker HYTEcH (the Cornell Hybrid Technology Tool) for analyzing linear hy- 
brid automata.  Here, we turn to the analysis of nonlinear hybrid automata ,  which alone 
provide an accurate model for most real-time environments (for example, the temper- 
ature of a furnace decreases along an exponential curve with negative exponent), z 

A hybrid automaton defines an infinite-state transition system, and the reachability 
analysis of a hybrid automaton requires the computation of weakest preconditions in 
the underlying transition system. As we know~how to compute weakest preconditions 
accurately only for linear hybrid automata ,  we propose a two-step methodology for 
verifying a nonlinear hybrid automaton A. In Step 1, we translate A into a linear hybrid 
automaton B. In Step 2, we apply the HYTECH tool to the translated automaton B. 
The translation is P-sound, for a class 7 ~ of properties, if all P-propert ies  of B are 
inherited by A; ~-complete, if all P-propert ies  of A are inherited by B. Incomplete 
translations may lead to false negatives: B may not satisfy the P-proper ty  %0 although 
A does. We therefore accompany incomplete translations with error analyses: given 
a metric d on hybrid automata ,  what is the automaton A'  d-closest to A such that  
if A j satisfies %0, then so does B? If the d-difference between A and A j can be made 
arbitrarily small, then the translation is called asymptotically 7)-complete under the 
metric d. 

We present two translations, which transform two incomparable classes of nonlinear 
hybrid automata  into linear hybrid automata .  The clock translation (Section 3) replaces 
nonlinear variables by clocks (i.e., linear variables with slope 1). The clock translation 
is applicable to the nonlinear variable z if the value of x is always uniquely determined 
by the latest assignment to z and the time that  has expired since that  assignment. If 
the clock translation of the automaton A yields the automaton B, then the underlying 
transition systems are timed blsimilar. It follows that  the clock translation is both 
sound and complete for all branching-time properties. If all variables of a nonlinear 
hybrid automaton can be replaced by clocks, then the resulting linear hybrid automaton 
is a timed automaton [3]. As a corollary, we obtain a new decidable class of hybrid 
automata .  We verify a nonlinear railroad gate controller using the clock translation 
and the HYTEcII model checker. 

The rate translation (Section 4) approximates nonlinear variables by piecewise- 
linear variables. The rate translation is applicable to the nonlinear variable z if the value 
of z is bounded. If the rate translation of the automaton A yields the automaton B, 
then the transition system of B simulates the transition system of A (but  not vice 
versa). I t  follows that  the rate translation, while sound for all linear-time properties, is 
not complete for safety properties. We show that  the rate translation is asymptotically 
complete for safety properties. We verify a nonlinear temperature controller using the 
rate translation and the HYTECII model checker. Technically, both the clock translation 
and the rate translation can be viewed as abstract  interpretations of nonlinear hybrid 
au tomata  [6]. 

crease the complexity of the controllers that  can be analyzed, we computer scientists 
s tart  with complex control lers--programs!--and steadily increase the complexity of 
the environments. 

a We insist on representing nonlinear behavior accurately in our underlying model, 
because we feel that  linearization or digitization ought to occur after the modeling 
phase, so that  the errors that  are introduced by these processes can be analyzed 
and bounded. Such an analysis, indeed, is performed in the present paper for both 
linearizations we propose. 
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Fig.  1. Thermostat automaton 

2 Hybrid Automata  

Informally, a hybrid automaton consists of a finite vector x of real-valued variables 
and a labeled multigraph (V,E). The edges E represent discrete system actions and 
are labeled with nondeterministic guarded assignments to x. The vertices V represent 
continuous environment activities and are labeled with constraints on the derivatives 
of x. The state of the automaton changes either through instantaneous system actions 
or, while time elapses, through continuous activities. 

For example, the hybrid automaton of Figure 1 models a thermostat that controls 
the temperature of a manufacturing plant. The nonlinear variable z represents the plant 
temperature. In control location on, a heater is turned on; in control location off, the 
heater is turned off. The variable x follow the differential equations ~ = - x  + 4 in 
location on and ~ = - x  in location off. Initially, the temperature is 2 and the heater is 
turned on. If a thermometer detects that  the plant temperature reaches 3, the heater 
is turned off. If the thermometer detects that the temperature falls to 1, the heater is 
turned on. The two variables y and z are auxiliary variables: y, a stop watch, records 
the accumulated time that the heater is turned on, and z, a clock, records the total 
elapsed time. 

S y n t a x  Let y be a vector of reM-valued variables. A linear term over y is a linear 
combination of variables from y with real coefficients. 4 A linear inequality over y is a 
nonstrict inequality between linear terms over y. A hybrid automaton A consists of the 
following components [2]: 

D a t a  va r i ab les  A finite vector x = (x l , . . . , x=)  of real-valued data variables. The 
thermostat automaton in Figure 1 has the vector (x,y,z)  of data variables. A 
data state is a point in n-dimensional space ]R =. A convez data region is a convex 
polyhedron in ~ = ;  a data region is a finite union of convex data regions. A convez 
data predicate is a conjunction of linear inequalities (e.g., xs < 2x~ - 1 A 6 < x3). 
A data predicate is a disjunction of convex data predicates. Each (convex) data 
predicate r defines, then, a (convex) data region [~b] C IR ~ such that s E [r iff 
r := s] is true. 
An action predicate is a conjunction of linear inequalities over x U x I, where x I = 
(z~ . . . .  , z ' )  ~s the vector of primed data variables. Each action predicate r defines 
a function from data states s e IR ~ t o  convex data regions [e l (s)  C ]R=: s' e 
[e l (s)  iff r  := s,s ']  is true. 

C o n t r o l  l oca t ions  A finite set V of vertices called locations. The thermostat automa- 
ton has the locations on and off. A state (v, s) of the hybrid automaton A consists 
of a location v e V and a data state s e IR ~. A region U~v{(V,S~)}  is a col- 
lection of data regions S~ C IR =, one for each location v E V. A state predicate 
is a collection [.J~ev{(V,r of data predicates r  one for each location v e V. 
When writing state predicates, we omit disjuncts of the form (v,false). Each state 
predicate ~o = U ,  ev{(V, r  defines, then, the region [~o] = U, ev{(v, ICy])}. 

4 We shall specify coefficients by symbolic expressions like ln3. 
f 
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In i t i a l  cond i t i ons  A labeling function init that assigns to each location v E V a 
convex data predicate init(v), the initial condition of v. The control of A may start 
in the location v only when the initial condition init(v) is true. In the graphical 
representation of hybrid automata,  we usually suppress initial condition of the 
form false. In the thermostat automaton, the initial conditions of the locations on 
and off are x = 2 A y ----- 0 A z -- 0 and false, respectively. We write IA for the 
initial region U~v{(v,[init(v)])} of A. 

L o c a t i o n  i n v a r i a n t s  A labeling function inv that assigns to each location v E V a 
convex data predicate lay(v), the invariant of v. The control of A may reside in the 
location v only while the invariant lay(v) is true. In the graphical representation, 
we usually suppress invariants of the form true. In the thermostat automaton, the 
invariants of the locations on and off are �9 < 3 and x > 1, respectively. We write 
2YA for the admissible region U~ev{(V, [inv(v)])} of A. 

C o n t i n u o u s  ac t iv i t i e s  A labeling function dif that assigns to each location v E V 
and each data variable x~ an activity dif(v, xl), which is either (1) a linear term 
dif(v, xi) = f (x )  over x; or (2) a rate interval dif(v, xl) = [a, b], which is a bounded 
or unbounded, closed interval of the real line with -I-cr (that is, a, b E lRU{-oo,  ~ }  
and a < b). In the first case, if the control of A resides in the location v, the value of 
zi evolves according to the first-order differential equation ~i = f (x) .  In the second 
case, the interval endpoints a and b give a lower bound and an upper bound on 
the derivative of zi; that is, a < $i < b. 
The data variable z is linear if for all locations v E V,  dif(v, z)  is a rate interval; 
otherwise, z is nonlinear. The hybrid automaton A is linear if all data variables 
in x are linear [4]; otherwise, A is nonlinear. In the thermostat automaton, the 
data variables y and z are linear. The variable z is a nonlinear variable with 
rill(on, z)  = - z  + 4 and dif( off , z)  = - z .  

Edges  A finite multiset E of edges. Each edge (v, v I) identifies a source location v E V 
and a target location v' E V. For each location v E V, there is a stutter edge 
e~ = (v, v). In the graphical representation, we usually omit stutter edges. The 
thermostat automaton has four edges: (on, off), (off, on), (on, on), and (off, off). 

Disc re t e  a c t i ons  A labeling function act that assigns to each edge e E E a con- 
vex action predicate act(v,v~), the action of e. If the control of A proceeds from 
the location v to the location v ~ via the edge e = (v,v~), then the values of all 
data variables change from s nondeterministically to any point within the data 
region [act(e)l(s). For example, an edge with the action label xl < 3 A 3 < x~ < 
5 A z~ = z2 A z'  3 = zl + 1 can be traversed only when the value of zl is at 
most 3. By traversing the edge, the value of zl changes to any real number in 
the interval [3,5], the value of z2 remains unchanged, and the new value of z3 is 
1 plus the old value of z l .  The stutter edges are labeled with the action true. In 
the graphical representation of actions, if the primed variable z'  occurs only in the 
conjunct z'  = z, then we usually omit that conjunct. In the thermostat automaton, 
act(on, off) is z = 3 A z '  = z A y '  = y A z'  ---- z .  

Edge  labels  A finite set L of edge labels and a labeling function label that assigns 
to each edge e E E a label from L. For all stutter edges e~, label(e~) = v. The 
edge labels are used to define the parallel composition of hybrid automata. In the 
thermostat automaton, label(on, off) is turnoff. 

A c c e p t i n g  c o n d i t i o n s  A labeling function final that  assigns to each location v E V 
a data predicate final(v), the accepting condition of v. We use the accepting condi- 
tions to check safety properties of hybrid automata. In the graphical representation 
of hybrid automata,  we suppress accepting conditions of the form true. We write 
FA for the accepting region region U~ev{(V, lfinal(v)l)} of A. 



229 

The da ta  or action predicate q5 is rational if all constants that  occur in r are rational. 
The hybrid automaton A is rational if all da ta  and action predicates that  specify 
the initial and accepting conditions, invariants, and actions of A are rational. A state 
predicate is rational if it contains only rational da ta  predicates. 

A special case of a linear hybrid automaton is a timed automaton [3]. The da ta  
variable x of the hybrid automaton A is a clock if dif(v ,z)  = [1,1] for all locations 
v of A; that  is, each clock always increases with the rate at which time advances. An 
atomic da ta  predicate is simple if it has the form z < c or x > c, for some c E IR; 
an atomic action predicate is simple if it is a simple atomic da ta  predicate or has the 
form x ~ = c or x ~ = x. The da ta  variable x of A is simple if in all initial and accepting 
conditions, invariants, and actions of A, x and z s occur only in atomic da ta  and action 
predicates that  are simple. The hybrid automaton A is a timed automaton if all da ta  
variables of A are simple clocks. 

S e m a n t i c s  At  any time instant,  the state of a hybrid automaton A specifies a lo- 
cation and values for all da ta  variables. The state can change in two ways: (1) by an 
instantaneous move through an edge that  changes both the location and the values 
of da ta  variables according to the corresponding action; or (2) by a time delay that  
changes only the values of da t a  variables in a continuous manner according to the 
activities of the current control location. A data trajectory ($,p) in location v of the 
hybrid automaton A consists of a nonnegative duration ~ E IK>o and a differentlable 
function p: [0, ~] --~ JR" such tha t  

1. for all reals t e [0,5], p(t)  e [inv(v)l;  
2. for each da ta  variable xi with dif(v, xi) --- f ( x ) ,  for all reals t e (0, a), dp(xl)( t) /dt  = 

f ( x )  (where p(xl)(t) denotes the i th component of the da ta  state p(/)); and 
3. for each da ta  variable xi with dif(v, ~i) --- [a, b], for all reals t e (0, 5), dp(xl)( t) /dt  e 

[a, hi. 
We define the the following two transit ion relations on the admissible states of the 
hybrid automaton A: 

E d g e  s t e p  For all states at --- (v, s l )  and a2 - (v ' ,s2)  of A, and all edge labels g, 
al ---* a2 if hi ,a2 E ~A, and there exists an edge e from v to v' such that  label(e) = l 
and s2 e [act(e)](sl). 

T i m e  s t e p  For all states a~ = (v, s l )  and a2 = (v, s2) of A, and all durations 5 e lR_>0, 
a l  ~ a~ if there exists a da t a  t ra jectory (5,p) in locution v such tha t  p(0) = sl 
and p(~) = s2. 

The hybrid automaton A defines the labeled transition system [A] = (.g'A, IA,s 
,FA) that  consists of ( 1 ) t h e  infinite s t a t e  space ~A,  (2 ) the  set IA of initial states, 
.j3) the alphabet  s = L U lR>0, (4) the transition relation --+A= [J{ ~ [ 5 > 0} u 

{ -h I t e L}, and (5)  the se-t FA of accepting states. A trajectory-~: of A is a finite 
t r i o  ~ ' ~ / 1  r n k - - 1  �9 - -  �9 

path  a0 ~ ax --~ . . .  ~ ak m [AI such tha t  ao E [A and for all ~ E { 0 , . . . , k  - 1}, 
tyi m l  ~ ) @"+A. The t rajectory r is accepting if the final state of r is accepting; that  

is, ok E FA. The reachable region R(A)  C_ SA of the hybrid automaton A is the set of 
all final states on trajectories of A. 

P a r a l l e l  e o m p o s i t l o n  A hybrid system typically consists of many components that  
operate concurrently and communicate with each other. We describe each component 
as a hybrid automaton.  The edge labels can be used to synchronize various system 
components. The hybrid automaton that  models the entire system is then constructed 
from the component au tomata  using a product operation that  is defined in the s tandard 
way [4]. 
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Fig.  2. A railroad gate controller 

E x a m p l e :  N o n l i n e a r  r a i l r o a d  g a t e  c o n t r o l l e r  We present a nonlinear vari- 
ation of a familiar example [4]. The three hybrid automata of Figure 2 model three 
processes--a train, a gate, and a controller. The nonlinear variable z represents the 
distance of the train from the gate. Initially, the train is far from the gate and moves at 
the speed 50 meters per second. When the train approaches the gate, a sensor placed at 
a distance of 500 meters from the crossing detects the train and sends the signal app to 
the controller. The train starts to slow down and the controller waits 5 seconds before 
sending the command lower to the gate; the delay of the controller is modeled by the 
clock t. Consequently, the gate is lowered from 90 radius degrees to 0 degrees at the 
constant rate of 20 degrees per second; the position of the gate in degrees is represented 
by variable y. After passing the gate, the train begins to accelerate. A second sensor 
placed at 100 meters past the crossing detects the leaving train and signals exit to the 
controller, which, after another delay of 5 seconds, sends the command raise to the 
gate. The distance between consecutive trains is (at least) 1,000 meters. Notice that 
the synchronization signals like app, exit and raise are modeled by edge labels. 

T h e  e m p t i n e s s  p r o b l e m  The emptiness problem for hybrid automata asks, given 
a hybrid automaton A, if A has an accepting trajectory. If the accepting region FA 
represents the set of "unsafe" states specified by a safety property, then the safety 
property can be verified by checking the emptiness of A, namely, the safety property 
is satisfied by A iff A has no accepting trajectory. The emptiness problem is decidable 
for rational timed automata [3] and certain rational simple linear hybrid automata [8], 
and semidecidable for rational linear hybrid automata [2]. 

For the thermostat automaton of Figure 1, we will verify the safety property whose 
"unsafe" region is characterized by the state predicate U~e(on,off){(v, 6 < z < 2 y - l ) } ;  
that is, after 6 time units the heater has always been on at most half of the time plus 1 
time unit. For the railroad gate controller of Figure 2, we will verify the safety property 
whose unsafe region is characterized by the state predicate Uvv=ctosed{(v,x < 100)}; 
that  is, whenever the train is within 100 meters from the gate, the gate is closed (we 
write v ~ closed if the gate component of location v is closed). 
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3 Clock Trans la t ion  

The clock t rans la t ion of a hybrid a u t o m a t o n  replaces each nonlinear  da ta  variable x 
by a clock t :  that  is restarted whenever the value of x is changed by a discrete action. 
The clock t rans la t ion  is applicable if at every point  of a trajectory,  the value of x is 
uniquely determined by the value of t : .  

S o l v a b l e  a u t o m a t a  Let A be a hybrid au tomaton .  The simple nonl inear  da ta  vari- 
able ~ of A is (rationally) determined in the location v of A if dif(v, x) = f ( x )  and for 
all ( rat ional)  initial values x0 E IR, the initial-value problem '%(t) = f (x) ;  x(0) = x0" 
has an algebraic solution x.,~0(t ) such tha t  for each constant  e tha t  appears  in an 
atomic da ta  predicate x -~ c, for '~E { < , > } ,  or an atomic action predicate z ~ = e 
of A, the funct ion x~,~o(t ) - c has a finite number  of ( rat ional)  roots. For example, 
suppose tha t  the funct ion x~ ,~o( t ) -  c0 has the two roots ro and r l ,  and all trajectories 
tha t  enter  the location v have the initial value xo for x. Then the value of the variable 

is xo,~0(tx) for all reachable states in v. Thus  an exit edge of location v guarded 
with a~ = co can be replaced by two exit edges guarded with t~ = r0 and tx = r t ,  
respectively. 

The  location v of A is definite for the da t a  variable x if the initial condit ion init(v) 
implies x = c, for some initial value c E IR. The edge e of A is definite for x if the 
action act(e) implies a / =  c, for some arrival value c E IR. The  simple nonl inear  da ta  
variable x of A is solvable if the following three condit ions hold: 

1. For all locations v of A, x is determined in v. 
2. All locations of A are definite for x. 
3. For all edges e = (v, v') of A, if dif(v, x) ~ dif(v', x), then  e is definite for x; 

For example, the nonl inear  variable x of the thermosta t  au toma ton  of Figure 1 is 
solvable, and so is the the nonl inear  variable x of the t rain au toma ton  of Figure 2. 
The hybrid au toma to n  A is solvable if all nonl inear  da ta  variables of A are simple and  
solvable. The au toma ton  A is rationally solvable if A is (1) rat ional ,  (2) solvable, and 
(3) all da ta  variables of A are rationally determined in all locations of A. All (rat ional)  
timed a u t o m a t a  are (rat ionally)  solvable and  the class of (rationally) solvable hybrid 
a u t o m a t a  is closed under  parallel composition. For each solvable da ta  variable x, we 
collect the initial values of x for all locations and the arrival values of x for all definite 
edges in the finite set CritVal(x) C ]R of critical values for x. 

T h e  c l o c k  t r a n s l a t i o n  a l g o r i t h m  Given a solvable nonlinear  hybrid au toma-  
ton A, we construct  a l inear hybrid au t o ma t o n  A~-- the  clock translation of A - - b y  
replacing each nonlinear  da ta  variable x with a new clock t~. For each nonl inear  da ta  
variable x, the construct ion proceeds in two steps: 

1. Let CritVal(x) = {cl . . . .  ,c=} with cl < " "  < c~. Each location v of A is split into 
a collection v c l , . . . , v ~ ,  of  locations, one for each critical value ci of ~. We then 
add the clock t~ such that  the value of a~ in location v~; is x(t~), where x(t) is the 
solution of the initlal-value problem "~(t) = dif(v, z); z(0)  = c;". 

2. All initial and accepting conditions,  invariants ,  and actions are t ranslated from 
condit ions on z to condit ions on t , .  

We now provide more details. 

Step 1. Splitting locations and edges After the application of Step 1, each new location 
v~ has the same activities as v and,  in addit ion,  the new activity dif(v~i,t~ ) = 1 
for the clock t , .  The new location vr has the the initial condit ion init(v) ^ t ,  = O, 
the accepting condit ion final(v), and  the invariant  inv(v). For each indefinite edge 

V t e = (v, v ' ) ,  we introduce all edges of the form ( ~ ,  vr with the action act(e) and  the 
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F i g .  3. Clock t rans la t ion  of the thermosta t  au toma ton  

label label(e); for each definite edge e = (v, v') with the arrival value cj, we int roduce 
all edges of the form (vc~, v ' . )  with the  action act(e) A t~ = 0 and the label label(e). 
For example, the t h e r m o s t a t ~ u t o m a t o n  of Figure 1 has only definite edges. The critical 
values o fx  are 1, 2, and  3, so we split bo th  locations on and  off into three locations each. 
Since the locations ons, off1, and off~ are not reachable by a sequence of au tomaton  
edges from the initial location on2, we remove these three locations from the clock- 
t ranslated au tomaton .  The result of Step 1 is shown on the leK in Figure 3. 

Step 2. Updating accepting conditions, invarlants, and actions Let the funct ion x(t) 
be the solution of the initial-value problem '%(0  = dif(v,z); x(0) = ci". We now 
eliminate the nonlinear  variable x from the initial and accepting conditions,  invariant ,  
and  exlt-edge actions of each new location v,i .  

First ,  we simply remove all the atomic da ta  predicates tha t  involve the variable 
x from the initial condit ion init(v~i). Second, we t ransla te  the accepting condit ion 
of location vr Suppose that  x < c is an atomic da t a  predicate of the accepting 
condit ion final(vr (other atomic da t a  predicates are handled similarly). We find all 
finite roots r 0 , . . . , r k  of x ( t ) -  e (count  roots with zero derivatives twice). If no such 
root exists and  ci < c, then x < c is always satisfied and we replace x < c by true; if 
no root exists and ci > c, then x < c is not  satisfiable and we replace x < c by false. 
Otherwise, if ci < c, then z < c is satisfied when the value of t~ is in any of the 
intervals [0,r0],[rl ,v2] . . . .  ; i f  ci > c, then z < c is satisfied when the value of t~ is in 
any  of the intervals [ r0 , r l ] , [ r2 , r a ] , . . .  We therefore replace z < c by the  dis junct ion 
Vt , , ,~+ l l e t  ri < t~ <_ r i+ l ,  where I is the set of root intewals during which x < c is 

satisfied. The result can be t ransformed into disjunctive normal  form. 
Third ,  we t ransla te  the invariant  of location v,~. Suppose tha t  x < c is a conjunct  

of the invariant  inv(vc,) (other conjuncts  are handled similarly). If el > e, then the 
arrival value of z does not  satisfy the  invariant ,  and  thus we remove the location v, i . 
Otherwise, we find the smallest nonnegat ive  finite root r of x(t)  - c. If such a root r 
exists, then the au to ma t o n  control can reside in the location vr i up to v t ime uni ts ,  
and  thus we replace the conjunct  x < c of the invariant  by the conjunct  t~ < r. If no 
such root r exists, then the au t o ma t o n  control can reside in the location v~ forever, 
and  we replace the conjunct  x < e by true. 

Fourth,  we t rans la te  the actions of all edges tha t  leave the location re;.  Suppose 
tha t  x < c is a conjunct  of the action act(e), where e = (v ,v ' ) .  We find all finite roots 
v0, . . . .  rk of x ( t ) -  c (count  roots with zero derivatives twice). If no such root exists 
and cl < c, then  the edge e is always enabled and  we replace the conjunct  x < c by true; 
if no root exists and  ei > c, we remove the edge e. Otherwise, if ci <_ c, then the edge 
e is enabled when the value of t~ is in any of the intervals [0, v0], [rl ,  r2 ] , . . . ;  if cl > c, 
then e is enabled when the value of t ,  is in any of the intervals [to, r l] ,  [r2, rs] . . . .  For 
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each root interval [ r i , r i+ l ]  during which e is enabled, we introduce an edge with the 
action act(e) and the label label(e) except that  (1) the conjunct x _< c is replaced by 
the conjunct rl <: t= < ri+l  and (2) any atomic subformula involving x'  is removed. 
In the thermostat  example, we have Zont(t) = - 3 e - '  + 4, Xon2(t) = - 2 e  -~ + 4, 
and ~:offs(t) = 3e -~. Consider the action x = 3 of the edge from on2 to Offz. Since ln2 
is the unique root of - 2 e  -~ + 4 - 3, it follows that  z = 3 iff t= = In2. Hence we replace 
the action x = 3 with the action t= = ln2. The final result of Step 2 is shown on the 
right in Figure 3. 

S o u n d n e s s ~  c o m p l e t e n e s s ~  a n d  d e c i d a b i l i t y  We show that  the clock transla- 
tion is both sound and complete for checking the emptiness of solvable automata.  Let 
A be a solvable hybrid automaton,  and let A ~ be the automaton clock translated from 
A by translat ing a nonlinear variable x into a clock t~. We show that  A and A c are 
bisimilar. 

We first recall the definition of (timed) bisimulation. Let T1 = ($1, /1 ,  Z:,--~I ) and 
7'2 = (L'2, I2 , / : ,  --'2) be two labeled transition systems. The binary relation ~ C $1 x $2 
is a bisimulation between T1 and T2 if for all states al  E L'I and a2 E ~2, a l  ~, ~r2 
implies for every letter m E /~ that  (1) if a l  ---,al, then there exists a state a~ such 
that  a2---~ a2 and a~ ~ a~; and (2 ) i f  or2---~ a2, then there exists a state a~ such that  
a l  --~ ~ and ~ ~ a~. The two states a E ~71 and a' E ~2 are bisimilar if there exists a 
bisimulation ~ between 7"1 and Tg_ such that  a ~ a~. The labeled transition systems Ta 
and T2 are bisimilar, denoted T1 ~ T~, if for each initial s tate a E I1, there is a initial 
state a ~ E I2 such that  a ~ a ~, and vice versa. The two hybrid au tomata  A and B are 
bisimilar if [A] ~ [B]. 

We define the function a= : SAr --* SA such that  a~(v~,s) = (v , s ' ) ,  where the 
location v~ is split from the location v for the critical value c, the states s and s'  agree 
on all variables except x and t~, and s'(ae) = z(s(t~))  if the function ~(t) is the solution 
of the initial-value problem "~(t) = dif(v,x);  x(O) = c". 

L e m m a  1. Let A be a solvable hybrid automaton, and let A ~ be the clock translation 
of A that results from replacing the nonlinear variable x by the clock t~. Then for all 
states a ,a '  ~ SA, ,  ~r-~ a' in [ a  "] iff a~(cr)-~ a=(a') in [A]. 

I t  follows tha t  the relation {(a,a=(a)) I a e S A ' }  is a bisimulation between [g]  and 
[A~], and tha t  [A] ~ [Ar Since bisimilarity is transitive, if A ~ results from A by 
replacing several nonlinear variables with clocks, A and A r are still bisimilar. 

T h e o r e m  2. If  A is a solvable hybrid automaton and A ~ is a clock translation of A, 
then A and A ~ are bisimilar. 

It follows that  the clock translation is sound and complete for all branching-time prop- 
erties. In particular,  for safety properties, we have the following corollary. 

C o r o l l a r y  3. Let A be a solvable hybrid automaton, and let A ~ be a clock translation 
of A. I r A  has an accepting trajectory iff A ~ has an accepting trajectory. 

We conclude tha t  for solving the emptiness problem for the nonlinear automaton A, 
it suffices to solve the emptiness problem for the linear automaton A% The emptiness 
problem for A ~, however, can be solved exactly only if the clock translation A ~ is 
rational. This gives us the following decidability result, which covers a class of nonlin- 
ear hybrid automata ,  while all previously published decidability results refer to linear 
hybrid au tomata  [8]. 

C o r o l l a r y  4. The emptiness problem is decidable for rationally solvable hybrid au- 
tomata. 



234 

I x ---- 5 | n  ,~ 
/ 

= 2 0  A t ~ = O  t ~ 2 0  A t  ! ----0 

A 
i'~ .27 < lot  x < 128 

'~ = - o  - 

Fig.  4. Clock translation and 0.1-approximate clock translation of the train automaton 

8 - a p p r o x i m a t e  c l o c k  t r a n s l a t i o n  If the clock translation A ~ is not rational, we 
approximate A c by a rational automaton, and show soundness for emptiness check- 
ing. To preserve soundness when approximating irrational roots numerically, we over- 
approximate all root intervals. For example, the action tx -= In2 can be overapprox- 
imated by the rational data predicate 693 _< 1000t~ _< 694 with an error bounded 
by 6 = 1/I000. Formally, a ~-approximation of the data predicate t~ < c (t= > c), 
fo r6  E I~,is  of the form t~ _< e' (t~ > c') such that c < c' < c + g  ( c - g  < c' < c) 
and c' is rational. A g-approzimate clock translation [~c]~ of A is a rational linear 
hybrid automaton that is obtained from the clock translation A c by replacing all 
atomic data predicates in initial and accepting conditions, invariants, and actions by 
~-approximations. Note that an action predicate that involves the primed variable t~ 
for a new clock t~ are of the form t~ = 0 or t~ = t~. 

We show that [A~]6 simulates A. To see this, recall the definition of (timed) sim- 
ulation. Let T1 = (Z'1,[1,~:,--.1) and T2 = (Z'2,/~,~,---,2) be two labeled transition 
systems. The binary relation ~- C ~U1 • Z'2 is a simulation of T2 by T1 if for all states 
al E Z1 and a2 E s al ~" a2 implies for every letter m E L: that if cr2-~ a~, then 
there exists a state a~ such that a~ -~ a~ and a~ ~- a~. The state ~ E Z'~ simulates the 
state a ~ E ,~2 if there exists a simulation ~- of T2 by T1 such that a ~ a ' .  The labeled 
transition system T1 simulates the labeled transition system T2, denoted T1 ~- T~, if 
each initial state of T2 is simulated by an initial state of T1. The hybrid automaton A 
simulates the hybrid automaton B, written A _ B, if [A] ~- [B]. It is clear that [A~]6 
simulates A% Moreover, since A and A ~ are bisimilar, we know that [A~]s simulates A. 

P r o p o s i t i o n  5. Let A be a solvable hybrid automaton. For all 6 E ]I~>_o, i f  [A~]6 is a 
$-approximate clock translation of A, then JAil6 simulates A. 

It follows that approximate clock translation is sound for all linear-time properties. 
Again, for safety properties, we have the following corollary. 

C o r o l l a r y  6. Let A be a solvable hybrid automaton, and let [AC]s be a ~-approzimate 
clock translation of A. I f  A has an accepting trajectory, then so does [AC]~. 

E x a m p l e :  R a i l r o a d  g a t e  c o n t r o l l e r  The performance data in this paper was 
measured on a Sun 670MP workstation. The clock translation B~ of the train automa- 
ton B1 from Figure 2 is shown on the left in Figure 4, next to a 0.1-approxlmate clock 
translation [B~]0.~ on the right. By taking the product of [B~]0.t with the gate and 
controller automata from Figure 2, the HYTEc~ verifier automatically checks (in 25 
seconds of CPU time) that whenever the train is within 100 meters from the gate, then 
the gate is closed. On the other hand, a 1.0-approximate clock translation of the train 
automaton is not sufficient for proving this safety property. (After clock translation, 
the safety property of the thermostat automaton from Figure 1 is checked by HYTEcI-I 
in 7 seconds of CPU time.) 
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Fig.  5. A temperature controller with delays 

E r r o r  a n a l y s i s  The approximate clock translation [AC]s may have an accepting tra- 
jectory even if A does not. We now show that  there is a hybrid automaton that  is 
very close to A and has an accepting trajectory. The following error analysis relaxes all 
atomic data and action predicates of A to provide an upper bound on the error of [A~]~. 
If the hybrid automaton A models a hybrid system with sensors and actuators, then 
the e-relaxed automaton A ~, for e E lR>0, models the same system with sensors and 
actuators that  suffer from errors bounded by r (1) all atomic data predicates of the 
form x < c and x > c (in initial and accepting conditions, invariants, and actions) are 
replaced-by x < c+r  and x ~ c - e ,  respectively; and (2) all atomic action predicates of 
the form x' = c are replaced by c - e < x' < c + r Notice that if r --~ 0, then A ~ ~ A. 
We define the metric d~ on hybrid automata such that d ~ ( A , B )  is the infimum of 
all nonnegative reals s such that A ~ _ B ~ A or B e _ A ~ B, if such an ~ exists; 
otherwise, d~_(A,B) = or. The error of the 6-approxlmate clock translation [A~]6 is 
d~(A,  [AC]s). The following lemma bounds this error. 

L e m m a T .  Let A be a solvable hybrid automaton, and let [AC]~ be a 6-approximate 
clock translation of A. I f  ~ E ]R>o bounds the absolute values of  the derivatives of  all 
data variables of  A in all locations o /A ,  then A ~'~ simulates [A~]~; that is, the error 
of  the g-approximate clock translation [AC]b is bounded by ~ �9 .~. 

It follows that  the approximate Clock translation is asymptotically complete, under the 
metric d~, for checking the emptiness of hybrid automata. 

T h e o r e m  8. Let A be a solvable hybrid automaton. For all reals r > O, there is a real 
(f > 0 such that for all ~-appro~imate clock translations [AC]~ of A, A c ~- [AC]~ ~- A. 

C o r o l l a r y  9. Let A be a solvable hybrid automaton. For all reals r > O, there is a real 
> 0 such that i f  a ~-approximate clock translation of  A has an accepting trajectory, 

then so does A ~. 

4 R a t e  Trans la t ion  

The rate translation of a hybrid automaton replaces each nonlinear data variable x by a 
piecewise-linear variable that approximates x. The rate translation may be applicable 
also to unsolvable automata. Consider, for example, the nonlinear hybrid automaton 
of Figure 5, which models a temperature controller with delays: after the thermometer 
detects that the temperature is low or high, there may be a delay of up to 1 time unit 
before the heater is turned on or off. We wish to verify that the plant temperature is 
always between ~ and ~ .  The automaton is not solvable, because the edge from delay 1 
to off is indefinite for x. Hence we cannot apply the clock translation to eliminate 
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the nonlinear variable x. Instead, we approximate x by a piecewise-linear variable. In 
location v with the bounded invariant region [inv(v)], we bound the derivative of ~c by 
its minimum a and its maximum b, and then replace the activity dif(v, a:) by the rate 
interval [a, b]. For a better approximation, we split the location v into several locations 
and limit the size of the rate intervals. Clearly, smaller rate intervals yield a more 
accurate overapproximatlon of the automaton trajectories. 

B o u n d e d  a u t o m a t a  Let A be a hybrid automaton. The data variable ~ of A 
is nondecreasin# (nonincreasing) in location v of A if inv(v) implies dif(~, v) >. 0 
(dif(x,v)  < 0). The data variable z of A is bounded with the window [c,d] c_ ~ if any 
one of the following three conditions holds: 

1. For all states in R(A),  the value of z is always within the bounded interval [c,d]. 
In particular, this is the case if for all locations v of A, inv(v) implies c < z < d. 

2. A does not contain constants smaller than c or larger than d, and either z is 
nondecreasing in all locations of A, or x is nonlncreasing in all locations. 

3. "~FA implies c < �9 < d. 

If the data variable z is bounded with the window [c, d], and its value lles outside [c, d], 
then the exact value of z is irrelevant for checking the emptiness of A. The hybrid 
automaton A is bounded if all nonlinear variables of A are simple and bounded. 

T h e  r a t e  t r a n s l a t i o n  a l g o r i t h m  Let A be a bounded hybrid automaton, and let 
6 E ]R>s be a nonnegatlve real. A g-approximate rate translation [A~]~ of A is a lin- 
ear hybrid automaton that is obtained by the following construction. Consider a data 
variable ae and a location v of A. First assume that the activity dif(v ,z)  = f(x)  is a 
function of z only. Let [c,d] be the window of z. We partition the window [c,d] into 
k subintervals /1 = It0 = c, cl] . . . . .  Ik = [ck-~,c~ = d], each of size at most ~. The 
location v is split into k + 2 locations vo, . . . ,  vk+l. Each new location vi has the invari- 
ant inv(v) ^ ci-1 < z < cl, where c-1 = - c r  and ck+l = oo. For each vi, we compute 
the minimum a and the maximum b of the function dif(vl, z) for ci-1 < z < ci. We then 
approximate the derivative of z in the location m by the rate interval dif(v~, z) = [a, b]. 
Finally, we introduce all edges of the form (vi, vi+l ) and (vi+~, vi) with the action z = ci 
and the label v (which is the label of the stutter edge e~); and for each edge e = (v, v'), 
all edges of the form (v~,vj) with the action act(e) and the label label(e). 

Now consider the general case that dif(v, zi) = f ( z l , . . . ,  z , ) .  We approximate all 
nonlinear variables zl , . . .  ,z,~ simultaneously. Suppose that the window for zi is Ii. We 
partition It into ki subintervals [ci,0, ci,1], . . . ,  [cl,ki-1, ci,~ ], each of size at most 5. The 
location v is split into the set U~ = {v(a~,. . .  ,a=)lO <_ ai < k i+ l}  o f (k1+2) . . .  ( k ,+2 )  
locations, all with the initial condition init(v) and the accepting condition final(v). The 
invariant of v(a l , . . .  ,a~) is lay(v) A Ai=l ...... c~,,~_1 < zi <_ ci,~i, where el,-1 = - c r  
and el,ki+l = oo. For each new location, we compute the rate intervals for all zi. For 
each pair v(a) and v(b) of new locations, we introduce all edges of the form (v(a), v(b)) 
with the axtion x ~ = x and the label v (many of these edges are inconsistent and can be 
omitted); and for each edge e = (v, v'), we introduce all edges of the form (v(a), v ' (b))  
with the action act(e) and the label label(e). 

S o u n d n e s s  We show that the rate translation is sound for checking the emptiness of 
bounded automata. We define the onto function fl : ~[aqs -'* ~a such that fl(v~,s) = 
(v, s) if v~ E U~. It is clear that for all states a l ,  ~2 E ~?[A'I,, if fl(vl)-~./3(a2) in [A], 
then al ---~ a~ in [[A~],I . Hence the relation { (a ,Z(a ) )  I c, �9 Q , t q , }  is a simulation of 
[A] by [ [A ' ld .  

P r o p o s i t i o n  10. Let A be a bounded hybrid automaton. For all 6 E IR>o, if  [A~]s is 
a g-approximate rate translation of A, then [Ar]~ simulates A. 
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Fig.  6. Rate translation of the temperature controller with delays 

It follows that the rate translation is sound for all linear-time properties. In particular, 
for safety properties, we have the following corollary. 

C o r o l l a r y  11. Let A be a bounded hybrid automaton, and let [Ar]6 be a rate translation 
of A. I f  A has an acceptin9 trajectory, then so does [A']s. 

E x a m p l e :  T e m p e r a t u r e  c o n t r o l l e r  w i t h  d e l a y s  Recall the emptiness problem 
for the automaton B2 of Figure 5 with the accepting condition U~{(v,z  < ~ V z > 
~ )} .  For the rate translation of the automaton B~, we partition the window [~, ~ ]  
into the eight intervals 1 s 3 s s is 13 lr lr 19 [~,~1, [~,1], [1,~1, IX,21, [2,-g-], [~-,3], [3,-g-], and [ ~ , ~ - ]  
of uneven size at most 0.6 (it is a good idea to separate intervals at the point c if 
x = c is a conjunct of an invariant or action). After removing inconsistent edges and 
unreachable locations, we obtain the linear hybrid automaton [B~']0.s of Figure 6, which 

B ~ is a 0.6-approximate rate translation of B2. The HYTECH verifier reports that [ 2]o.r 
satisfies the safety property that the value of x stays within the interval (~, a9 T )  (using 
45 seconds of CPU time). 

E r r o r  a n a l y s i s  To analyze the error of the 5-approximate rate translation [A~]6, 
we define the metric dR such that dn(A, B) is the infimum of all nonnegative reals e 
such that R(A) C_ R(B) C R(A ~) or R(B) C R(A) C_ R(B~), if such an e exists; 
otherwise, dR(A,B)  = oo. The error of the 5-approximate rate translation [A~]s is 
dR(A, tAn]s), where R([A~]s)is interpreted as fl(R([K]6)) when compared with R(A). 
In the full paper, we give an error analysis for the rate translation of monotonic bounded 
hybrid automata,  where in each location each nonlinear variable is nondecreasing or 
nonincreasing. The rate translation is asymptotically complete, under the metric dR, 
for checking the emptiness of monotonic bounded hybrid automata. 

T h e o r e m  12. Let A be a monotonic bounded hybrid automaton. For all reals e > O, 
there is a real 8 > 0 such that for all #-approzirnate rate translations [A']6 of A, 
R(A) C R([A']s) _C R(A') .  
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Corol lary  13. Let A be a monotonic bounded hybrid automaton. For all reals s > O, 
there is a real ~ > 0 such that ira ~-approximate rate translation of A has an accepting 
trajectory, then so does A t. 

5 D i s c u s s i o n  

The two translations presented here provide algorithmic methods for verifying safety 
properties of two classes of nonlinear hybrid systems: solvable systems and bounded 
systems. Whenever both translations are applicable, the clock translation is generally 
preferable, because the size of the translated automaton does not depend on the pre- 
cision of the translation. This work can be extended in two ways, which are discussed 
in the full version of the paper. First, symbolic model-checking techniques can be used 
to verify, in addition to safety properties, arbitrary branching-time properties of solv- 
able and bounded systems. Second, the classes of solvable and bounded systems can 
be generalized by admitting nonlinear variables that are not simple, and the class of 
solvable systems can be generalized by admitting linear variables whose dynamics is 
given by rate intervals [4, 11, 12]. 

Acknowledgement  We thank Howard Wong-Toi for a careful reading. 
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