
Algorithmic Analysis of Nonlinear Hybrid
Systems*

Thomas A. Henzinger and Pei-Hsln Ho

Computer Science Department, Cornell University, Ithaca, NY 14853
(tab Iho)@cs.cornell.edu

Abs t r ac t . Hybrid systems model discrete programs that are embedded in
continuous environments. Model-checking tools are available for the analysis
of linear hybrid systems, whose continuous variables are bounded by piecewise-
linear trajectories. Most embedded programs, however, operate in nonlinear
environments. We present, analyze, and apply two algorithms for translating
nonlinear hybrid systems into linear hybrid systems.

The clock translation replaces nonlinear variables by clock variables; the
rate translation approximates nonlinear variables by piecewise-linear envelopes.
Both translations are sound for teachability; that is, if we establish a safety
property of the translated linear system, we may conclude that the original
nonlinear system satisfies the property. The clock translation is also complete
for reachability; that is, the original system and the translated system sat-
isfy the same safety properties. The two translations apply to incomparable
classes of nonlinear hybrid systems. From the clock translation we obtain a
new decidability result for hybrid systems.

With the help of HYTECH, a symbolic model checker for linear hybrid
systems, we automatically verify a nonlinear railroad gate control program
using the clock translation, and a nonlinear temperature control program using
the rate translation.

1 I n t r o d u c t i o n

Hybrid systems are digital real-time systems that are embedded in analog environ-
ments. Due to the rapid development of digital-processor technology, hybrid systems
directly control much of what we depend on in our daily lives. Many hybrid systems,
ranging from automobiles to aircraft, operate in safety-critical situations and there-
fore call for rigorous analysis techniques. Consequently, the formal specification and
verification of hybrid systems has become an active area of research [7]. The symbolic
model-checking approach, in particular, has been successfully extended from discrete
systems [5] to real-time systems [9] and linear hybrid systems [1, 4]. While the sym-
bolic model-checking method developed in these papers is limited to piecewise-linear
dynamics, many typical real-time parameters (e.g., temperature) behave in a nonlinear
fashion. The present paper extends the model-checking approach to the analysis of
certain nonlinear systems. ~

* This research was supported in part by the NSF grant CCR-9200794, by the AFOSR
contract F49620-93-1-0056, and by the DARPA grant NAG2-892.

2 Control theory, of course, has a long tradition of analyzing what we call nonlinear
hybrid systems (in control theory, the term linearity usually refers to differential
equations, not trajectories). There, however, the number of discrete modes of a con-
troller is typically quite small. Model checking, on the other hand, allows the analysis
of controllers that are defined by arbitrary finite-state programs. While the control
theorists start with complex environments--differential equations--and steadily in-

226

We model hybrid systems as hybrid automata [2, 10] (Section 2). A hybrid automa-
ton operates with a finite control over a da ta space of both discrete and continuous
variables. The discrete variables are updated by automaton transitions; the continuous
variables evolve according to differential equations. In [4], we introduced the symbolic
model checker HYTEcH (the Cornell Hybrid Technology Tool) for analyzing linear hy-
brid automata. Here, we turn to the analysis of nonlinear hybrid automata , which alone
provide an accurate model for most real-time environments (for example, the temper-
ature of a furnace decreases along an exponential curve with negative exponent), z

A hybrid automaton defines an infinite-state transition system, and the reachability
analysis of a hybrid automaton requires the computation of weakest preconditions in
the underlying transition system. As we know~how to compute weakest preconditions
accurately only for linear hybrid automata , we propose a two-step methodology for
verifying a nonlinear hybrid automaton A. In Step 1, we translate A into a linear hybrid
automaton B. In Step 2, we apply the HYTECH tool to the translated automaton B.
The translation is P-sound, for a class 7 ~ of properties, if all P-propert ies of B are
inherited by A; ~-complete, if all P-propert ies of A are inherited by B. Incomplete
translations may lead to false negatives: B may not satisfy the P-proper ty %0 although
A does. We therefore accompany incomplete translations with error analyses: given
a metric d on hybrid automata , what is the automaton A' d-closest to A such that
if A j satisfies %0, then so does B? If the d-difference between A and A j can be made
arbitrarily small, then the translation is called asymptotically 7)-complete under the
metric d.

We present two translations, which transform two incomparable classes of nonlinear
hybrid automata into linear hybrid automata . The clock translation (Section 3) replaces
nonlinear variables by clocks (i.e., linear variables with slope 1). The clock translation
is applicable to the nonlinear variable z if the value of x is always uniquely determined
by the latest assignment to z and the time that has expired since that assignment. If
the clock translation of the automaton A yields the automaton B, then the underlying
transition systems are timed blsimilar. It follows that the clock translation is both
sound and complete for all branching-time properties. If all variables of a nonlinear
hybrid automaton can be replaced by clocks, then the resulting linear hybrid automaton
is a timed automaton [3]. As a corollary, we obtain a new decidable class of hybrid
automata . We verify a nonlinear railroad gate controller using the clock translation
and the HYTEcII model checker.

The rate translation (Section 4) approximates nonlinear variables by piecewise-
linear variables. The rate translation is applicable to the nonlinear variable z if the value
of z is bounded. If the rate translation of the automaton A yields the automaton B,
then the transition system of B simulates the transition system of A (but not vice
versa). I t follows that the rate translation, while sound for all linear-time properties, is
not complete for safety properties. We show that the rate translation is asymptotically
complete for safety properties. We verify a nonlinear temperature controller using the
rate translation and the HYTECII model checker. Technically, both the clock translation
and the rate translation can be viewed as abstract interpretations of nonlinear hybrid
au tomata [6].

crease the complexity of the controllers that can be analyzed, we computer scientists
s tart with complex control lers--programs!--and steadily increase the complexity of
the environments.

a We insist on representing nonlinear behavior accurately in our underlying model,
because we feel that linearization or digitization ought to occur after the modeling
phase, so that the errors that are introduced by these processes can be analyzed
and bounded. Such an analysis, indeed, is performed in the present paper for both
linearizations we propose.

227

: ' + I , .=oz

Fig. 1. Thermostat automaton

2 Hybrid Automata

Informally, a hybrid automaton consists of a finite vector x of real-valued variables
and a labeled multigraph (V,E). The edges E represent discrete system actions and
are labeled with nondeterministic guarded assignments to x. The vertices V represent
continuous environment activities and are labeled with constraints on the derivatives
of x. The state of the automaton changes either through instantaneous system actions
or, while time elapses, through continuous activities.

For example, the hybrid automaton of Figure 1 models a thermostat that controls
the temperature of a manufacturing plant. The nonlinear variable z represents the plant
temperature. In control location on, a heater is turned on; in control location off, the
heater is turned off. The variable x follow the differential equations ~ = - x + 4 in
location on and ~ = - x in location off. Initially, the temperature is 2 and the heater is
turned on. If a thermometer detects that the plant temperature reaches 3, the heater
is turned off. If the thermometer detects that the temperature falls to 1, the heater is
turned on. The two variables y and z are auxiliary variables: y, a stop watch, records
the accumulated time that the heater is turned on, and z, a clock, records the total
elapsed time.

S y n t a x Let y be a vector of reM-valued variables. A linear term over y is a linear
combination of variables from y with real coefficients. 4 A linear inequality over y is a
nonstrict inequality between linear terms over y. A hybrid automaton A consists of the
following components [2]:

D a t a va r i ab les A finite vector x = (x l , . . . , x=) of real-valued data variables. The
thermostat automaton in Figure 1 has the vector (x,y,z) of data variables. A
data state is a point in n-dimensional space]R =. A convez data region is a convex
polyhedron in ~ = ; a data region is a finite union of convex data regions. A convez
data predicate is a conjunction of linear inequalities (e.g., xs < 2x~ - 1 A 6 < x3).
A data predicate is a disjunction of convex data predicates. Each (convex) data
predicate r defines, then, a (convex) data region [~b] C IR ~ such that s E [r iff
r := s] is true.
An action predicate is a conjunction of linear inequalities over x U x I, where x I =
(z~ , z ') ~s the vector of primed data variables. Each action predicate r defines
a function from data states s e IR ~ t o convex data regions [e l (s) C]R=: s' e
[e l (s) iff r := s,s '] is true.

C o n t r o l l oca t ions A finite set V of vertices called locations. The thermostat automa-
ton has the locations on and off. A state (v, s) of the hybrid automaton A consists
of a location v e V and a data state s e IR ~. A region U~v{(V,S~)} is a col-
lection of data regions S~ C IR =, one for each location v E V. A state predicate
is a collection [.J~ev{(V,r of data predicates r one for each location v e V.
When writing state predicates, we omit disjuncts of the form (v,false). Each state
predicate ~o = U , ev{(V, r defines, then, the region [~o] = U, ev{(v, ICy])}.

4 We shall specify coefficients by symbolic expressions like ln3.
f

228

In i t i a l cond i t i ons A labeling function init that assigns to each location v E V a
convex data predicate init(v), the initial condition of v. The control of A may start
in the location v only when the initial condition init(v) is true. In the graphical
representation of hybrid automata, we usually suppress initial condition of the
form false. In the thermostat automaton, the initial conditions of the locations on
and off are x = 2 A y ----- 0 A z -- 0 and false, respectively. We write IA for the
initial region U~v{(v,[init(v)])} of A.

L o c a t i o n i n v a r i a n t s A labeling function inv that assigns to each location v E V a
convex data predicate lay(v), the invariant of v. The control of A may reside in the
location v only while the invariant lay(v) is true. In the graphical representation,
we usually suppress invariants of the form true. In the thermostat automaton, the
invariants of the locations on and off are �9 < 3 and x > 1, respectively. We write
2YA for the admissible region U~ev{(V, [inv(v)])} of A.

C o n t i n u o u s ac t iv i t i e s A labeling function dif that assigns to each location v E V
and each data variable x~ an activity dif(v, xl), which is either (1) a linear term
dif(v, xi) = f (x) over x; or (2) a rate interval dif(v, xl) = [a, b], which is a bounded
or unbounded, closed interval of the real line with -I-cr (that is, a, b E lRU{-oo, ~ }
and a < b). In the first case, if the control of A resides in the location v, the value of
zi evolves according to the first-order differential equation ~i = f (x) . In the second
case, the interval endpoints a and b give a lower bound and an upper bound on
the derivative of zi; that is, a < $i < b.
The data variable z is linear if for all locations v E V, dif(v, z) is a rate interval;
otherwise, z is nonlinear. The hybrid automaton A is linear if all data variables
in x are linear [4]; otherwise, A is nonlinear. In the thermostat automaton, the
data variables y and z are linear. The variable z is a nonlinear variable with
rill(on, z) = - z + 4 and dif(off , z) = - z .

Edges A finite multiset E of edges. Each edge (v, v I) identifies a source location v E V
and a target location v' E V. For each location v E V, there is a stutter edge
e~ = (v, v). In the graphical representation, we usually omit stutter edges. The
thermostat automaton has four edges: (on, off), (off, on), (on, on), and (off, off).

Disc re t e a c t i ons A labeling function act that assigns to each edge e E E a con-
vex action predicate act(v,v~), the action of e. If the control of A proceeds from
the location v to the location v ~ via the edge e = (v,v~), then the values of all
data variables change from s nondeterministically to any point within the data
region [act(e)l(s). For example, an edge with the action label xl < 3 A 3 < x~ <
5 A z~ = z2 A z' 3 = zl + 1 can be traversed only when the value of zl is at
most 3. By traversing the edge, the value of zl changes to any real number in
the interval [3,5], the value of z2 remains unchanged, and the new value of z3 is
1 plus the old value of z l . The stutter edges are labeled with the action true. In
the graphical representation of actions, if the primed variable z' occurs only in the
conjunct z' = z, then we usually omit that conjunct. In the thermostat automaton,
act(on, off) is z = 3 A z ' = z A y ' = y A z' ---- z .

Edge labels A finite set L of edge labels and a labeling function label that assigns
to each edge e E E a label from L. For all stutter edges e~, label(e~) = v. The
edge labels are used to define the parallel composition of hybrid automata. In the
thermostat automaton, label(on, off) is turnoff.

A c c e p t i n g c o n d i t i o n s A labeling function final that assigns to each location v E V
a data predicate final(v), the accepting condition of v. We use the accepting condi-
tions to check safety properties of hybrid automata. In the graphical representation
of hybrid automata, we suppress accepting conditions of the form true. We write
FA for the accepting region region U~ev{(V, lfinal(v)l)} of A.

229

The da ta or action predicate q5 is rational if all constants that occur in r are rational.
The hybrid automaton A is rational if all da ta and action predicates that specify
the initial and accepting conditions, invariants, and actions of A are rational. A state
predicate is rational if it contains only rational da ta predicates.

A special case of a linear hybrid automaton is a timed automaton [3]. The da ta
variable x of the hybrid automaton A is a clock if dif(v ,z) = [1,1] for all locations
v of A; that is, each clock always increases with the rate at which time advances. An
atomic da ta predicate is simple if it has the form z < c or x > c, for some c E IR;
an atomic action predicate is simple if it is a simple atomic da ta predicate or has the
form x ~ = c or x ~ = x. The da ta variable x of A is simple if in all initial and accepting
conditions, invariants, and actions of A, x and z s occur only in atomic da ta and action
predicates that are simple. The hybrid automaton A is a timed automaton if all da ta
variables of A are simple clocks.

S e m a n t i c s At any time instant, the state of a hybrid automaton A specifies a lo-
cation and values for all da ta variables. The state can change in two ways: (1) by an
instantaneous move through an edge that changes both the location and the values
of da ta variables according to the corresponding action; or (2) by a time delay that
changes only the values of da t a variables in a continuous manner according to the
activities of the current control location. A data trajectory ($,p) in location v of the
hybrid automaton A consists of a nonnegative duration ~ E IK>o and a differentlable
function p: [0, ~] --~ JR" such tha t

1. for all reals t e [0,5], p(t) e [inv(v)l;
2. for each da ta variable xi with dif(v, xi) --- f (x) , for all reals t e (0, a), dp(xl)(t) /dt =

f (x) (where p(xl)(t) denotes the i th component of the da ta state p(/)); and
3. for each da ta variable xi with dif(v, ~i) --- [a, b], for all reals t e (0, 5), dp(xl)(t) /dt e

[a, hi.
We define the the following two transit ion relations on the admissible states of the
hybrid automaton A:

E d g e s t e p For all states at --- (v, s l) and a2 - (v ' ,s2) of A, and all edge labels g,
al ---* a2 if hi ,a2 E ~A, and there exists an edge e from v to v' such that label(e) = l
and s2 e [act(e)](sl).

T i m e s t e p For all states a~ = (v, s l) and a2 = (v, s2) of A, and all durations 5 e lR_>0,
a l ~ a~ if there exists a da t a t ra jectory (5,p) in locution v such tha t p(0) = sl
and p(~) = s2.

The hybrid automaton A defines the labeled transition system [A] = (.g'A, IA,s
,FA) that consists of (1) t h e infinite s t a t e space ~A, (2) the set IA of initial states,
.j3) the alphabet s = L U lR>0, (4) the transition relation --+A= [J{ ~ [5 > 0} u

{ -h I t e L}, and (5) the se-t FA of accepting states. A trajectory-~: of A is a finite
t r i o ~ ' ~ / 1 r n k - - 1 �9 - - �9

path a0 ~ ax --~ . . . ~ ak m [AI such tha t ao E [A and for all ~ E { 0 , . . . , k - 1},
tyi m l ~) @"+A. The t rajectory r is accepting if the final state of r is accepting; that

is, ok E FA. The reachable region R(A) C_ SA of the hybrid automaton A is the set of
all final states on trajectories of A.

P a r a l l e l e o m p o s i t l o n A hybrid system typically consists of many components that
operate concurrently and communicate with each other. We describe each component
as a hybrid automaton. The edge labels can be used to synchronize various system
components. The hybrid automaton that models the entire system is then constructed
from the component au tomata using a product operation that is defined in the s tandard
way [4].

230

x = 10fl ,A~I ~ p a s s

---- 10DO :Xl ---- 0 ~ /

~ : - :)

Co t,o. r _ / , . , h

~ " ~__ c = 0 . . _ . . . I ~ a p p

Fig. 2. A railroad gate controller

E x a m p l e : N o n l i n e a r r a i l r o a d g a t e c o n t r o l l e r We present a nonlinear vari-
ation of a familiar example [4]. The three hybrid automata of Figure 2 model three
processes--a train, a gate, and a controller. The nonlinear variable z represents the
distance of the train from the gate. Initially, the train is far from the gate and moves at
the speed 50 meters per second. When the train approaches the gate, a sensor placed at
a distance of 500 meters from the crossing detects the train and sends the signal app to
the controller. The train starts to slow down and the controller waits 5 seconds before
sending the command lower to the gate; the delay of the controller is modeled by the
clock t. Consequently, the gate is lowered from 90 radius degrees to 0 degrees at the
constant rate of 20 degrees per second; the position of the gate in degrees is represented
by variable y. After passing the gate, the train begins to accelerate. A second sensor
placed at 100 meters past the crossing detects the leaving train and signals exit to the
controller, which, after another delay of 5 seconds, sends the command raise to the
gate. The distance between consecutive trains is (at least) 1,000 meters. Notice that
the synchronization signals like app, exit and raise are modeled by edge labels.

T h e e m p t i n e s s p r o b l e m The emptiness problem for hybrid automata asks, given
a hybrid automaton A, if A has an accepting trajectory. If the accepting region FA
represents the set of "unsafe" states specified by a safety property, then the safety
property can be verified by checking the emptiness of A, namely, the safety property
is satisfied by A iff A has no accepting trajectory. The emptiness problem is decidable
for rational timed automata [3] and certain rational simple linear hybrid automata [8],
and semidecidable for rational linear hybrid automata [2].

For the thermostat automaton of Figure 1, we will verify the safety property whose
"unsafe" region is characterized by the state predicate U~e(on,off){(v, 6 < z < 2 y - l) } ;
that is, after 6 time units the heater has always been on at most half of the time plus 1
time unit. For the railroad gate controller of Figure 2, we will verify the safety property
whose unsafe region is characterized by the state predicate Uvv=ctosed{(v,x < 100)};
that is, whenever the train is within 100 meters from the gate, the gate is closed (we
write v ~ closed if the gate component of location v is closed).

231

3 Clock Trans la t ion

The clock t rans la t ion of a hybrid a u t o m a t o n replaces each nonlinear da ta variable x
by a clock t : that is restarted whenever the value of x is changed by a discrete action.
The clock t rans la t ion is applicable if at every point of a trajectory, the value of x is
uniquely determined by the value of t : .

S o l v a b l e a u t o m a t a Let A be a hybrid au tomaton . The simple nonl inear da ta vari-
able ~ of A is (rationally) determined in the location v of A if dif(v, x) = f (x) and for
all (rat ional) initial values x0 E IR, the initial-value problem '%(t) = f (x) ; x(0) = x0"
has an algebraic solution x.,~0(t) such tha t for each constant e tha t appears in an
atomic da ta predicate x -~ c, for '~E { < , > } , or an atomic action predicate z ~ = e
of A, the funct ion x~,~o(t) - c has a finite number of (rat ional) roots. For example,
suppose tha t the funct ion x~ ,~o(t) - c0 has the two roots ro and r l , and all trajectories
tha t enter the location v have the initial value xo for x. Then the value of the variable

is xo,~0(tx) for all reachable states in v. Thus an exit edge of location v guarded
with a~ = co can be replaced by two exit edges guarded with t~ = r0 and tx = r t ,
respectively.

The location v of A is definite for the da t a variable x if the initial condit ion init(v)
implies x = c, for some initial value c E IR. The edge e of A is definite for x if the
action act(e) implies a / = c, for some arrival value c E IR. The simple nonl inear da ta
variable x of A is solvable if the following three condit ions hold:

1. For all locations v of A, x is determined in v.
2. All locations of A are definite for x.
3. For all edges e = (v, v') of A, if dif(v, x) ~ dif(v', x), then e is definite for x;

For example, the nonl inear variable x of the thermosta t au toma ton of Figure 1 is
solvable, and so is the the nonl inear variable x of the t rain au toma ton of Figure 2.
The hybrid au toma to n A is solvable if all nonl inear da ta variables of A are simple and
solvable. The au toma ton A is rationally solvable if A is (1) rat ional , (2) solvable, and
(3) all da ta variables of A are rationally determined in all locations of A. All (rat ional)
timed a u t o m a t a are (rat ionally) solvable and the class of (rationally) solvable hybrid
a u t o m a t a is closed under parallel composition. For each solvable da ta variable x, we
collect the initial values of x for all locations and the arrival values of x for all definite
edges in the finite set CritVal(x) C]R of critical values for x.

T h e c l o c k t r a n s l a t i o n a l g o r i t h m Given a solvable nonlinear hybrid au toma-
ton A, we construct a l inear hybrid au t o ma t o n A~-- the clock translation of A - - b y
replacing each nonlinear da ta variable x with a new clock t~. For each nonl inear da ta
variable x, the construct ion proceeds in two steps:

1. Let CritVal(x) = {cl ,c=} with cl < " " < c~. Each location v of A is split into
a collection v c l , . . . , v ~ , of locations, one for each critical value ci of ~. We then
add the clock t~ such that the value of a~ in location v~; is x(t~), where x(t) is the
solution of the initlal-value problem "~(t) = dif(v, z); z(0) = c;".

2. All initial and accepting conditions, invariants , and actions are t ranslated from
condit ions on z to condit ions on t , .

We now provide more details.

Step 1. Splitting locations and edges After the application of Step 1, each new location
v~ has the same activities as v and, in addit ion, the new activity dif(v~i,t~) = 1
for the clock t , . The new location vr has the the initial condit ion init(v) ^ t , = O,
the accepting condit ion final(v), and the invariant inv(v). For each indefinite edge

V t e = (v, v ') , we introduce all edges of the form (~ , vr with the action act(e) and the

232

~",s ~---1 ^ 4 =o'ed..Z.~
~ = 2 A t a ~ = O A __] /

y = O = 0 --'--

" = s ^ ' ' = ~ '" = ' ' ' ^

STzP, STZP 2

F i g . 3. Clock t rans la t ion of the thermosta t au toma ton

label label(e); for each definite edge e = (v, v') with the arrival value cj, we int roduce
all edges of the form (vc~, v ' .) with the action act(e) A t~ = 0 and the label label(e).
For example, the t h e r m o s t a t ~ u t o m a t o n of Figure 1 has only definite edges. The critical
values o fx are 1, 2, and 3, so we split bo th locations on and off into three locations each.
Since the locations ons, off1, and off~ are not reachable by a sequence of au tomaton
edges from the initial location on2, we remove these three locations from the clock-
t ranslated au tomaton . The result of Step 1 is shown on the leK in Figure 3.

Step 2. Updating accepting conditions, invarlants, and actions Let the funct ion x(t)
be the solution of the initial-value problem '%(0 = dif(v,z); x(0) = ci". We now
eliminate the nonlinear variable x from the initial and accepting conditions, invariant ,
and exlt-edge actions of each new location v,i .

First , we simply remove all the atomic da ta predicates tha t involve the variable
x from the initial condit ion init(v~i). Second, we t ransla te the accepting condit ion
of location vr Suppose that x < c is an atomic da t a predicate of the accepting
condit ion final(vr (other atomic da t a predicates are handled similarly). We find all
finite roots r 0 , . . . , r k of x (t) - e (count roots with zero derivatives twice). If no such
root exists and ci < c, then x < c is always satisfied and we replace x < c by true; if
no root exists and ci > c, then x < c is not satisfiable and we replace x < c by false.
Otherwise, if ci < c, then z < c is satisfied when the value of t~ is in any of the
intervals [0,r0],[rl ,v2] ; i f ci > c, then z < c is satisfied when the value of t~ is in
any of the intervals [r0 , r l] , [r2 , r a] , . . . We therefore replace z < c by the dis junct ion
Vt , , ,~+ l l e t ri < t~ <_ r i+ l , where I is the set of root intewals during which x < c is

satisfied. The result can be t ransformed into disjunctive normal form.
Third , we t ransla te the invariant of location v,~. Suppose tha t x < c is a conjunct

of the invariant inv(vc,) (other conjuncts are handled similarly). If el > e, then the
arrival value of z does not satisfy the invariant , and thus we remove the location v, i .
Otherwise, we find the smallest nonnegat ive finite root r of x(t) - c. If such a root r
exists, then the au to ma t o n control can reside in the location vr i up to v t ime uni ts ,
and thus we replace the conjunct x < c of the invariant by the conjunct t~ < r. If no
such root r exists, then the au t o ma t o n control can reside in the location v~ forever,
and we replace the conjunct x < e by true.

Fourth, we t rans la te the actions of all edges tha t leave the location re;. Suppose
tha t x < c is a conjunct of the action act(e), where e = (v ,v ') . We find all finite roots
v0, rk of x (t) - c (count roots with zero derivatives twice). If no such root exists
and cl < c, then the edge e is always enabled and we replace the conjunct x < c by true;
if no root exists and ei > c, we remove the edge e. Otherwise, if ci <_ c, then the edge
e is enabled when the value of t~ is in any of the intervals [0, v0], [rl , r2] , . . . ; if cl > c,
then e is enabled when the value of t , is in any of the intervals [to, r l] , [r2, rs] For

233

each root interval [r i , r i+ l] during which e is enabled, we introduce an edge with the
action act(e) and the label label(e) except that (1) the conjunct x _< c is replaced by
the conjunct rl <: t= < ri+l and (2) any atomic subformula involving x' is removed.
In the thermostat example, we have Zont(t) = - 3 e - ' + 4, Xon2(t) = - 2 e -~ + 4,
and ~:offs(t) = 3e -~. Consider the action x = 3 of the edge from on2 to Offz. Since ln2
is the unique root of - 2 e -~ + 4 - 3, it follows that z = 3 iff t= = In2. Hence we replace
the action x = 3 with the action t= = ln2. The final result of Step 2 is shown on the
right in Figure 3.

S o u n d n e s s ~ c o m p l e t e n e s s ~ a n d d e c i d a b i l i t y We show that the clock transla-
tion is both sound and complete for checking the emptiness of solvable automata. Let
A be a solvable hybrid automaton, and let A ~ be the automaton clock translated from
A by translat ing a nonlinear variable x into a clock t~. We show that A and A c are
bisimilar.

We first recall the definition of (timed) bisimulation. Let T1 = ($1, /1 , Z:,--~I) and
7'2 = (L'2, I2 , / : , --'2) be two labeled transition systems. The binary relation ~ C $1 x $2
is a bisimulation between T1 and T2 if for all states al E L'I and a2 E ~2, a l ~, ~r2
implies for every letter m E /~ that (1) if a l ---,al, then there exists a state a~ such
that a2---~ a2 and a~ ~ a~; and (2) i f or2---~ a2, then there exists a state a~ such that
a l --~ ~ and ~ ~ a~. The two states a E ~71 and a' E ~2 are bisimilar if there exists a
bisimulation ~ between 7"1 and Tg_ such that a ~ a~. The labeled transition systems Ta
and T2 are bisimilar, denoted T1 ~ T~, if for each initial s tate a E I1, there is a initial
state a ~ E I2 such that a ~ a ~, and vice versa. The two hybrid au tomata A and B are
bisimilar if [A] ~ [B].

We define the function a= : SAr --* SA such that a~(v~,s) = (v , s ') , where the
location v~ is split from the location v for the critical value c, the states s and s' agree
on all variables except x and t~, and s'(ae) = z(s(t~)) if the function ~(t) is the solution
of the initial-value problem "~(t) = dif(v,x); x(O) = c".

L e m m a 1. Let A be a solvable hybrid automaton, and let A ~ be the clock translation
of A that results from replacing the nonlinear variable x by the clock t~. Then for all
states a ,a ' ~ SA, , ~r-~ a' in [a "] iff a~(cr)-~ a=(a') in [A].

I t follows tha t the relation {(a,a=(a)) I a e S A ' } is a bisimulation between [g] and
[A~], and tha t [A] ~ [Ar Since bisimilarity is transitive, if A ~ results from A by
replacing several nonlinear variables with clocks, A and A r are still bisimilar.

T h e o r e m 2. If A is a solvable hybrid automaton and A ~ is a clock translation of A,
then A and A ~ are bisimilar.

It follows that the clock translation is sound and complete for all branching-time prop-
erties. In particular, for safety properties, we have the following corollary.

C o r o l l a r y 3. Let A be a solvable hybrid automaton, and let A ~ be a clock translation
of A. I r A has an accepting trajectory iff A ~ has an accepting trajectory.

We conclude tha t for solving the emptiness problem for the nonlinear automaton A,
it suffices to solve the emptiness problem for the linear automaton A% The emptiness
problem for A ~, however, can be solved exactly only if the clock translation A ~ is
rational. This gives us the following decidability result, which covers a class of nonlin-
ear hybrid automata , while all previously published decidability results refer to linear
hybrid au tomata [8].

C o r o l l a r y 4. The emptiness problem is decidable for rationally solvable hybrid au-
tomata.

234

I x ---- 5 | n ,~
/

= 2 0 A t ~ = O t ~ 2 0 A t ! ----0

A
i'~ .27 < lot x < 128

'~ = - o -

Fig. 4. Clock translation and 0.1-approximate clock translation of the train automaton

8 - a p p r o x i m a t e c l o c k t r a n s l a t i o n If the clock translation A ~ is not rational, we
approximate A c by a rational automaton, and show soundness for emptiness check-
ing. To preserve soundness when approximating irrational roots numerically, we over-
approximate all root intervals. For example, the action tx -= In2 can be overapprox-
imated by the rational data predicate 693 _< 1000t~ _< 694 with an error bounded
by 6 = 1/I000. Formally, a ~-approximation of the data predicate t~ < c (t= > c),
fo r6 E I~,is of the form t~ _< e' (t~ > c') such that c < c' < c + g (c - g < c' < c)
and c' is rational. A g-approzimate clock translation [~c]~ of A is a rational linear
hybrid automaton that is obtained from the clock translation A c by replacing all
atomic data predicates in initial and accepting conditions, invariants, and actions by
~-approximations. Note that an action predicate that involves the primed variable t~
for a new clock t~ are of the form t~ = 0 or t~ = t~.

We show that [A~]6 simulates A. To see this, recall the definition of (timed) sim-
ulation. Let T1 = (Z'1,[1,~:,--.1) and T2 = (Z'2,/~,~,---,2) be two labeled transition
systems. The binary relation ~- C ~U1 • Z'2 is a simulation of T2 by T1 if for all states
al E Z1 and a2 E s al ~" a2 implies for every letter m E L: that if cr2-~ a~, then
there exists a state a~ such that a~ -~ a~ and a~ ~- a~. The state ~ E Z'~ simulates the
state a ~ E ,~2 if there exists a simulation ~- of T2 by T1 such that a ~ a ' . The labeled
transition system T1 simulates the labeled transition system T2, denoted T1 ~- T~, if
each initial state of T2 is simulated by an initial state of T1. The hybrid automaton A
simulates the hybrid automaton B, written A _ B, if [A] ~- [B]. It is clear that [A~]6
simulates A% Moreover, since A and A ~ are bisimilar, we know that [A~]s simulates A.

P r o p o s i t i o n 5. Let A be a solvable hybrid automaton. For all 6 E]I~>_o, i f [A~]6 is a
$-approximate clock translation of A, then JAil6 simulates A.

It follows that approximate clock translation is sound for all linear-time properties.
Again, for safety properties, we have the following corollary.

C o r o l l a r y 6. Let A be a solvable hybrid automaton, and let [AC]s be a ~-approzimate
clock translation of A. I f A has an accepting trajectory, then so does [AC]~.

E x a m p l e : R a i l r o a d g a t e c o n t r o l l e r The performance data in this paper was
measured on a Sun 670MP workstation. The clock translation B~ of the train automa-
ton B1 from Figure 2 is shown on the left in Figure 4, next to a 0.1-approxlmate clock
translation [B~]0.~ on the right. By taking the product of [B~]0.t with the gate and
controller automata from Figure 2, the HYTEc~ verifier automatically checks (in 25
seconds of CPU time) that whenever the train is within 100 meters from the gate, then
the gate is closed. On the other hand, a 1.0-approximate clock translation of the train
automaton is not sufficient for proving this safety property. (After clock translation,
the safety property of the thermostat automaton from Figure 1 is checked by HYTEcI-I
in 7 seconds of CPU time.)

235

----3 A z " ----~

Fig. 5. A temperature controller with delays

E r r o r a n a l y s i s The approximate clock translation [AC]s may have an accepting tra-
jectory even if A does not. We now show that there is a hybrid automaton that is
very close to A and has an accepting trajectory. The following error analysis relaxes all
atomic data and action predicates of A to provide an upper bound on the error of [A~]~.
If the hybrid automaton A models a hybrid system with sensors and actuators, then
the e-relaxed automaton A ~, for e E lR>0, models the same system with sensors and
actuators that suffer from errors bounded by r (1) all atomic data predicates of the
form x < c and x > c (in initial and accepting conditions, invariants, and actions) are
replaced-by x < c+r and x ~ c - e , respectively; and (2) all atomic action predicates of
the form x' = c are replaced by c - e < x' < c + r Notice that if r --~ 0, then A ~ ~ A.
We define the metric d~ on hybrid automata such that d ~ (A , B) is the infimum of
all nonnegative reals s such that A ~ _ B ~ A or B e _ A ~ B, if such an ~ exists;
otherwise, d~_(A,B) = or. The error of the 6-approxlmate clock translation [A~]6 is
d~(A, [AC]s). The following lemma bounds this error.

L e m m a T . Let A be a solvable hybrid automaton, and let [AC]~ be a 6-approximate
clock translation of A. I f ~ E]R>o bounds the absolute values of the derivatives of all
data variables of A in all locations o /A , then A ~'~ simulates [A~]~; that is, the error
of the g-approximate clock translation [AC]b is bounded by ~ �9 .~.

It follows that the approximate Clock translation is asymptotically complete, under the
metric d~, for checking the emptiness of hybrid automata.

T h e o r e m 8. Let A be a solvable hybrid automaton. For all reals r > O, there is a real
(f > 0 such that for all ~-appro~imate clock translations [AC]~ of A, A c ~- [AC]~ ~- A.

C o r o l l a r y 9. Let A be a solvable hybrid automaton. For all reals r > O, there is a real
> 0 such that i f a ~-approximate clock translation of A has an accepting trajectory,

then so does A ~.

4 R a t e Trans la t ion

The rate translation of a hybrid automaton replaces each nonlinear data variable x by a
piecewise-linear variable that approximates x. The rate translation may be applicable
also to unsolvable automata. Consider, for example, the nonlinear hybrid automaton
of Figure 5, which models a temperature controller with delays: after the thermometer
detects that the temperature is low or high, there may be a delay of up to 1 time unit
before the heater is turned on or off. We wish to verify that the plant temperature is
always between ~ and ~ . The automaton is not solvable, because the edge from delay 1
to off is indefinite for x. Hence we cannot apply the clock translation to eliminate

236

the nonlinear variable x. Instead, we approximate x by a piecewise-linear variable. In
location v with the bounded invariant region [inv(v)], we bound the derivative of ~c by
its minimum a and its maximum b, and then replace the activity dif(v, a:) by the rate
interval [a, b]. For a better approximation, we split the location v into several locations
and limit the size of the rate intervals. Clearly, smaller rate intervals yield a more
accurate overapproximatlon of the automaton trajectories.

B o u n d e d a u t o m a t a Let A be a hybrid automaton. The data variable ~ of A
is nondecreasin# (nonincreasing) in location v of A if inv(v) implies dif(~, v) >. 0
(dif(x,v) < 0). The data variable z of A is bounded with the window [c,d] c_ ~ if any
one of the following three conditions holds:

1. For all states in R(A), the value of z is always within the bounded interval [c,d].
In particular, this is the case if for all locations v of A, inv(v) implies c < z < d.

2. A does not contain constants smaller than c or larger than d, and either z is
nondecreasing in all locations of A, or x is nonlncreasing in all locations.

3. "~FA implies c < �9 < d.

If the data variable z is bounded with the window [c, d], and its value lles outside [c, d],
then the exact value of z is irrelevant for checking the emptiness of A. The hybrid
automaton A is bounded if all nonlinear variables of A are simple and bounded.

T h e r a t e t r a n s l a t i o n a l g o r i t h m Let A be a bounded hybrid automaton, and let
6 E]R>s be a nonnegatlve real. A g-approximate rate translation [A~]~ of A is a lin-
ear hybrid automaton that is obtained by the following construction. Consider a data
variable ae and a location v of A. First assume that the activity dif(v ,z) = f(x) is a
function of z only. Let [c,d] be the window of z. We partition the window [c,d] into
k subintervals /1 = It0 = c, cl] Ik = [ck-~,c~ = d], each of size at most ~. The
location v is split into k + 2 locations vo, . . . , vk+l. Each new location vi has the invari-
ant inv(v) ^ ci-1 < z < cl, where c-1 = - c r and ck+l = oo. For each vi, we compute
the minimum a and the maximum b of the function dif(vl, z) for ci-1 < z < ci. We then
approximate the derivative of z in the location m by the rate interval dif(v~, z) = [a, b].
Finally, we introduce all edges of the form (vi, vi+l) and (vi+~, vi) with the action z = ci
and the label v (which is the label of the stutter edge e~); and for each edge e = (v, v'),
all edges of the form (v~,vj) with the action act(e) and the label label(e).

Now consider the general case that dif(v, zi) = f (z l , . . . , z ,) . We approximate all
nonlinear variables zl , . . . ,z,~ simultaneously. Suppose that the window for zi is Ii. We
partition It into ki subintervals [ci,0, ci,1], . . . , [cl,ki-1, ci,~], each of size at most 5. The
location v is split into the set U~ = {v(a~,. . . ,a=)lO <_ ai < k i+ l} o f (k1+2) . . . (k ,+2)
locations, all with the initial condition init(v) and the accepting condition final(v). The
invariant of v(a l , . . . ,a~) is lay(v) A Ai=l c~,,~_1 < zi <_ ci,~i, where el,-1 = - c r
and el,ki+l = oo. For each new location, we compute the rate intervals for all zi. For
each pair v(a) and v(b) of new locations, we introduce all edges of the form (v(a), v(b))
with the axtion x ~ = x and the label v (many of these edges are inconsistent and can be
omitted); and for each edge e = (v, v'), we introduce all edges of the form (v(a), v ' (b))
with the action act(e) and the label label(e).

S o u n d n e s s We show that the rate translation is sound for checking the emptiness of
bounded automata. We define the onto function fl : ~[aqs -'* ~a such that fl(v~,s) =
(v, s) if v~ E U~. It is clear that for all states a l , ~2 E ~?[A'I,, if fl(vl)-~./3(a2) in [A],
then al ---~ a~ in [[A~],I . Hence the relation { (a ,Z(a)) I c, �9 Q , t q , } is a simulation of
[A] by [[A ' ld .

P r o p o s i t i o n 10. Let A be a bounded hybrid automaton. For all 6 E IR>o, if [A~]s is
a g-approximate rate translation of A, then [Ar]~ simulates A.

237

Fig. 6. Rate translation of the temperature controller with delays

It follows that the rate translation is sound for all linear-time properties. In particular,
for safety properties, we have the following corollary.

C o r o l l a r y 11. Let A be a bounded hybrid automaton, and let [Ar]6 be a rate translation
of A. I f A has an acceptin9 trajectory, then so does [A']s.

E x a m p l e : T e m p e r a t u r e c o n t r o l l e r w i t h d e l a y s Recall the emptiness problem
for the automaton B2 of Figure 5 with the accepting condition U~{(v,z < ~ V z >
~)} . For the rate translation of the automaton B~, we partition the window [~, ~]
into the eight intervals 1 s 3 s s is 13 lr lr 19 [~,~1, [~,1], [1,~1, IX,21, [2,-g-], [~-,3], [3,-g-], and [~ , ~ -]
of uneven size at most 0.6 (it is a good idea to separate intervals at the point c if
x = c is a conjunct of an invariant or action). After removing inconsistent edges and
unreachable locations, we obtain the linear hybrid automaton [B~']0.s of Figure 6, which

B ~ is a 0.6-approximate rate translation of B2. The HYTECH verifier reports that [2]o.r
satisfies the safety property that the value of x stays within the interval (~, a9 T) (using
45 seconds of CPU time).

E r r o r a n a l y s i s To analyze the error of the 5-approximate rate translation [A~]6,
we define the metric dR such that dn(A, B) is the infimum of all nonnegative reals e
such that R(A) C_ R(B) C R(A ~) or R(B) C R(A) C_ R(B~), if such an e exists;
otherwise, dR(A,B) = oo. The error of the 5-approximate rate translation [A~]s is
dR(A, tAn]s), where R([A~]s)is interpreted as fl(R([K]6)) when compared with R(A).
In the full paper, we give an error analysis for the rate translation of monotonic bounded
hybrid automata, where in each location each nonlinear variable is nondecreasing or
nonincreasing. The rate translation is asymptotically complete, under the metric dR,
for checking the emptiness of monotonic bounded hybrid automata.

T h e o r e m 12. Let A be a monotonic bounded hybrid automaton. For all reals e > O,
there is a real 8 > 0 such that for all #-approzirnate rate translations [A']6 of A,
R(A) C R([A']s) _C R(A') .

238

Corol lary 13. Let A be a monotonic bounded hybrid automaton. For all reals s > O,
there is a real ~ > 0 such that ira ~-approximate rate translation of A has an accepting
trajectory, then so does A t.

5 D i s c u s s i o n

The two translations presented here provide algorithmic methods for verifying safety
properties of two classes of nonlinear hybrid systems: solvable systems and bounded
systems. Whenever both translations are applicable, the clock translation is generally
preferable, because the size of the translated automaton does not depend on the pre-
cision of the translation. This work can be extended in two ways, which are discussed
in the full version of the paper. First, symbolic model-checking techniques can be used
to verify, in addition to safety properties, arbitrary branching-time properties of solv-
able and bounded systems. Second, the classes of solvable and bounded systems can
be generalized by admitting nonlinear variables that are not simple, and the class of
solvable systems can be generalized by admitting linear variables whose dynamics is
given by rate intervals [4, 11, 12].

Acknowledgement We thank Howard Wong-Toi for a careful reading.

References

1. R. Alur, C. Coucoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

2. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. Hybrid
Systems, Lecture Notes in Computer Science 736, pp. 209-229. Springer, 1993.

3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126"183-235, 1994.

4. R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of em-
bedded systems. IEEE Real-time Systems Symposium, pp. 2-11, 1993.

5. J.R. Butch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. gwang. Symbolic
model checking: 10 ~~ states and beyond. Information and Computation, 98(2):142-
170, 1992.

6. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the
static analysis of programs by construction or approximation of fixpoints. ACM
Symposium on Principles of Programming Languages, 1977.

7. R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors. Hybrid Systems.
Lecture Notes in Computer Science 736. Springer, 1993.

8. T.A. Henzinger, P. Kopke, A. Purl, and P. Varaiya. What's decidable about hybrid
automata? ACM Symposium on Theory of Computing, 1995.

9. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-tlme systems. Information and Computation, 111(2):193-244, 1994.

1O. X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description
and analysis of hybrid systems. Hybrid Systems, Lecture Notes in Computer Sci-
ence 736, pp. 149-178. Springer, 1993.

11. A. Olivero, J. Sifakis, and S. Yovine. Using abstractions for the verification of
linear hybrid systems. CAV 95: Computer-aided Verification, Lecture Notes in
Computer Science 818, pp. 81-94. Springer, 1994.

12. A. Purl and P. Varaiya. Decidability of hybrid systems with rectangular differen-
tial inclusions. CAV 94: Computer-aided Verification, Lecture Notes in Computer
Science 818, pp. 95-104. Springer, 1994.

