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Abst rac t .  We present a local algorithm for model checking in a real-time 
extension of the modal mu-calcuins. As such, the whole state space of the real- 
time system under investigation need not be explored, but rather only that 
portion necessary to determine the truthhood of the logical formula. To the 
best of our knowledge, this is the first local algorithm for the verification of 
real-time systems to appear in the literature. 

Like most algorithms dealing with real-tlme systems, we work with a finite 
quotient of the inherently infinite state space. For maximal efficiency, we ob- 
tain, on-the-fly, a quotient that is as coarse aa poeaible in the following sense: 
refinements of the quotient are carried out only when necessary to satisfy clock 
cor~trainta appearing in the logical formula or timed automaton used to rep- 
resent the system under investigation. In this sense, ovLr data structures are 
optimal with respect to the given formu/a and automaton. 

1 Introduction 

The Concurrency Factory [CGL+94] is a joint project between the State University 
of  New York st  Stony Brook and North Carolina State University to develop an inte- 
grated toolset for the specification, verification, and implementation of concurrent and 
distributed systems. Like the Concurrency Workbench [CPS93], the Factory employs 
bisimnlation, preorder, and model checking as its main avenues of analysis. 

A major underlying goal of  the project is that  the Factory be suitable for industrial 
application. One manner in which we are striving to achieve such applicability is 
through the use of  local, or on-the.f ly,  verification techniques. In a local approach to 
verification, only the portion of  the state space necessary to determine the outcome 
of  the verification procedure is explored. As such, local techniques provide a powerful 
heuristic for dealing with complex (i.e. large state space) specifications. 

The Factory is currently equipped with a local model checker for the modal mu- 
calculus; an incremental model checker has also been implemented [SS94]. Model check- 
ing ICE81, CES86] is the problem of verifying whether a system possesses a property 
specified by a formula in some temporal logic (in other words, provides a model for 
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the formula). The modal mu-calculua [Kos83] is a highly expressive logic that can be 
used to specify safety and ]iveness properties of concurrent systems represented as la- 
beled transition systems (LTSs). Besides the standard logical connectives, the modal 
mu-ca]culus consists of dual modal operators [] (necessarily) and O (possibly), and 
dual fixed-point operators p (least fixed point) and v (greatest fixed point). This logic 
is often referred to as L~,, and so it shall be here. Our local model checker for L~, is a 
variant of the graph-based algorithm of Anderson land94], which is the most efficient 
of the local model checking algorithms proposed to date. 

Industrial applications also often require support of real-time specifications of both 
the system under development and the properties the system is required to comply 
with. Real-time specifications, in which the time domain is taken to be the nonnegative 
zeal numbers, make it possible to catch subtle timing errors in the system behavior 
which may otherwise be abstracted away in a dlscrete-time model. The price to be paid 
is that a dense time domain adds a level of complexity to the verification process, as 
the state space of such systems is inherently infinite (and uncountable): any approach 
to automatic verification will necessitate the construction of some ~inite quotient of the 
state space [AD94]. 

This current paper is concerned with extending local model checking to real-time 
specifications, in particular, local model checking in a real.time eztension of the modal 
mu.calculus. Our focus here is on a real-time extension of the alternation.free fragment 
of the modal mu-calculus [EL86] which, intuitively, means that the "level" of mutually 
recursive greatest and least fixed-point operators is one. This fragment, referred to as 
L~=, is still powerful enough to express most of the properties of interest. For example, 
CTL [CE81] has a uniform encoding into L~=. 

Our main result is a local algorithm for model checking in a real-time extension 
of the alternation-free modal ran-calculus. The principal innovations of our algorithm, 
which we call TMC (Timed Model Checking), are the following: 

- TMC is, to our knowledge, the first local model checking algorithm to be proposed 
for the verification of real-time systems. Thus, like its counterparts for untimed 
systems [SW91, Cle90, Lar92, And94, VLAP94], the whole state space need not 
be explored, but rather only that portion necessary to determine the truthhood of 
the formula. 

- Also, to the best of our knowledge, we present the first true extension of the 
modal mu-calculus to real-time systems. Our logic, L~, supports all of the original 
operators of L~ as well as the two new time modalities of [HLW91]: necessity and 
possibility of time successors. Moreover, we achieve a clear separation of the time- 
dependent aspects of the semantics of our logic from the untimed ones. This will 
allow us to reuse a significant portion of the code of the Concurrency Factory's 
local model checker for the modal mu-calculus when implementing the local model 
checker for L~. 

- Like most algorithms dealing with real-time systems [Di189, ACD93, ACD+92], 
we work with a finite quotient of the state space as the state space itself is in- 
herently infinite. For maximal efficiency, we obtain a quotient that is as coarse 
as possible in the following sense: refinements of the quotient are carried out only 
when necessary to satisfy clocl~ constraints appearing in the L~ formula or timed 
automaton [AD94, HNSY94] used to represent the system under investigation. In 
this sense, our data structures are optimal with respect to the given formula and 
automaton. 
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We approach the model checking problem by constructing a data structure repre- 
senting the "product" of the given logical formula and the transition system induced 
by the given timed automaton. Each node of this region producf graph (RPG) repre- 
sents the value of a logical variable for some set of timed states, or region. A similar, 
albeit untimed, product construction is employed in [SS94, And94, EJS93] and in the 
automata-theoretic approach of [VW86, BVW94]. The RPG is constructed on-the-fly 
using methods similar to [BFH+92, ACH+92]. However, rather than viewing regions 
as sets of states, we treat them as sets of clock constraints and reason directly in these 
terms. The RPG is explored in a depth-first manner, until nodes with a known value 
are found. After each step of the t tPG construction, partitioning (or splitting) of nodes 
may be necessary to achieve stability with respect to the relevant clock constraints. 
It is worth noting that if the real-time system is represented as the composition of 
collection of timed automata, then the global automaton is also constructed on-the-fly. 

In terms of related work, a number of non-locai algorithms for model checking 
real-time logics have appeared in the literature, including [ACD93, Kin91, HNSY94]. 
The algorithm of [HNSY94] is particularly relevant as it supports a real-time mu- 
calculus, albeit with a different set of moda]ities than those in L~. We believe that 
our algorithm m while not as abstract as some of these approaches, which work with 
a highly symbolic representation of the state spa~e ~ is easier to understand and 
exhibits the ei~ciency that is characteristic of local verification techniques. 

Our method of keeping track of the history of RPG node splits (see Section 5) 
is motivated by the timed transition system minimization algorithm of ~YL93]. The 
purpose of our algorithm, however, is quite different from theirs: we at tempt to avoid 
constructing the entire state space quotient~ even the minimal one. Thus, many of the 
techniques of [YL93] aimed at system minimization are not applicable in our setting. 

There is also a large body of work on discrete-time logics. Of particular interest is 
the discrete-time mu-calculus of [Eme91], where time is equated with the number of 
iterations required to reach a fixed point of a given ran-calculus formula. 

2 T i m e d  A u t o m a t a  

To model real-time systems, we use a version of timed graphs [AD94] called timed 
safety automata in [HNSY94]. Before defining these automata, some definitions con- 
cerning clocks and regions are in order. A clock is simply a real-valued variable drawn 
from the countably infinite set C. A clock constraint c is an expression of the form 
z Rc  or z + c R!I + d, where z, y are clocks, c, d are integer constants, and R is taken 
from {<, >, <, >}. A clock assignment lr is a point in R '~. If ~r is a clock assignment, 
lr + d for some d G t t  stands for the clock assignment obtained by adding d to the 
value of every clock. Finally, let ~ C C be a set of clocks. Then z'I~ :---- 0] is the clock 
assignment obtained from lr by setting every clock in ~ to 0. 

A region is a subset of R '~ formed by a set of clock constraints. We will use p, 
possibly primed or subscripted, to range over regions, and ~7 to denote the set of all 
regions. A region p is past-closed if whenever ~r E p, for every d E It ,  ~" - d E p. 

.k timed safety automaton (TSA) is a 6-tuple (s Act, ~, ----*, 10, L), where 
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- /~ is a finite set of  locations. 
- Act is the set of  actions. 
- ~ is a finite set o f  real-value clocks. 
- re§ s • ACt • ~ • 2~ • s is the transition relation, where every transition is 

labeled by an action, a region, and a set of  clocks. 
- lo E s is the start location. 
- L : s ---, E is the the function assigning a past-closed region, called a location 

invariant, to every location. 

Intuitively, a TSA operates by taking transitions from location to location. Ex- 
ecuting a transition takes no time. If  no transitions are taken, time progresses by 
incrementing every clock by an arbitrary real number. The intent of the labels on 
locations and transitions is the following: The automaton can stay in a location I as 
long as L(1) is satisfied. If  there is always a way for the automaton to leave the loca- 
tion before its invariemt is violated, the automaton is called non-Zeno. We restrict our 
attention to uon-Zeno automata,  as it was shown in [HNSY94] that  every automaton 
can be turned into an equivalent non=Zeno one by strengthening its invariants. Regions 
labeling the transitions are enabling conditions, i.e. a transition can only be taken if 
the constraints defining its enabling condition are satisfied. Also, when a transition 
occurs, all clocks in the set of clocks labeling it are reset to 0. 

The semantics for TSAs are given in terms of labeled transition systems, which 
are often called dense due to the uncountability of  their state sets. Formally, every 
TSA induces a dense transition system ~D = (S, Act, ----,, Cl0, ~r0)), where ,q is a set of 
timed states, i.e. pairs of the form /l,~r), l E s  ~r E Rn;  ~10,~r0) is the timed start 
state with lr0 assigning 0 to every clock; )C ,q • Act U ~e} x ,S with e ~ Act be- 
ing a distinguished action name, is the transition relation defined by the following rules: 

_ (l, z.l (z ,(l, z=D / :=  o]), if l~=~l ', ~- E p, and ~r E L(|), ~[~/:---- O] E L(l'). 
- (I, It) ' ,  (I, ~r + d) for every d E R such that  It, )r + d E L(1). 

In the first rule, the automaton moves from location I to l* via action a. Time does 
not progress but all clocks in r/, r/_C ~, are reset. Moreover, it must be the case that  L(l) 
and p are satisfied by ~r and L(l ~) is satisfied by lr[7/:= 0]. Timed s t a t e / l  ~, %[T/:= 0]) 
is said to be a transition successor of <l, It). In the second rule, time progresses (by 
d) and the automaton remains in location l, provided that  lr and = § d satisfy L(l). 
Timed state (l, ~r + d) is said to be a time successor of  (l, ~r). 

3 Timed Modal  Mu-Calculus  

We will specify properties of  timed au tomata  using the logic L~, a real-tlme extension 
of the modal mu-calculus. Our logic is inspired by both Timed HML [Wan91, HLW91] 
and the timed mu-calculus T~, of Henzinger c t  al. [HNSY94]. As in [CS93], a formula of 
L~ is a set of blocks of mutually recursive equations of  the form X : ~b, with operator 
rain or maz applied to each block. These operators are understood respectively as 
the least and greatest fixed points of the set of equations. A variable X is said to be 
defined in a block B if it appears on the left-hand side of an equation in B. We will 
restrict our attention to closed formulas, where all variables are defined. 
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The right-hand sides of equations in a block, referred to as basic formulas, may 
contain variables defined in other blocks. We say that block B1 depends on B~ if a 
variable defined in B~ is used in B1. We further restrict our attention to formulas whose 
dependency relations axe acyclic. This ensures that no alternating fired points [EL86] 
can occur. The syntax of  basic formulas is given by the following grammar:  

Here, a is an action, z is a clock, and At is a dock constraint as defined above. Atomic 
propositions A and variables X are taken from the countably infinite sets .4 and ga~'. 

Operators [a], (a), V and A, as well as atomic propositions can be found in the 
propositional modal mu-calculus [Koz83]. The remaining operators form our real-time 
extension of  the logic. The first two of the new operators come f~om T t, [HNSY94]: 
As asserts a relationship between clock values in a state and z.~b is a reset operation. 
The remaining operators, ~ and V, allow us to reason about time successors of a timed 
state. They appeared in [HLW91]. 

Modal operators (a) and [a] are used to reason about transition successors of  a 
given timed state: {a) provides existential quantification over the state's transition 
successors. Tha t  is, (a)~ is true in timed state s if from s the automaton can immedi- 
ately (i.e. without letting time progress) take an a-transition and reach a timed state 
where ~b holds. Dually, [a] serves as universal quantification. In a shnilax fashion, 3 
and V provide quantification over time successors of a timed state: 3~b is true in timed 
state s if there exists a time increment, i.e. a real value, that when added to each clock 
in s, yields a timed state in which ~b holds. 

An example L~ formula is as follows. 

{ Y = v [ - ] Y  ^ v[a] } 
{ x = 3(b)z < v ( V [ - ] X  A } 

The dash ' - '  in modalities stands for "any action" and is a syntactic abbreviation for a 
boolean expression over ordinary modallties. The formula states that  after performing 
action a, it is always possible to engage in action b within 5 units of  time. 

Given a TSA T = (s Act, ~, ~, I0, L), basic formulas are interpreted with respect 
to the dense transition system s = (S, Ac~, - -% (10, ~r0)} induced by T ~, which is T 
with ~ extended by all clocks mentioned in ~b, 2 a valuation mapping V : .4 --. ~(S) ,  
and an environment e : Vat --* 7~(S). Intuitively, a valuation mapping (environment) 
maps each atomic proposition (vaxiable) to the set of timed states in which it holds. 
The valuation mapping is assumed to be untimed in the sense that, for all timed states 
(l, ~') corresponding to the same location I, each proposition A has the same value. 
For a fixed environment e, the meaning of basic formulas is given by the semantical 
function {.]e : ~ --~ 7>(S), defined in Figure 1. 

Blocks are understood semantically as functions from environments to environ- 
ments. Let a block B contain a set of  equations E with variables X ~ , . . . ,  X,, defined as 
left-hand sides. Let S -- {$1, . . . ,  Sn} E (2s) '* and let e~- = e[X1 ~-, $1 . . . .  , X,~ ~-* Sn]. 
Then the function 

For every TSA and ~ t  formula, we assume that their sets of clocks are disjoint. 
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[a ] ,  = v(A) 
Ix ] ,  = e(x) 
l ade  = {{t,,O I" e A, ^ Z(O} 
[r v r = D,] ,  u [,~]+ 
I r  A r = n'~d, n ~,~de 
[(a)~]e : {(~,.) 13(e,r O,-)-~(e,.') ^ 0',r e [~l ,}  
[[,,},/,ie = {0,. ')  Iv(e,,,-'). <+, +) - -~(v , . ' )  =+. (,t',..') e [,~ie} 
[3r = {(z,..) l ~d > o. (z, ,,-)--~(z, .-') A (z, .,J,-') e 1r 
p~+.~,,. = {(+,,-) ] v<+ > o. (+, ~,)-~{z, , - ' )  =~ (+,,-') �9 ~q,]e} 
[..~]e = {(+,.) l (z,.[. := 0]) e [~]} 

Fig. 1, Semantics of basic formulas. 

defined on the lattice oftuples of sets of  timed states ordered by point-wlse set inclusion 
is monotonic. By the Tarski-Knaster fuxed-point theorem, f~  has both greatest and 
least fixed points given by: 

IP e 

Blocks can now be interpreted in the following fashion: 

[ma~E|e = e,,j~ 
[minE]e = e~,y; 

The meaning ~B]e of the formula B containing blocks Bt, .... Bin, topologically 
sorted by the dependency relation, can be computed through the sequence of en- 
vironments el = [BlJe,..., e,~ = [Bmle,~- l ,  with [B]e = e,~. Due to the acyclicity 
restriction on the dependency relation, we are ensured that  [B]e,~ = e,,,. I f  B is dosed, 
then for every two environments e and e', we have [B]e = [B]e'. In this case, we omit  
the reference to the environment in [B]. 

The model checking problem for ] ~  can now be defined: Given a TSA A with s tar t  
location 10, and an L~ formula B with a designated variable Xo (cai]ed henceforth the 
main variable) defined within it, determine whether (lo, a'0) E [X0]gB]. 

4 R e g i o n  P r o d u c t  G r a p h s  a n d  F i x e d  P o i n t  C o m p u t a t i o n  

This section introduces region product graphs, the main data  structure employed by 
our local model checking algorithm for L~, and shows how these graphs can be used 
to iteratively carry out the requisite fixed point computation. We first define a graph 
representation of L~ formulas called the formula graph. For this purpose, we assume, as 
in [CS93], that  the basic formulas appearing on equation right-hand sides are simple; 
i.e. they are atomic propositions or clock constraints, or formed by the application of 
exactly one operator to variables. The vertices of a formula graph are the variables of 
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the formula not defined by a reset operator, and there is an edge from X to X '  if X 
is defined in terms of X ' .  A vertex is labeled by the operator defining the variable in 
question and is written X(op), while an edge is labeled by the set of  clocks reset in 
going from the source to the destination vertex. 

As a precursor to our definition of region product  graph, we introduce the notion 
of a t imed product graph, the product of  a formula graph and dense transition system 
induced by a TSA, extended by the clocks of  the formula. Although, the t imed product 
graph data  structure is infinite and therefore unsuitable for algorithmic purposes, it 
will prove convenient for reasoning about  region product  graphs. 

Let ~D = (5, Act, - - %  (I0, ~ro)) be a dense transition system and /3  an L~ formula. 
Then the timed product graph of D and /3  is the directed graph with set of vertices 
{(X, l, ~) I X E Vat, (1,1c) E S} and set of edges given by: 

- f i X ( V )  ,[ ,X 1 or X(A) ,~ ,X' ,  then for every (l, Tr} e ,$, (X,I,~r)--~(X',l ,  lr[~ := 
01). 

- ifX((a))~-L*X ' or X([aI)~-L.X ', (l, ,~) ",  <l', ,r), then (X, l, ~r) , (X' ,  l ', ,r[~ := 0]). 

ifx(3)~-Lx , or x ( v )  ~ - L x  ', (l, " ' - ,~)--~(l,. ), t h e n  (x. l. ,~)----.(x'. l. ,e[~ : =  o]). 

Thus there is an edge from (X, t, 4) to (X ' ,  l ', ~r') if the value of X in timed state (l, 4) 
depends on the value of X '  in t imed state (l', ~r'). I f  v ,  (a), or 3 are used to define X,  
the vertex (X, l, ~r) is called an V-node;" otherwise, it is called an A-node. 

A region product graph (RPG) is a finite quotient of  a timed product  graph whose 
nodes are sets of timed product graph nodes with the same variable and location 
components and whose time components form a region. For variable X,  location l, 
and region p, we denote such an RPG node as (X, I, p). There is an edge in an RPG 
from (X, l, p) to (X' ,  l', p') if there exists a node (X, l, ~r) e (X, l, p) having a successor 
(X ' ,  l ', ~ )  G (X' ,  1', p') (in terms of the infinite t imed product graph). An RPG is called 
stable if whenever there is an edge (X, 1, p) , (X' ,  I', p'),  every node (X, 1,1:) E (X, l, p) 
has a successor in (X I, 1 ~, t/}. These definitions actually describe a family of  RPGs 
corresponding to different choices of regions. Our local model checking algorithm will 
strive to construct the smallest stable RPG by making regions as coarse as possible. 

We now argue that  reasoning about  RPGs during fixed point computat ion leads to 
an algorithmic (iterative) solution to the model checking problem. Let B be a block 
of an L~ formula/3,  with variables X = { X I , . . . ,  X,,} defined in B. Recall that  we 
define the semantics of B in terms of the function f ~ ( ) ,  where S can be viewed 
as the restriction of environment e to X (see Section 3). We say that  environment e 
is composed of regions if for every X,  the set {~r [ (1, ~r) E e(X)} is a finite union of 
regions. 

Let ra be the total number of clocks in a given instance of the model checking 
problem. The following lamina, a version of which also appears in [HNSY94], allows us 
to shift our attention from the dense lattice of  tuples over ( s  x R '~)  " ,  which was used 
to define the semantics of blocks in Section 3, to the discrete lattice over ( s  x 2z)  '~. 

L e m m a l .  If  environment e is composed of regions, then f~(  ) is also composed of 
regions. 

The proof of  this temma is similar to the one in [HNSY94]. By now noticing that  
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the constants in the~clock constraints that form the regions of f~(S)  are no larger 
than the corresponding constants in e, we can limit out attention to those regions 
whose constants do not exceed the largest constant in the TSA and L~ formula under 
consideration. Consequently, we need only consider finitely many regions, and the fixed 
points of the semantic function f~ become computable in an iterative manner [CC79]. 

It  remains to be shown that given an RPG, the regions appearing in the RPG 
nodes are the right ones for computing the desired fixed points. This is captured by 
the following lemma, the proof of which is deferred to the full version of the paper. For 
an environment �9 composed of regions, we say that e respects an RPG 7~ if for every 
X, there exists an M _C {(l, pl) [ IX, l,p~) is a~ node of 7~}.such that e(X) --- U M. 

L e m m a 2 .  Let ~ be a stable RPG. Ire respects ~ ,  then f~(-S) also respects 7~. 

The following observations further show how RPGs can be used to compute fixed 
points, and provide insight into our model checking algorithm. An assignment of 
boolean values to ~the nodes of an RPG is said to be a fixed point if the value of 
every A-node (rasp. V-node) is the conjunction (resp. disjunction) of the values of its 
successors. It is straightforward to check that an RPG fixed point is a fixed point 
for the corresponding L~ formula. Moreover, if the RPG is acyclic, its fixed point is 
unique. 

Consider, on the other hand, an RPG with cycles, and let C be one such cycle. 
Assume that all external successors of C (successors of nodes in C which themselves 
are not on C) have their values set in accordance with the desired fixed point. C is 
said to be free of ezternal interference if the external successors of every V-node in 
C a~e false and, dually, the external successors of every A-node in C are true. In this 
case, it is relatively easy to see that all nodes in C can be uniformly set to either true 
or false without violating the semantics of basic formulas: setting all nodes in the cycle 
to true will correspond to the greatest fixed point and setting all nodes in the cycle to 
false will correspond to the least fixed point. 

5 T h e  L o c a l  M o d e l  C h e c k i n g  A l g o r i t h m  

This section presents TMC, our local model checking algorithm for L~. We begin with 
a general discussion of the algorithm followed by its pseudo-code. TMC is conceptually 
similar to existing untimed local model checking algorithms. The basic idea is that the 
value of the main variable of the formula in the start location depends on the values of 
the variables in adjacent locations, and the corresponding RPG nodes are constructed 
on-demand. The computation then unfolds in a similar fashion for newly constructed 
nodes, until sufilciently many nodes are constructed to determine the value of the 
RPG's start node. 

O n - t h e - F l y  R P G  C o n s t r u c t i o n  

TMC constructs the RPG on-the-fly: the RPG start node is constructed first and new 
successors are explored one node at a time. For ei~ciency purposes, the fixed-point 
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computation is performed in tandem with the RPG construction by propagating the 
value of  a newly explored node back to its predecessors. To ensure the correctness of 
the computation, t h e  conditions imposed by Lemma 2 on the environment currently 
computed by the algorithm are satisfied at all times. For this purpose, TMC maintains 
the following two invariants: 

Ie: whenever an edge (X , l ,p} - -* (X ' , l ' , p  ~) is present in the RPG, every node 
(x ,  l, e (x ,  l, p) has a successor in (x' ,  l', p'). 

I~: the value of X in all timed product graph nodes in an t tPG node (X, l, p} is the 
same. This value is recorded in a boolean variable associated with the RPG node, 
which is referred to as the value of the node. 

Ie states tha t  the constructed portion of the RPG is stable, while I~ asserts t h a t  the 
environment is of the right form. Although a step of the algorithm may temporarily 
invalidate the invariants, they are restored by splitting RPG nodes, which is discussed 
below. 

TMU explores the RPG in a depth-first manner. A stack of  nodes that  have unvis- 
ited successors is kept. For each node appearing on the top of  the stack, the algorithm 
iterates through its unt/med successors. The pair (X ~, l ~) is an untimed successor of  
RPG node t = (X, l, p) if t has a successor of the form (X',  l ~, p~). It is assumed that  
the untimed successors of  an RPG node are ordered in some way, so that  the operation 
of  choosing the next successor is meaningful. The only requirement we impose on the 
ordering is that  if a node has successors whose variable components are defined in a 
block different from the block of the current node, all such successors precede any suc- 
cessor in the same block. If  the next untimed successor of the current RPG node has 
not been previously visited, the largest possible region is taken to form the new RPG 
node; assuming the current node's location component is l, then this region is L(I). 
Otherwise, the untimed node has been visited already and there is a set of R P G  nodes 
corresponding to it. In this case, edges to appropriate RPG successors are introduced 
and the current node is split if needed to preserve/e.  

For every node the algorithm visits, an at tempt is made to find a successor whose 
value will determine the value of the node, until all successors are visited. A predicate 
done is defined on RPG nodes, and done(t) is set to true as soon as t ' s  value is finalized. 
A node is allowed to derive its value only from done successors. When done(t) becomes 
true of  some node t, t 's  value is reported to its predecessors, which may lead to the 
finalization of their values as well. 

Note that  a node ~ belonging to an interference-free cycle does not have its value 
determined in this way: in this case, there would be a successor of t in the stack whose 
value depends on t. While exploring nodes, the algorithm identifies interference-free 
cycles by noticing that cycles cannot span block boundaries, and assigns to each node 
on such a cycle the value corresponding to the type of fixed point. Such assignments 
can be safely made after all successors of every node on the cycle are processed; i.e. 
no nodes belonging to the cycle remain in the stack of unexplored nodes. 
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Spl i t t i ng  R P G  n o d e s  

As RPG construction proceeds, more and more timing information, in the form of dock 
constraints contained in the TSA or L~ formula, are encountered. Newly encountered 
clock constraints can invalidate the Ir and Is invariants. To re-establish these invari- 
ants, certain RPG node regions must be partitioned into finer ones, thus effectively 
splitting the nodes. Since regions are defined as sets of constrshlts, it is easy to split a 
region p by a clock constraint e: simply partition p into pU{e} and pU{--c}. Note that  
one of the new regions may be empty, which means that  no splitting has occurred. 
There are effective procedures, similar to those in [Dl189], to check for emptiness of a 
region and to "tighten" region boundaries by removing irrelevant constraints. To avoid 
redundant work, the algorithm never splits nodes for which done is true. 

In the simplest case, the need for splitting arises when a new untimed node (X, I / is 
first encountered. Its default region L(l) is split immediately in the following two cases: 

- X -~ At. L(1) is split in two subregions using the constraint At. 
- X([a]) ,X  ~ or X( (a ) )  ..... ,X  ~. L(l) is split into two or more subregions by applying 

the clock constraints on a-transitions leaving I. 

Splitting L(l) is accomplished in the algorithm by the procedure Split( (X, l, L(l))).  
Note that  the first case above violates I~, while the second violates Is. 

A violation of It  may seise every time a node w = (Xw, lw,p~)  is split, necessi- 
tating the splitting of a predecessor t = /Xt, It, p t) of w. The algorithms checks for 
such violations and carries out the required splittings by calling procedure Split(t, w). 
Assume that Xt is not defined by a time successor operator (V or 3) and t has not 
been previously split. 8 Procedure Split(~, w) computes the set of constraints to split t 
from those splitting w in the following way. First, the set ~ of  clocks that were reset in 
moving from t to w is detected. This is the set of clocks labeling the edge Xt---*X~ 
in the formula graph and, if Xt is a transition modality ((a) or [a]), those labeling 
the corresponding transition in the TSA. Then all constraints splitting w see projected 
onto ~ --- 0, i.e. 

- constraints of  the form z R c, z E ~ or z + c R y + d, z, ~ E ~ are discarded. 
- constraints of the form = + c R y + d, z E ~, y ~ ~ become c - d R y. 
- all other constraints are left unchanged. 

The resulting set of constraints is used to split t, and an edge wt---~ ~ is introduced 
as appropriate between subnodes w e of w and t~ of t to satisfy I , .  For every new edge 
tl----~Wl, 5pli~(~', W') is recursively invoked. 

The example in Figure 2 illustrates how Split works. We are given RPG nodes w and 
t with t - -~w;  only their regions see depicted for the purpose of illustration. Assume 
that clock z is reset in going from t to w, and that  w was split by the constraints z _< c 
and z + d < z (the graph on the left). The projection of  the constraints onto z = 0 
leaves the first one intact and transforms the second into d < z. The dotted lines show 
how these constraints extend to t, and the resulting constraints are used to split t (the 
graph on the right). 

s If t has been previously split by another successor, the splitting procedure must be applied 
t o  every subnode of t. 
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Fig. 2. Splitting an RPG node. 
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Fig. 3. Splitting an RPG node by a time successor. 

When X, is defined by a time successor operator, additional clock constraints must 
be taken into account. I f  w was split with the constraint c --- z R d, then for every 
constraint y R '  d I (z ~ y) forming w, the new constraint z - d R"  y - d '  (where R" is 
derived from R and R '  in the obvious way) is used to split t. For each clock y, there 
may be at most two constraints of this kind. This type of splitting is illustrated in 
Figure 3. Note that  the number of successors may change for some psxts of t. The case 
where the region of t is contained within the region of  w is slightly special: c itself is 
used to split t, and only the snbnode o f t  corresponding to z < d is split with the new 
constraints described above. 

T h e  P s e u d o - c o d e  

We now present the pseudo-code for TMC,  our local model checking algorithm. Let 
T = (s Act, ~, ----,, lo, L I be a TSA and B an L~ formula with Xo as its main variable. 
Moreover, let f0 denote an RPG node that  contains (X0,/0,1c0), the main variable of  
the formula in the start state of the timed system. Initially, to = (X0, lo, L(lo)l. Note 
that  to can change (become smaller) as the algorithm proceeds. 

We employ the followin 8 data structures: U is the depth-first stack of RPG nodes; 
P is the set of  RPG nodes used to store nodes that  may lle on interference-free cycles; 
D and S are sets of RPG nodes used in the propagation of values from successors to 
predecessors, and in the propagation of  splits, respectively. All RPG nodes constructed 
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by the algorithm axe mas in a search da t a  structure,  which also keeps t rack of 
the history of splits (a similar da ta  structure is used in [YL93]). 

procedure TMC(T, I3) 
place t0 on U 
w h i l e  U ~ 0 

t : = / i ~ s t ( t r )  
i f  t has no successors t h e n  

decide t ' s  value 
doneit ) :=  true 
move t from U to D 
processD 

else  i f -~done i t  ) t h e n  
i f  t has unexplored successors t h e n  

choose the next untimed successor (X, I} of t 
if no nodes of the form iX, I, p} have been visited yet 

construct w = i X, l, L(I)) 
add edge t----*w 
place Split(w) on U 
processS 

else  
replace t with SVU~(t, IX, l, L(l))) in U 
processS 

else  
move t from U to P 
i f  U is empty or (Xt and Xyi~,t(u) are in different blocks) t h e n  

w h i l e  P ~ 0 ~ process interference-free cycles 
remove some t from P 
if-~done(t) t h e n  

doneit ) :--- true 
add t to D 
proceasD 

e l se  remove t fzom U 

Procedure processD, which propagates the finalized values of nodes to their prede- 
cessors, is given by: 

w h i l e  D ~ r 
remove some w from D 
decide w's value 
i f  to = to t h e n  s t o p  
e lse  fo r  e a c h  predecessor t of w, and subnode t t of t 

report  the value of  ~v to t '  
i f  done(tl) t h e n  

add t: to D 

The structure of procedure processS, not presented here, is simi]ar to that of pro- 
cessD. It removes recently split nodes from the set S and propagates the effects of this 
splitting to their predecessors by calling Split. 
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T h e o r e m  3. Let T be a timed automaton and 8 an L t formula. When TMC fermi. 
.ate., ~e  ~a~e of~o is t-~e iff (to,~o) e [Xo]iB]. 

The proof consists of two independent parts. The first part shows that I= and I ,  
are properly maintained by procedures Split and procesaS. The second part performs 
a case analysis on when the predicate done becomes true of an RPG node, and shows 
that the node assumes the correct value at that time. The proof itself will appear in 
the full version of the paper. 

With regard to TMG's ei~iciency, we have noted that splits of RPG nodes are 
performed only when necessary to accommodate a clock constraint appea~ing in T 
or B. As we do not necessarily construct the complete RPG, the order in which the 
successors of a given node are visited may affect the size of the RPG we build on-the-fly. 

6 C o n c l u s i o n s  

We have presented a local model checking algorithm for a timed extension of the modal 
mu-calculus, the first local verification algorithm for real-time systems of which we are 
aware. Our algorithm, TMC, constructs the region product graph on the fly and makes' 
regions as large as possible by performing a split operation only when dictated by a 
rdevant clock constraint. 

We are currently implementing TMC in the Concurrency Factory; because of the 
similarity with the search strategy employed in the untimed ease, we are able to reuse a 
significant amount of code. The full version of the paper will report on the performance 
of TMC on some well-known benchmarks (cf. [ACD+92]). " 
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