
Hardware Verification using Monadic Second-Order Logic

David A. Basin 1 and Niis Klarlund .2

I Max-Planck-Institut fur Informatlk,
Im Stadtwald, D-66123 Sa~rbr~cken, Germany

2 BRICS, Department of Computer Science University of Aarhus,
Ny Munkegade, DK-8000 Aarhus C, Denmark

Abst rac t . We show how the second-order monadlc theory of strings can be used to specify hardware
components and their behavior. This logic admits a decision procedure and counter-model generator
based on canonical automata for formulas. We have used a system implementing these concepts to
verify, or find errors in, a number of circuits proposed in the literature. The techniques we use make it
easier to identify regularity in circuits, including those that are parameterlzed or have parameterlzed
behavioral specifications. Our proofs are semantic and do not require lemmas or induction as would
be needed when employing a conventional theory of strings as a recurslve data type.

1 Introduction

Properties of functions over finite domains may be established by state space enumeration. Consequently,
combinational logic circuits may be viewed as Boolean functions, and the equivalence of circuits may be
shown by exhaustive resting--which in turn may be optimized using Boolean decision diagrams (BDDs).
But when the domain is infinite, direct enumeration is impossible. For example, although we can apply
state space enumeration to prove that a 1-hit adder meets its specification, we cannot do the same for a
parameterized n-bit adder.

There are similar problems in verifying temporal properties of a circuit tha t should hold over all in-
stants of time. Typically such circuits are verified interactively, or semi-automatically using mathematical
induction [1, 2, 6, 9, 12, 13, 15]; that is, a time-dependent property P(n) is shown to hold for all instants
n by induction over n.

There is an alternative approach to such problems, however: find and analyze a finite characterization
of the infinite state space. For example, an n-hit adder may be constructed by chaining togethex (ripple-
carry style) n full adders. The resulting circuit is regular in both the informal and formal sense. If we view
the input /output relation of an n-bit adder as words of length n over an alphabet describing'inputs and
outputs at each position, then the language that is the union of all these languages for n = 1,2, . . . -can be
~ g n i z e d by a finite automaton and is thus a regular language.

Recently, other groups of researchers, e.g., [7, 16], have presented methods that exploit this kind of
regularity. In [16], parameterized circuits are not described as such. Instead, the automaton model is inferred
by observing the behavior of circuits for n = 1, 2 . . . until some technical conditions indicate a fixed point.
Alternatively [7, 8] identify classes of parameterized circuits that can be described by recursive BDD tree
structures which, for certain classes, correspond to finite automata. While these techniques are novel and can
be very effective, they have their drawbacks. In particular, circuits must be encoded directly as automata
as opposed to more declaratively by functions or relations that mirror their structure. Similarly, behavioral
specifications are encoded instead of being expressed in a more conventional specification language that
admits logical connectives~ functions, and the like. As a result, circuits and their specifications may be
considerably more complex than what is possible in richer languages.

We report here on a logical characterization of regular circuits that generalizes the class of circuits
describable by previous methods. We believe it gives a better understanding of when regularity can be
exploited to prove automatically the correctness of circuits. Moreover, it allows specification closer to what
is possible within richer specification languages.

Our work is based on a second-order monadic theory of strings, M2L(Str), and a system, Mona, that
implements a decision procedure and counter-model generator for statements in this logic [I0]. M2L(Str)
is a very concise, but so far in practice unexplored, way of characterizing regularity. Operators in the logic
formalize positions and sets of positions within strings and relate them by means of quantification and
logical connectives. These connectives suffice to directly encode Boolean logic and all non-parameterized
circuits. Quantification over sets of positions can encode parameterized circuits with regular connectivity
like ripple-carry adders. The logic still admits a decision procedure and counter-model generator based

Basic Research in Computer Science, Centre of the Danish National Research Foundation.

32

on constructing a canonical automaton for each subformula. As a result, tautology checking is decidable,
although in non-elementary time (the lower bound is s stack of exponentials of height proportional to the
size of the formula). Thus in principle, we can automatically verify the correctness of circuits relative to
specifications that are also expressible in M2L(Str).

Perhaps surprisingly, we show here that verification is possible in practice too. In this report we doc-
ument the automatic verification of a parameterized Arithmetic Logic Unit (ALU) and a t imed fiipflop
in Mona. Moreover, we show how counter-model generation within M2L(Str) provides a useful tool for
debugging and testing incorrect circuits and specifications. Hence, Mona provides not just a tool for circuit
validation, but also for circuit development, debugging, and prototyping.

While the applications we present are new, it has been known for over 30 years that monadic second-
order theories define regular languages and hence are decidable. The staggering theoretical complexity
seemed to preclude practical experiments. And the limited exPressibility of M2L(Str) means that not
all parameterized circuits or their behavior can be specified. For ~example~ one c~-nnot encode a network
whose connectivity is non-regular (e.g, parameterized grids). Furthermore, specifications are limited in
the amount of arithmetic tha t may be formalized; the slightly stronger logic WSIS allows one to express
Preshurger arithmetic, but little more [17]. Even when arithmetic operations are expressible, a specification
in M2L(Str) may be less direct than one in a more expressive logic. As we shall see, arithmetic must be
encoded as operations over strings.

Despite these obstacles, we were still able to solve interesting problems. FOr example, the ALU that we
verified (see w required only half a CPU minute (on a SPARC station 20) and a couple of megabytes of
memory; the largest intermediate automaton generated by Mona in this example contained 154 states.

We proceed as follows. In w we give an introduction to M2L(Str) and Mona. In w we consider veri-
fication of parameterized hardware and verify a parameterized adder and ALU. In w we consider timed
hardware and use Mona to analyze a D-type flipflop. Such memory devices involve feedback, and formal
~m~ysis of their properties is surprisingly difficult. We begin by considering a specification given by [6]
that was verified by hand. We use Mona to generate a minimal cotmterexample to this specification and,
through further experiments, we develop a correct specification. This demonstrates how M2L(Str) can be
used not just as the basis of a yes/no decision procedure, hut also as a tool supporting the development
and analysis of complex circuits. In the final section we draw conclusions and make further comparisons.

2 T h e S e c o n d - O r d e r M o n a d i c L o g i c o n S t r i n g s

We employ a theory M2L(Str), where a closed formula is interpreted relative to a natural number n, called
the length. A first-order variable p denotes a number i, 0 _< i < n, called a posflion. A second-order variable
P denotes a subset of (0 , . . . , n - 1}. Alternatively, a second-order variable can be viewed as designating a
bit pattern b~. . .b~_l of length n, where bl is 1 if and only if i belongs to the interpretation of P .

First-order terms are formed from first-order variables, and constructors of the form 0 (denoting the
position 0), $ (denoting the last position n - 1) and t ~ i and t O i where t is a first-order term and i is a
natural number (denoting j + i rood n and j - i rood n, where j is the interpretation of t). Second-order terms
are built from second-order variables, the constants e m p t y and all (which denote ~ and { 0 , . . . , n - 1)),
and are combined using N, U, and C (complement relative to {0 , . . . , n - 1}). For tl and t2 first-order terms
and S a second-order term, tx E S, t~ - t2, tt • t2, tl ~_ t2, and t l >_. t2 are formulas. Formulas are
combined by the standard connectivas -~,A, V,-~, and ~ . There are two kinds of quantifiers: :~i and 9 'I
over first-order variables and 32 and V 2 over second-order variables.

As an example, the formula 31p : p E P states that "there exists a position p in P ' . More complex is

OE P A V~p:p <$-~ ((pEP--~ p$1~ P)A(p~ P--§ P)),

which states that P contains exactly the even positions among (0 , . . . , n - 1}. We also view P a s s bit
vector and write P(p) for p E P.

A formula ~, with free variables, defines a regular language denoting the interpretatians tha t m ~ e ~b
true. For example, the formula 4, -- P = G Q defines a language L(~b) over B 2, where each (bl,b 2) E B 2
denotes the membership status of the current position relative to the free second-order variables P and Q.
The language is then the set of words describing interpretations of P and Q tha t make ~ true. For example,

if we represent the letter (bl,b 2) as ~ then

0110 r L(~) and 011 ~ L(~).
1001 000

This language represents the set of natural numbers n such that ~ holds when interpreted over a string of
length n.

33

We can construct an automaton recognizing L(~b) by standard operations of product, subset construc-
tion, and projection. A dosed formula ~ corresponds to an automaton over a one-letter alphabet and is
a tautology when the automaton accepts strings of all lengths. For any formula ~b tha t is not valid, we
can extract from its corresponding automaton a minimal length string defining an interpretation mak-
ing ~ invalid. We use this procedure to generate counter-examples to proposed theorems. The automata
construction we use is standard (see [17]), however, the implementation is made efllcient by using BDDs
to compress alphabets, which are exponential in the number of free variables. Implementation details are
g i w in [Io].

3 P a r a m e t e r i z e d H a r d w a r e

In this section we specify and verify the correctness of a simple parameterized n-bit ALU given in [14].

$.1 P re l imina r i e s : Boo lean Logic

Boolean connectives and quantification over Booleans are not part of M2L(Str), but can easily be encoded.
In particular, each Boolean variable b is encoded by a second-order variable .8, and occurrences of b in
formulas are encoded as 0 E B. Quantification over Booleans (V e and 3~ is encoded using second-order
quantification. 1 Nan-parameterized circuits are then directly encoded using Boolean quantification and
propositional connectives.

In hardware verification, circuits are traditionally represented as functions from inputs to outputs or
as relations tha t hold between the port values. In the functional approach, components are connected by

Y2 X2 Y1 XI YO XO

t ou t ,, I I I I . ,I I

123 I CO

Z2 Z l 7.0

F i g . L n-bl t addex for n ~ 3

functional nesting. In the relational approach, circuits are viewed as constraints and joined together using
conjtmction; internal wires are represented by shared variables that are existentially quantified (see [3, 6]
for discussions on this). In our work it makes no difference which approach we use, we may even mix them.

To begin with we define gates as functions:

. o r (a) = - ~
and(a,b) -- a A b

or (a , b) = a v b

~or(., b) - or(.nd(~ot(.), b),and(.,~ot(~)))
. . ~ (. , b , c) -- ond(. .d (. , b), c)

or3(a,b,r -~ or(or(a,b),c)

We may then define f~mctions that compute the sum and carry bits for an adder and combine these into a
relation specifying a full one-bit adder.

~ (. , b, c) -=- x o ~ (x o r (. , b), c)
carry(,, b, c) ~ orCand(zor(,, b), c), and(,, b))

f ull.Jzdder(a, b, out, cln, cou~) = (sum(, , b, cin) 4-+ out) A (carry(a, b, cin) ~-t cout)

Consider now an example of a simple theorem in Mona: if Boolean variables z, y, z, c/n, and tout fulfill
the full.adder relation, then the outputs (z and tout) are uniquely determined given the inputs.

For example the Boolean formul8 V~ y : -~(z A "W) is encoded as the M2L(Str) sentence YaX, Y : ~(0 E X A -,(0 E
Y)). Input to Mon~ conslaM of a. m~que~ce of definitions and ~ formni~ to be proved. The definitions are expanded
using the Unix m4 macro processor and emacs macros. To sinLre the reader from concrete Mona syntax we will
take liberties with syntax in what fonows, for example manuLUy pretty printing formula&

34

V~ ~, ein : ~ z , eout : fnlLadder(z, y, z, ein, tout)
^ w z ' , ~ t ' : 0 ~ t _ ~ a ~ (~ , u , , ' , ~ n , ~ o ~ t ') -~ ((~' ~ ~) ̂ (~ , t ' ~ ~o~t)))

Mona reports tha t this is a tautology in under I CPU second. That is, it reduces this formula to a 1-state
automaton that accepts all strings; this indicates that there are no strings, of any length, that encode a
counter-model to this formula.

3.2 C o r r e c t n e s s o f a n n -b i t A d d e r

We next turn to parameterized hardware. Figure 1 gives an example of this for n = 3. In the general ease,
an n-bit adder is constructed by wiring together n 1-hit adders where the carry-out of the i th becomes the
CatTy-in of the i+ l s t . The first and last carry are special cases: the first carry has the value of the carry-in
and the last has the value of the carry-out. We can directly specify this using two existentially quantified
second-order variables C and D which represent sequences of carry-in and carry-out bits.

n_~dd(X, r, z , an , ~) - ~2c, D : (V'p: ~t_odd,~ (X(p), r(p) , Z(p), C(p), D(p)))
^ (~p : (p < *) - , (Z>(p) ** c (p e 1)))
^ (c(0) ** an) ^ (D($) ~ ~o~t)

Having described an implementation, we now specify its functionality. M2L(Str) is a logic about strings
and string positions, and an arithmetic specification must be encoded within this limited language. In
particular, we encode addition as an algorithm over strings representing bit-patterns, i.e., binary addition.
A simple way to do this is to mimic how addition is computed with pencil and paper. The i th output bit
is set if the sum of the i th inputs and carry-in is 1 rood 2, and the i th carry bit is set if at least two of the
previous inputs and carry was set. The 0th carry and the final values must be computed as special cases.

at.least_two(a,b,c) = (a ^ b) V (a ̂ c) V (b ̂ e)

mod_two(a,b,c,d) =- a 4-~ b ~ c ,~ d

add(X , r ,Z , cin, eout) = 32G : C(0) ~ e/n

^ ~p: -~d_t~o(X~),r(v~, CO,), Z(p))
A ((p < 8) ~ (C (p ~ i) ~ , tJeast-two(XOo),Y(p),C(p))))

^ (eout ~4 tttJeast_two(X($), Y($), C($)))

We may automatically verify that add and . . add are equivalent: Mona reports in one CPU second that
the following formula is a tautology.

W X , Y, Z : W ein, eout : odd(X, Y, Z, ein, eo~t) +-r n.add(X , Y, Z, t in, eout)

Often we are interested in more than one property. With Mona, once preliminary definitions are made,
it is easy to test them. For example, ~ in one CPU second Mona verifies tha t the n-bit adder computes
a unique function from its outputs to its inputs:

W X , Y : V*ein : 3' g : 3~ : n .add(X,Y,Z , cin, eout)
A WZ' : V~ cout' : (._add(X,Y,Z',cin, cottt') ~ (Z = Z' A(cout ~ tout')))

Alternatively, we have checked (one CPU second) that our specification defines a commutative operation:

W X , Y , Z : V%in, eout : add(X,Y,Z, eln, eout) ~-~ add(Y ,X ,g , ein, cout)

3.3 Cor r ec tne s s o f a n n - b i t A L U

We now apply our approach to a more complex circuit--a parameterized n-bit ALU. The circuit we analyze
is presented in [14]. It is also an interesting theorem for comparison, since it has been recently verified in
induction based systems CLAM and PVS (see comparison in w

ALU specification The ALU is designed to perform 8 arithmetic and 4 logical operations. The 12
functions are selected through 3 "selection" lines so, s , , s~ and the carry-in c~n as described in table I. For
example when the s~ are 0 and c/n is 1 the ALU increments the n-bit input A and places the result in F ,
produc'mg a carry-out when every bit in F is set.

35

To specify the functionality of the ALU, we must specify each of these functional sub-units. We begin
with abbreviations that define relational versions of the previously defined gates. For example:

notrel(a,b) =-not(a) ~ b

andrel(a,b,e) ~ and(a,b) ~ e

Other relations used are defined anologously.

Selection
s2 s~ so..~rt Output Function
0 0 0 0 F=A TransferA
0 0 0 1 F = A + I IncrementA
0 0 1 0 F = A + B Addition
0 0 1 I F = A + B + l A d d i t i o n w l t h c a r r y
0 1 0 0 F = A - B - 1 S u b t r a c t w i t h b o r r o w
0 1 0 1 F = A - B Subtract
0 1 1 0 F=A-I ~ e n t A
0 1 1 1 F = A Tre~sferA
1 0 0 X FfAVB OR
i 0 I X F=A~gB XOR
I I 0 X F=AAB AND
I I I X F ---- A Complement A

Table 1. Function Table for ALU

Using these we may directly define all of the logical and some of the simpler an'thmetic functions.

transfer(To, From) - To : From

compl(A, F) = V ' z : notrel(A(z), F(z))

OR(A ,B ,F) - V ' z : ovrel (A(z) ,B(z) ,F(z))
XOR(A,B, F) =-V'ffi-~o~rel(A(~),V(~), F (,))

AND(A, B, F) -- Vt , : andrel(A(z), B(z), F(z))

The other function definitions require some basic arithmetic. For b a Booleaa encoded by a second-order
variable B, define zero(b) to be B = empty and one(b) as B(0) ^ Vlp : (/0 > 0 --~ -~B(p)). We can now
directly define the remaining arithmetic functions using the previously defined addition operator add.

add.no.carry(A, B, F, cout) -- ~ e/n : zcro(c/n) A add(A, B , F, cin, cout)

add_with.~rry(A, B, F, c o u t) - ~ e / n : one(e/n) A add(A, B, F, e/n, tout)

one_compt_add(A, B, F, ~ut) _= 3*e/n : 32Comp : zero(e/n)
A compl(B, Comp) A add(A, Comp, F, e/n, tout)

t~o_compl.add(A,B,F, cout) --- B~ : 32Comp : one(c/n)

^ compt(B, Co.p) ^ add(A, Co.p, F, c/n, tout)
decrement(n , F, cout) =_ 30 v : one@) A two.compl.add(A, v, F, cout)

Now, using the following auxiliary definitions

i f3(a,b,c,d) -- (a A b A e) -4 d

i f4(a,b,c,d,e) -- (r A b AcA d) --', e

we directly encode alu.spec(so, s, , s2, A, B , F, cin, cout) by specifying the function table (Table 1) as fol-
lows.

i f 4 ('~s2, - 'sl , "sO, -,c/n, t rans fer (A, F)) A if4 (*~s2, -~sl, -'SO, e/n, increment(A, F, cout))

A if4(*~s2, "~sl, So, - ~ n , add_no.carry(A, B, F, cout)) A if4(-~s2, -"81, So, cin, add.with.carry(A, B, F, cout))

^ if4 (-~s2, s l , ".so, ".c/n, one_ccrnpl.add(A, B, F, cout))^ if4(-~s2, sl , ".so, e/n, ttoo.cornpl.add(A, B, F, cout))
A if4('~82, Sl, sO, - e /n , decrement(A, F, eout)) ^ i f , (' .s2, sl , so, e/n, t rans fer (A, F))
A ifs(s2, "~sx, -so, OR(A, B, F)) A if3(s2, --sl , so, XOR(A , B, F))

A i f s (s2, sl, "~SO, A N D (A , B, F)) A if3 (s2, s l , so, ctrmp/(A, F)) .

36

tin --
c(o)

s2 s!
sO

A(O)

B(O)

A(1)

B(D

w8, - I

L

w!

I ~ F(O)

C(l)

- - ~ F(I)

Fig. 2. n-bit ALU (n = 2)

ALU implementation The ALU implementation, as speci~ed in [14] is given in Figure 2. The correspond-
ing M2L(Str) formula is encoded analogously to the parameterized adder. The only additiona/complication
is that the description should be subdivided into two parts: an initialization block and a repeating ALU
block. The first part, which we call in i t computes negations of the selection wires and conjunctions of them
and their negations.

init(so, nl, 82, vo, v l ,n) =_ 3~ nl : notrel(zo, no) A notrel(sl, nl) A notre[(s2, n)
A and3rel(no,sl,s2,vo) A and3rel(no,nl,s~,vx)

The remainder of the ALU consists of the regular repetition of 1-bit ALU sections. These sections also
require the switching wires sl and the results of the ini t section computed on the wires v0, v3, and n.

one.alu(a,b,f, cin, cout) ---- 3~ w2, ws, w4, u~, we, wT, we : andrel(n, cin, wx) A andrel(vx,b, w2)
A andrel(vo, ws, wa) A or3rel(w2, ws, a, w4) A andrel(b, so, w~)
A andrel(w8, sl, ws) A orre/(zos, we, wT) A notrel(b, ws)
A full_adder(w4,wT,f, wl,COUt)

We may now combine the in i t block with r i p p l ~ e d 1-hit ALU units to specify the parameterized
ALU. The ALU sections are hooked together as were the adder sections in the parameterized adder example.

n-alu(so, 81, sa, A, B, F, cin, cout) -- 32C, D : 30~o, vx, n : init(so, sx , ~2, vo, vl , n)
^ (v 'p: on~ a,,(AO,), BO'), FO,), CO,), DO,)))
^ (v 'p: O, < *) ~ (z)O,) ~ cO, ~ 1)))
^ (co) ',-, ~ -) A (D($) ,,., o~,t)

37

Mona verifies, in 27 seconds, the correctness of the ALU: when the inputs satisfy the circuit relation,
they satisfy the ALU specification.

V2A, B ,F : V~ 81, s2 ,dn , cout: n-alu(so,sl~s2,A,B,F, cin, cout)
-+ alu.zpec(8o, sl, 82, A, B, F, c/n, cout)

Other properties, such as the functional relation between the inputs and outputs, are also easily checked.

4 T i m e d H a r d w a r e

We now consider circuits with timed specifications and feedback: A good example is the standard imple-
mentation of a D-type flipflop as shown in Figure 3. Although this circuit looks simple, understanding and
demonstrating its correctness is a difficult task. A thorough and very well-written analysis of this flipflop
is given by Hanna and Daeche in 19]. 2 They used Verltas, a theorem prover based on a higher-order logic,
to give a comprehensive analysis using a partial description of waveforms. Their analysis is complex, and
it took an experienced user a week to construct the proof.

Our starting point is a simpler model of this circuit proposed by Gordon in [6l. He used a discrete
representation of time and assumed each gate had a delay of one time unit. The proof that the circuit meets
its specification, which he notes "is fairly complicated" was done by hand only. The flipflop and Gordon's
specification are easily encoded in Mona with Gordon's choice of timing parameters. To our surprise, our
system generated the following counterexample (in only 9 seconds).

C K - -

D

1>2

Fig. 3. D-Type Fllpflop

Q

D 11010100 CK 10110010
Q 10101111 PI 00010101
P2 11111111 />3 I0100111
P4 11111101 />5 10101000

One sees that the D si-gnal changes from 1 to 0 at the same time (instant 2) as the CK signal goes high.
Therefore the value 0 is incorrectly propagated to the output gate Q. The D value is held constant for two
time units before the rise of the clock as specified by [6], but the counter-example shows that the value
must also be stable at the moment the clock rises.

Analysis of this failed proof attempt led us to discover that the theorem as stated in [fi] does not hold
without additional assumptions; in particular, that the circuit must not oscillate to begin with and that
inputs D and CK are further constrained so as to prevent the circuit from becoming unstable.

To help us reason about events and intervals, we use the following predicates:

z Hanna and Daeche challenge the reader (page 193):

"It turns out, on analysis, that the modus opt.~ndi of this circuit is far from simple: in fact, it is unusu~d]y
complex, and (so the authors found) difficult to understand intuitively. (If, like most people, you find this
remark difficult to accept at face value, read the rest of this account, then set it mdde, and attempt, within
(say) on~worklng day, to come up with a carefully justified account of 'how' the proposed imp|ementatiofi
is intended to function...)"

38

- the ~ralue of F is stable in Ira,t2]:
s table(t l , t2 ,F) =- V~t : tl <_ t < t2 "+ (F(t) ~-~ F (t l))

- t2 is the first instant after tl when F becomes high:
n e x t (h , t 2 , F) -~ t l < t~ A F(t~) A (V' t : t l < t < t2 --~ "~(F(t))

- F rises at t:
rs -- t > 0 A (' ,F(t 0 1) A F(t))

- F falls at t:
fall(t, F) -- t > 0 A (F(t 0 1) A -~F(t))

Also, we use the higher-order predicate (also just a macro) e q ~ O u t , Q, Ival) , where Out is a second-
order term, O is a predicate Q(p, I) with p a first-order variable and I a second-order variable. The predicate
eqpre~ Out , Q, l va l) holds if and only if for all p, OutO~) 4-t Q ~ , Ival) . Thus Ou t is the result of evaluating
Q according to Ival . For example, eqpred(P, r ise , C K) holds if and only if P is the set of time instants for
which the clock goes high.

4.1 The circuit

The temporal behavior of a unit-delay nand-gate with inputs/I and 12 and output 0 is described by

nand(I i , I2 ,O) -- V't : t < $ --+ O(t ~ 1) ~-~ -(Ix(t) A I2(t)) .

If we call the corresponding predicate for three inputs nand3(I1,12, Is, O), then the ttipflop in Figure 3 is
described by

dtype_imp ~- nand(P~, D , P1) A nana~(P3 , C K , Px , P2) A n a n ~ P4 , C K , P~) A
nana~ e~ , P3, P4) ^ nan#(P3, es, O) ̂ nan#(q , P2, Ps) .

4.2 Stabil i ty ana lys i s

In our model a simple flipflop may begin to oscillate due to a single negative spike:

11101111...

~ 0(~I010101 . . .

11111111.,. 11111010101 , . .

One condition for the circuit to be stable is that the inputs do not change for a period of length
input_stable_time. We define

input_stable(t) -~ t + input_stable.time - 1 < $
A stable(t, t + input_stable_time - 1, D)
A stable(t, t + input_stable_time - 1, C K)

to denote that inputs are stable for a period of length input_stable_time. 3 For our purposes, we regard the
circuit as stable if both flipflops connected to the inputs are stable, i.e.,

circuit_atable(t) =- t q- eircuit_s~able_time ~ 1 < $
A stable(t, t + circui t . s table . t ime - 1,Px)
^ stable(t, t + circuit .s table_time - I, P2)
^ stable(t, t + circuit .s table_time - 1, P3).

{Note that P4 need not be restricted for the stability analysis.)

s We here use + instead of ~. The formula t < t ~ + 3 holds if + is interpreted in the usual sense without "wrap-
m'ound. ~ We need the conjunct "t + input..stable_tirae - 1 <_ $" to prevent t from lying too close to the end.

39

Stability preservation of the circuit can be expressed informally as: if the circuit is stable at some to
and if the inputs are held stable at ti then there is t" _> tl such that the circuit is stable at t. Thus, we
define

stabilit~j_preserved =_ (3~ t o : eircuit_stab le(~ ,)) -~
(V~ti : inpuLstable(ti) A ati not too close to $" -4

3t" �9 t; >. tl A circuit_stable(t;)).

Here "ti not too dose to $" is a condition that is necessary since formulas are interpreted over finite
sequences only. We have chosen it to be simply tru~ But in general, some constant must be chosen so that
the quantification 31t" succeeds before "time runs out, ~ i.e. before the finite segment of time that the logic
is interpreted over ends.

4.3 I n p u t r equ i r emen t s

Stability is not preserved unless the inputs are restrained. The clock signal must not form a negative spike
of duration less than rain_clock_low or a positive spike of duration less than min_clocl~ The D signal must
be stable for at least setup units before C K rises. We define these conditions as

input_requir~nents --- V ~ t : (fall(t, C K) --t stable(t, min_clockdow - 1, C K)) A
(r ise(t , C K) -~ stable(t, rain_clock- 1, C K)) A
(r ise(t , C K) -.4 stable(t - setup, t , D) .

Now, with the choices

Mona proves the implication

rain_ctoeLlow 121
setup 12[
drcuit-stable-timel2 I

linput-stable-time 141

dtype_imp A input.requinement~ -4 stability_preserved

in about 15 seconds. These constants are optimal. For example, if we lower setup to 1, then the counter-
example

t~ = 001000 P1 = 001111
t. = 100000 P~ = 111010
D = 100000 PS = 111010
C K = 001111 P4 = xllOlO
Q = 101010 Ps = 101010

is produced. Here we have made te and t~ free variables so that Mona can generate a counter-example that
identifies the exact spot of trouble. 4 One dearly sees how the failure of maintaining the D signal stable
before the rise of the clock results in oscillations despite that the inputs are later kept stable.

The essential D-flipflop behavior is as depicted below: if the circuit is stable at to and the clock rises
at tr, then falls at t ! (after at least rain_clock units from t,), and then rises again at t~ (after at least
min.clock. lo~ units from ty), then the value of D at t , appears at Q at time t , + stabilization and remains
there until time t" + mere provided that the D value is held constant in the period from t , - setup until
t , + hold. This complicated set of circumstances is best illustrated in a diagram:

4 Note that tl and t, are first-order position variables. These are actually encoded in Mona as second-order vaziables
ranging over singleton sets. E.g., ti and to point to the 2nd and 0th position respectively.

40

t~

J
~etup 1 h o l d ~tin_clock_lo~J

time D must be c~nstant
! mere
Lytabilization ~ ~ =

time for Q to stabilize

Q is constant and same v.s D at t ,

Formally, we express these conditions as:

dtltpe -- t Y t O ~ t r } t f ~ t r =
(ci~uit_stable(to) ^ to < t~ ^ r ise(t , ,CK)
^ (~ P : eqtn~d(P, rise, CK) ^ nezt(t , , t~,P))
^ (32P: eqpred(P, fall, C K) ^ nezt(G,t / ,P))) -+
(stable(t~ + 8tcbilization~ t~ + mere, Q)
^ Q(t, + stabilization) ~ D(t,))

With the additional choices

the implication

l~in-aor

dtype.imp ^ inpuLrequirements -4 d~gpe

is verified in about 15 seconds. Also, experiments show that these values cannot be lowered.

5 S t a t i s t i c s , C o m p a r i s o n , a n d C o n c l u s i o n s

The case studies presented here were carried out over two weeks using the Mona system. This time included
adding extensions to the system to generate counter-modeis and debugging of specification errors caused
by the primitive front end supported by the current implementation.

It is instructive to compare our proofs with previous proofs of these circuits. The parameterized adder
and ALU were also studied by Cantu using the Edinburgh Clam System [5] and by Cyrluk et. ol. using
PVS [4]. CLAM is a system that generates proofs by induction for a higher-order logic (a constructive
type theory). Cantu's development took two weeks and the proof is constructed automatically (in about
6 minutes) by CLAM. His specification shares some similarities to ours, but differs in several important
respects. He specified the circuit as a recursive function while we specified it as a non-recursive relation.
Both are valid representation techniques, but note that we cannot write explicit recursive functions in
M2L(Str). On the other hand, if Cantu had specified a recursively defined relation, the system he uses
would have been unable to construct a proof. 5

The ALU theorem was also verified using PV$. PVS is a semi-interactive theorem prover that features
built-in simplifiers and decision procedures; for example BDDs are used for propositional reasoning. Users
can control proof construction by writing proof strategies (similar to tactics in the LCF sense). In [4]
the adder and the ALU are verified using the induction, normalization, and BDD features of PVS. The

s To the best of our knowledge, all systems automating proof by m~them~tJcal induction are geared towards
reLson]ng about recur~vely specified hmctions, but not recurslvely specified relations. Indeed, some provers used
for hardware verification, such as NQTHM, axe so biased towards functions that they caanot represent hardware
specified re|atlonally (e.g., they lack existential quantification).

41

formalization of these circuits is similar to Cantu's. Verification by induction of the parameterlzed adder
is stated to last approximately 2 minutes (as opposed to our time of one second) although their proof of
the ALU required only three times as much time (90 seconds versus our 27 seconds).

Reasoning about temporal properties of circuits like flip-flops can be carried out in systems based on
different varieties of temporal logic. We believe, however, that the ability to refer directly to instants of
time - - instead of being restrained by a particular set o{ temporal modalities (which can be directly defined
in Mona) ~ is a particular advantage when the behavior is as complex as that of the circuit studied.

As discussed in w verification of flipflops has been laboriously carried out in theorem provers based on
higher-order logic and here the use of Mona brings real advantages. Of course, unlike interactive proof, our
approach is inherently limited by the combinatorial explosion that follows when the number of variables
or gates become bigger. However, being a subset of higher-order logic, our method is particularly suited
for integration into traditional theorem proving systems and would supplement such systems in the same
way as integration of BDD and model checking procedures {4, 11].

Acknowledgements

The first author was funded by the German Ministry for Research and Technology (BMFT) under grant
ITS 9102. Responsibility for the content lies with the authors. The authors thank Alan Bundy, Harald
Ganzinger, Tom Melham, and Natarajan Sb~nkar for their feedback on a draft of this paper.

References

i. D&vld Basin snd Peter DelVecchlo. Verification of combinational logic in Nuprl. In Hardwarc Specific~ion,
Verifw.nti~n and Synthesla: Mathematical Aapects, Ithaca, New York, 1989. Sprlnger-Veriag.

2. Albert Camillerl, Mike Gordon, and Tom Melham. Hardware verification using hlgher-order logic. In
D. Borrione, editor, Pham HDL De~eriptiona to Guaranteed Correct Circuit De.signs, pages 43-67. Elsevier
Science Publishers B. V. (North-Holland)l 1987.

3. Albert John Camilleri. Ezecnting Behavionral Definitions in Higher Order Logic. PhD thesis, University of
Carabridge, 1988.

4. Cyrluk D., S. Rajma, N. Shmalmx, mad M:K. Srivas. Effective theorem proving for hardware verification. In
gerund International Con]ercnee On Theorem Prodng In Circuit Deisgn: Theory, Practice and Ezperlence,
Bad Herrenalb, Germaay, September 1994.

5. 1994 Franclsco Cantu, Edinburgh DAI. Personal Commwcatiou.
6. Michael J. Gordon. Vc-hy hlgher-order logic is a good formalism for spec~ng and verifying hardware. In G. J.

Milne and P. A. Subr~hmanyam, editors, Formal Aspects of VLSI Desi~. North*Holland, 1986.
7. A. Gupt~ and Allen L. Fisher. Parametric circuit representation using inductive boole&u functions. In C.

Coorcoubetls, editor, Computer Aided Verification, CAW 93, LNCS 697, pa4ges 15-26. Springer Verlag, 1993.
8. A. Gupta and Allen L. Fisher. Tradeoffs in canonical sequential function representations~ In P~sdings of the

IEEE International Conference on Cwnt~ier Design, October 1994.

9. F.K. Ha~a~ and N. Daeche. Specltlcation and verification using higher-order logic: a case study. In G.J. Milne
and P.A. Subcahmanyam~ editors, Formal Aspects o/VLSI Design, pages 179--213. Elsevier Science Publishers
B.V., 1986.

10. J.G. Henriksen, J. Jem~a, Mo J#rgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm. Mon~ Monadlc
second-order logic in practice. Technical Report P.S-9521, BKIGS, Department d Computer Science, University
of Aarhus, 1995.

11. Hardi Hungar. Combining model checking and theorem proving to verify parallel processes. In C. Coureoubetis,
editor, Comlnrter Aided V~ifw.atlon, CAW 95, LNCS 697, pages 154-165. Springer Verlag, 1993.

12. Warren Hunt. Microproce~or design verification. Journal of Automated Reasoning, 5(4):429--460, 1989.
13. Warren J. Hunt. The mechanical verification of a microprocessor design. In D. Borrione, editor, From HDL

Descriptions to G~rante~ Coreeci Circuit Design~, pages 89-129. Elsevier Science Publishers B. V. (North-
Holland), 1987.

14. M. Morz~ Mann. Dig/to/1o9~ ar.d comFnter d~s~. Prentice-Hall, Inc., 1979.
15. T. F. Melham. Using recur~ve types of reuouing •bout haxdware in higher order logic. In International

Working Con?erence on The ~ i o n of Haed~rc Design nnd Verifw~ion, pages 26-49, July 1988.
16. J..I~ Rho. and F. Semen,. Automatic generstion of network invari~mts for the verification of itecative sequen-

tial networks. In C. Courceubetis, editor, Corap~-r Aided Vet/lust/on, CAW 93, LNC5 697, pages 123-137.
Springer Verlag, 1993.

17. W. Thomaa. Automat8 on infinite objects. In J. wm Leenwen, editor, Handbook of Theo~tlcal Cornpnter
Sdence, volume B, psges 153-191. MIT Press/Elsevier, 1990.

