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Abstract. A new method for providing integrated support for multiple 
development notations (including analysis, design, and implementation) 
within Information Systems Engineering Environments (ISEEs) is 
described. Our method supports both static integration of multiple 
notations and the implementation of dynamic support for them within an 
integrated ISEE. First, conceptual data models of different analysis and 
design notations are identified and modelled, and then merged into an 
integrated conceptual data model. Second, mappings are derived from the 
integrated conceptual data model, which translates data changes in one 
notation to appropriate data changes in the other notations. Third, 
individual ISEEs for each notation are developed. Finally, the individual 
ISEEs are integrated via an integrated repository based on the integrated 
conceptual data model and mappings. An environment ~upporting 
integrated tools for Object-Oriented Analysis and Extended Entity- 
Relationship diagrams is described, which has been built using this 
technique. 

1 Introduction 

1.1 Integrated ISEEs 

A software system can be modelled using a variety of notations, such as Object- 
Oriented Analysis and Design (OOA/D) diagrams, Extended Entity-Relationship 
(EER) diagrams and Data Flow Diagrams (DFDs). The choice of modelling notation 
is often dependent on the kind of problem and organisational and designer preferences. 
Some problems suit being modelled using object-oriented techniques while others are 
more easily conceptualised using entity-relationship and data flow diagrams. The use 
of different notations for different (or the same) parts of a problem offers several 
advantages: the most appropriate notation can be used for each part; the same design 
can be expressed using different notations; different designers can communicate about 
the same design using different notations; and organisations using different notations 
can collaborate on projects. Integrated ISEE support for using different notations on 
the same project is necessary, however, to provide consistency management between 
each notation, and thus produce a consistent design for the problem as a whole. In 
fact, integrated ISEEs enable the use of multiple notations. Without them, effective 
use of multiple notations would not be feasible. 
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1 . 2  Our  Approach  

Providing integrated support for multiple development notations (whether to support 
single or multiple phases of development), requires both static and dynamic 
integration. We define static integration as the conceptual integration of the 
description languages (or notations) that are used by the system developers. This 
defines the requirements for how concepts in one notation map onto another notation. 
Dynamic integration is concerned with how changes to one system description are 
propogated to all other system descriptions, using the same or different notations. 
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Fig. 1. Integrating design notations via a hierarchical data model. 

We present a new approach which supports both static and dynamic integration of 
multiple notations, illustrated in Fig. l. The first 4 steps achieve static integration: 1) 
The conceptual data models of different design notations are identified and documented. 
2) Commonalities between aspects of these notations' conceptual data models are 
identified, resulting in partial intgerated data models. 3) Dynamic mappings between 
different notation components are identified i.e. how changes to data in one model are 
translated into changes to the other. 4) Several levels of partial data models are built 
up and collected to describe an integrated data model for all of the design notations. 

The second 4 steps achieve dynamic integration of design and implementation 
tools for the different notations, with the conceptual data models and mappings used 
to implement an ISEE encorporating all of the notations. 5) Individual tools for each 
notation are developed with the tool repository based on the notation's conceptual data 
model. 6) Editors for this repository are developed, including multiple textual and 
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graphical notation views. 7) The integrated data model (and possibly the intermediate 
partial data models) are used to define an integrated repository. 8) Data changes in one 
notation's repository are propagated to other notation repositories via the integrated 
repository, with change translation as specified by the mappings defined in step 3. 

In the following sections, related research in integrating design notations is 
discussed, and then an environment which incorporates integrated OOA/D and EER 
tools, called OOEER, is illustrated. The development of conceptual data models for 
individual OOA/D and EER notations, and an integrated conceptual data model, is 
briefly described with mappings between the notations. Two previously developed 
OOA/D and EER environments are introduced and the implementation of OOEER by 
integrating these environments is decribed. The paper concludes with a brief 
discussion of experience with this integrated tool and future research directions. 

2 Related Research 

Integrated ISEEs (or Integrated CASE tools and programming environments) allow 
designers to analyse, design, and implement Information Systems from within one 
environment, providing a consistent user interace and consistent repository (data 
dictionary). They help to minirrfise inconsistencies that can arise when using several 
separate tools for information systems development [17, 13]. 

Some work has been done on the static integration of notations. Wieringa [18] has 
compared JSD, ER modelling and DFD modelling, and 'examined the possibilities of 
integrating different aspects these methods. Data modelling has been used to compare 
different notations [11] and support methodology engineering [10]. Process-modelling 
has also been applied to compare and integrate notations [14]. There has been little 
work at developing detailed integration of individual notations, and little has been 
done to translate conceptually integrated notations into tool-based implementations. 

Limited dynamic notation integration is supported by many CASE tools, such as 
Softare thru Pictures TM [17] and TurboCASE TM [15]. These ICASE environments 
allow developers to analyse and design software using a variety of different notations, 
with limited inter-notation consistency. For example, entities from an EER model can 
be used as objects in an OOA model, with name and attribute changes kept consistent. 
Such tools do not generally support complex mappings between the design notations, 
such as propagating an EER relationship addition to corresponding OOA diagram. 
This greatly limits their usefulness for supporting integrated development using 
different notations. The implementation of these environments is generally not 
sufficient to allow different design notations to be effectively integrated, and 
consistency between design and implementation code is often not maintained. 

FIELD environments [13] utilise selective broadcasting, involving propagating 
messages between separate Unix tools, to keep muliple tool views conistent. FIELD 
can not effectively integrate different design notation tools, as it provides no integrated 
repository. As more tools are added the translation process becomes complex and 
difficult to implement. Dora [12] provides abstractions for keeping multiple textual 
and graphical views consistent under change. These views share the same repository 
and hence can more easily be kept consistent. Dora does not provide any mechanism 
for propagating changes between views which can not be directly applied by the 
environment. Thus some changes made to a design which can not be automatically 
implemented in another notation by the environment can not be supported. 

Two key methods are thus required for dynamic integration: (1) utilising an 
integrated repository and (2) providing additional support for ensuring consistency 
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between aspects which cannot be automatically kept consistent by the environment. 
Aspects that require human intervention to maintain consistency should be indicated 
by the environment to the notation/tool user. This relies on being able to identify 
aspects that can be automatically kept consistent and those which require human 
intervention. Doing so requires effective static integration by identifying 
commonalities and change mappings between the notation's conceptual data models. 

3 A User's Perspective of OOEER 

We have built an ISEE, called OOEER, which integrates the OOA/D and EER design 
notations, in addition to supporting object-oriented program implementation and 
relational schema definition. Unlike most CASE tools, OOEER propagates all 
changes made to OOA/D diagrams to related EER diagrams, and vice-versa. This not 
only includes simple mappings, such as entity, object and attribute addition, renaming 
and deletion, but also all relationship manipulation in both models. While the 
environment can only partially infer required changes to some diagrams when other 
notation diagrams are modified, it always informs designers of such changes made, to 
assist them in maintaining inter-notation consistency. 
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3.  add attribute credit : money 
4~ change attr ibute credit type to float 
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Fig. 2. The integrated OOEER environment. 

A screen dump from OOEER is shown in Fig. 2. This shows an OOA view 
('customer-root class') and an EER view ('customer-root entity') for an invoicing 
Information System. The dialog shows the modification history for the customer 



259 

class. Items highlighted with a '---~' were actually made to the EER customer entity, 
and were automatically translated to the OOA customer class by OOEER. 

The OOA/D notation is based on [9]. Bold, arrowed lines represent generalisation 
relationships, thin lines represent aggregation and shaded lines represent association. 
Client/supplier relationships are represented by shaded lines with caller/called method 
names and (optional) method arguments. The EER notation is based on Chen's ER 
model [1]. Square icons represent entities with optional named attributes connected to 
the icon. Diamond-shaped icons represent relationships with optional role names and 
arities on the connecting lines. Subtyping is exclusive ('-') or inclusive ('+'). 

All of these views are kept consistent by OOEER. If a designer changes 
information in an OOA view, this change is propagated to all other views which share 
the changed information (00A/D, EER and implementation views). Where the 
environment can automatically make an appropriate change to keep these views 
consistent, the change is performed. For example, if the customer class were renamed 
in the OOA view, the customer entity, method class name, and relational table would 
also be renamed. The reverse is also true if any of the other views with this 
information are updated, 

For some view edits, OOEER can not directly update other affected views. For 
example, when a relationship is added between two entities in an EER view, the OOA 
view requires a relationship to be added. The EER update does not, however, specify 
whether this relationship should be an association or aggregation relationship. 
OOEER by default adds an association relationhip between the two classes in the 
OOA view, but colours this relationship, indicating the designer needs to add further 
information. In Fig. 2, change #8 was made to the EER view, while OOEER 
autoamtically made change #9 to the OOA view. The designer can view the 
description(s) of the EER view change(s) made which affect the OOA view, and which 
could not be fully implemented by the environment. The designer then manually 
changes the new OOA relationship to an aggregation relationship (change #10). 

Fig. 2 shows some other EER changes on the customer entity and its 
relationships, which have been (semi-)automatically translated into OOA view 
updates. Some changes made in the EER view require the designer to further modify 
the OOA view, to ensure it is correct. For example, making a customer entity an 
exclusive subtype of the person entity (change #5) is directly translated into 
generalising the customer class to the person class (change #6). Changing the arity of 
a relationship (change #11), can not be automatically implemented by OOEER. 
Instead, the designer is informed of the EER change by the presence of this change 
description. The designer then must manually change the type of the aggregation 
relationship between the customer and invoice classes to list(invoice) (change #12), to 
implement this OOA/D relationship. Similarly, if an untyped attribute is added to the 
customer entity (change #13), OOEER translates this into an attribute addition to the 
customer class (change #14). The designer then must manually define an appropriate 
attribute type (change #15). 

OOEER also supports editable, textual object-oriented program views and 
relational schema views. These are kept consistent with the graphical views by 
expanding the change descriptions at the start of the textual view, as shown in Fig. 3. 
These inform programmers of changes that need to be made to keep the 
implementation view consistent. Designers can select change descriptions and request 
the environment try to automatically update the view, or can manually implement an 
appropriate change and then delete the change description. Thus unlike most CASE 
tools, OOEER supports integrated design and implementation views. In total OOEER 
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supports fully integrated OOA, OOD, EER and debugging graphical views, and class 
definition, class contract, method implementation, relational schema and general 
documentation textual views. 
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Fig. 3. OOEER textual view consistency. 

4 Conceptual Data Model Integration 

The first 4 steps in the tool integration process for OOEER involve developing 
conceptual data models for the OOA/D and EER notations, and mappings between 
them. We have developed these conceptual models, and a hiearchical, integrated 
conceptual model, using a conceptual data modelling language called CoCoA [16]. 
Fig. 4 shows the conceptual data models for OOEER's EER and OOA/D notations. 

OOMD: EER: 

R d ~  

Key: 

~As.v~iaa~ 

Fig. 4. Separate conceptual data models for OOA/D and EER notations. 
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The OOMD notation has named objects, with a collection of named/typed attributes 
and methods with arguments. Generalisation relationships indicate an object is 
generalised to another object, aggregation relationships indicate an object is composed 
of other object(s), and association relationships indicate an object is related to other 
object(s) in some way. Client-supplier relationhips define method calling protocols. 

The EER notation defines named entities which have a collection of named 
attributes. Entities are linked by named relationships, each entity fulfilling a particular 
role in the relationship. The role links between an entity and a relationship may be 
named, may hold a cardinality (1:1, I:N or M:N), and may have an optional or 
manditory flag. Subtyping relationships between entities have inclusive and exclusive 
flags. 

The integrated OOEER conceptual data model integrates the notation of 
entity/attribute and object/attribute into a single entity/object notion. EER 
relationships and OOA/D relationships are integrated by being described as sub-types 
of a relationship notion, liked to entity/objects by a role, as shown in Fig. 5. 

Atl 

Fig. 5. An integrated data model for OOA/D and EER modelling. 

5 Mappings Between Notation Data Models 

There are some simple mappings between OOA/D information and EER information, 
which we term direct mappings. These are illustrated in Fig. 6. An entity corresponds 
directly to an object and an entity name to an object name. Entity attributes also 
correspond directly to Object attributes, in OOEER, EER entities are thus described by 
an OOA/D object with the same name as the entity name. Similarly, object attribute 
names directly equate to entity attributes. To maintain consistency, when an 
entity/attribute is added or deleted, a same-named object/attribute is added or deleted. 

Many CASE tools support these direct mappings. Many other mappings also 
exist between these notations, which we term indirect mappings, i.e. an EER change 
can be translated to the integrated repository, but the resulting change on the 
integrated model cannot be directly translated to the OOA/D model, and similar for 
some OOA/D to EER changes. For example, the OOA/D notation specifies the type 
of an attribute but the EER notation does not. Changes to an attribute's type are thus 
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either ignored by the EER notation or a description of the OOA/D change is presented 
to users. A similar approach is used for object methods, which have no EER concept. 
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Fig. 6. Mappings between OOA/D concepts and EER concepts. 

Creation and deletion of OOA/D association relationships can be directly translated 
into EER relationship addition and deletion. The reverse is not always true: if an EER 
relationship is created, this may be implemented by an OOA association or 
aggregation relationship. Such an inferred OOA relationship needs a change 
description documenting the inferal, so a designer can appropriately make it an 
aggregation or association relationship. EER relationships of greater than binary 
cardinality, or with attributes, must be implemented by OOA/D objects, as must an 
EER M:N relationship, via an objet and two 1 :N connections. 

EER sub typ ing  re la t ionsh ips  loose ly  co r r e sp o n d  to OOA/D 
generalisation/inheritance relationships. Mutually inclusive and exclusive EER 
subtypes are not, however, supported in the OOA/D notation. A change to this 
inclusive/exclusive state of an EER subtype thus can't be directly reflected in OOA/D 
relationships, and a change description is needed to document this indirect mapping. 

The OOA/D notation has no concept of EER primary or foreign keys. Changing 
an OOA/D attribute which corresponds to part of a EER primary or foreign key must 
be documented, as it impacts on the EER model semantic correctness. If a relationship 
implemented by foreign key(s) is deleted, an indication should be given to the designer 
that EER attributes should be removed or ammended. A notation's formal semantics 
must thus be considered when determining automatic and semi-automatic translations. 

Further indirect mappings exist when translating changes between the EER and 
OOD notations. The OOD client/supplier relationship may implement an EER 
relationship or may document a method call between two objects. Adding, removing 
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or changing a client/supplier relationship can thus only be indicated by a change 
description in the EER model. The designer decides on whether an EER relationship 
change is needed. EER 1:1 and I:N relationships may be implemented as OOD 
reference-typed attributes or as generic collection classes. Various other mappings 
between the EER notation and OOD notation, are not discussed further here but are 
supported by OOEER. 

6 Tool Implementation and Integration 

6 . 1  M V i e w s  

We have developed MViews, which provides abstractions for implementing integrated 
ISEEs [3, 5]. New environments are constructed by specialising object-oriented 
framework classes to describe the repository and program representation for ISEEs. 
Software system data is described by a graph-based structure, with graph components 
(nodes) specifying e.g. classes, entities, attributes and methods, and relationships 
(edges) linking these components to form the system structure. Multiple views of this 
repository are defined using the same graph-based structure. These views are rendered 
and manipulated in concrete textual and graphical forms. 

Fig. 7 illustrates the structure of SPE, an integrated ISEE for object-oriented 
software development, developed using MViews [6]. The repository describes classes, 
attributes and methods (features), inter-class relationships, and implementation code. 
SPE multiple views include graphical OOA/D and textual implementation and 
documentation views. 
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Fig. 7. Example of implementing an integrated ISEE using MViews. 
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MViews components support very flexible inter-component consistency managenent 
by generating, propagating and responding to change descriptions whenever a 
component is modified. A change description documents the exact change in the state 
of a component and is propagated to all relationships the component participates in. 
These relationships respond to change descriptions by applying operations to 
themselves or other components, forwarding the description to related components, or 
ignoring the component update. Most ISEE consistency management facilities are 
supported by this technique, including flexible multiple view consistency, constraints, 
attribute recalculation, undo/redo, and version control and cooperative work [7]. 

MViews is implemented in Snart, an object-oriented extension to Prolog. 
Environment implementers specialise Snart classes to define new environment data 
dictionaries, multiple views, and view renderings and editors. Snart is a persistent 
language, with objects dynamically saved and loaded to a persistent object store, 
making repository and view persistency management transparent for ISEE 
implementers. External tools not built using MViews can be interfaced to the 
integrated environment by using extenal views. 

SPE was implemented as an ISEE for developing Snart programs [6]. It supports 
analysis, design, implementation, debugging and documentation of object-oriented 
programs using graphical and textual views. Views are kept consistent via the shared 
repository, so information in one view is always consistent with other representations 
in other views. This includes keeping analysis and design views bi-directionally 
consistent with implementation views, not supported by most ISEEs. SPE has been 
used to model large object-oriented software applications, including architectural 
building model frameworks and the MViews and SPE frameworks. 

MViewsER was implemented as an ISEE for EER modelling, and also supports 
textual relational schema views [4]. GraphicaI EER design views are kept bi- 
directionally consistent with textual relational schema views. MViewsER has been 
used to model a variety of Information System problems, with the relational schema 
exported to relational database environments for Information System implementation. 

6 .2  The Integrated OOEER Environment 

The conceptual data models used in the construction of SPE and MViewsER more or 
less equate to those defined in Section 4. We have integrated SPE and MViewsER 
into one integrated environment, OOEER, which supports integrated OOA/D and 
EER design and implementation. All of these views are kept consistent by the 
environment. As noted in section 3, some of these changes are (partially) 
automatically carried out by OOEER, while for others change descriptions are 
displayed to designers for manual implementation. 

SPE and MViewsER were integrated by defining a repository based on an 
integrated conceptual data model (section 4). Mappings (section 5) were used to link 
the components and relationships in each notation's repository. The mappings also 
define translations for change descriptions generated by each environment's repository 
into updates on the integrated repository, then updates on the other notation's 
repository. 

When an SPE view is edited (1), the modification is translated into SPE repository 
updates (2), generating change descriptions. The inter-repository relationships are sent 
change descriptions, and respond to these by updating the integrated repository (3). 
When the integrated repository components change, the inter-repository relationships 
to MViewsER's repository components translate the integrated repository components 
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change descriptions into updates on MViewsER repository components (4). Indirect 
mapping changes are defaulted where possible and change descriptions displayed in 
views. Both SPE and MViewsER keep their multiple views consistent (5 and 6). 
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Fig. 8. Integrating SPE and MViewsER using the integrated data model. 

Neither SPE nor MViewsER were modified in any way to support this integration 
process to produce OOEER. Change descriptions from another notation are displayed 
as special MViews "user updates" in the other notation's tools, requiring no special 
display mechanisms in the other tool. Any semantic errors detected during translation 
from the integrated repository are documented with "error" change descriptions. 

6 .3  Inter-repository Relationships 

Inter-repository relationships are implemented as specialisations of MViews' generic 
many-to-many relationships. This allows one or more components from one 
repository to be connected to one or more components in another repository. When a 
change description from one component participating in the relationship is received, 
the relationship component determines the appropriate change to make to other 
participating components. This might be a simple update (automatic translation), a 
partial update (semi-automatic translation) or simply storing the change description 
against the affected component(s) (no automatic translation by OOEER possible). 
Using MViews' change description composition facilities [7], the inter-repository 
relationships can even wait for several change descriptions to be received and then 
translate them into changes on other related components. 
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We used MViews' lazy processing capabilities to minimise response time delay 
for users. Much of the update translation and view consistency management is done 
on-demand when a view is selected for editing. Change descriptions are cached in the 
integrated repository, and when a view from a different notation is to be edited, the 
integrated repository actions any cached change descriptions. This results in a 
minimum affect on tool response time when making discrete view edits. 

6.4 Experience 

We have used OOEER to model several small-to-medium Information System 
designs. As both direct and indirect mappings between OOA/D and EER notations are 
supported, both notations can be more effectively used on the same problem domain. 
When working with a view, designers are informed of any related changes in both 
other views for the notation and views for the other notation. 

A major advantage of an integrated repository over a direct mapping between 
notations is for environment extensibility. For example, if a NIAM notation tool 
were to be added to OOEER, the concepts of the NIAM notation which directly and 
indirectly relate to those in the other models are related via the integrated data model. 
This reduces the number of mappings which have to be specified, as many 
translations, particularly the direct ones, are already implemented. Individual tools are 
also easier to extend, as the tool's repository can be extended with little affect on the 
integrated repository or on the inter-notation mappings. The integrated repository also 
provides a useful source for hypertext links between views for different notations. 

Currently inter-repository relationships are automatically created by OOEER. We 
are currently extending OOEER to support user-defined relationships between different 
notation components, to allow a designer to relate one (or more) items in an OOA/D 
model to one (or more) items in an EER model. Limited consistency management 
across these relationships will be supported, mainly informing designers when a 
component on one side of the relationship has been altered. 

In this work we have considered mappings between graphical icon-and-glue and 
textual OOA/D and EER notation components. Spatial constructs, such as Coad and 
Yourdon subjects [2] can be implemented, if desired. We are designing new tools to 
support NIAM diagrams, state transition diagrams and data flow diagrams, which will 
be integrated into OOEER. These different notations can be kept partially consistent 
with OOA/D and EER views using our technique. Some inter-notation consistency 
issues are more difficult to implement than others for these notations, and for some 
limited consistency can only be provided via user-defined relationships. 

7 C o n c l u s i o n s  

We have developed a new method for integrating different design notations within 
ISEEs. The conceptual data models of different design notations are defined and then 
an integrated data model derived, together with mappings of concepts and data changes 
between each data model. Tools supporting each notation are implemented based on 
this design by reusing the MViews framework. These separate tools are integrated by 
implementing an integrated repository based on the integrated conceptual data model. 
The concept and data change mappings are used to link related data from each 
notation's repository, and to keep these dynamically consistent as they change. We 
have developed OOEER, an ISEE which supports integrated OOA/D and EER 
notations using this approach. OOEER propagates direct changes between the OOA/D 
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and EER notation views, such as entity, object and attribute creation, renaming, and 
deletion. It also propagates indirect changes, such as adding and renaming EER 
relationships and adding and changing OOA/D inheritance, aggregation and association 
relationships, not supported by most CASE tools. 

We are extending OOEER to use data model mappings to support decision 
tracability between both analysis and design notations and different design notations. 
This will allow designers to trace analysis and design decisions through each 
notation's views and to implementation views. We are also extending OOEER to 
support version control for analysis and design views and Computer-Supported Co- 
operative Work facilities, as done for SPE [8]. Multiple designers will be able to 
collaborate on analysis and design using both multiple views and multiple notations. 
An issue is maintaining consistency between different notation views shared by 
designers. Our inter-notation mapping technique is being used to support intra- 
notation mapping in SPE i.e. mapping between analysis and design concepts and 
keeping these consistent under change. User-defined links between differently-named 
classes and entities, and their relationships, will allow designers to specify different 
EER and OOA/D structures, which can be manually linked and partially keep 
consistent by OOEER. 
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