
Providing Integrated Support for Multiple
Development Notations

John C. Grundy and John R. Venable

Department of Computer Science, University of Waikato
Private Bag 3105, Hamilton, New Zealand

email: jgrundy@cs.waikato.ac.nz or jvenable@cs.waikato.ac.nz

Abstract. A new method for providing integrated support for multiple
development notations (including analysis, design, and implementation)
within Information Systems Engineering Environments (ISEEs) is
described. Our method supports both static integration of multiple
notations and the implementation of dynamic support for them within an
integrated ISEE. First, conceptual data models of different analysis and
design notations are identified and modelled, and then merged into an
integrated conceptual data model. Second, mappings are derived from the
integrated conceptual data model, which translates data changes in one
notation to appropriate data changes in the other notations. Third,
individual ISEEs for each notation are developed. Finally, the individual
ISEEs are integrated via an integrated repository based on the integrated
conceptual data model and mappings. An environment ~upporting
integrated tools for Object-Oriented Analysis and Extended Entity-
Relationship diagrams is described, which has been built using this
technique.

1 Introduction

1.1 Integrated ISEEs

A software system can be modelled using a variety of notations, such as Object-
Oriented Analysis and Design (OOA/D) diagrams, Extended Entity-Relationship
(EER) diagrams and Data Flow Diagrams (DFDs). The choice of modelling notation
is often dependent on the kind of problem and organisational and designer preferences.
Some problems suit being modelled using object-oriented techniques while others are
more easily conceptualised using entity-relationship and data flow diagrams. The use
of different notations for different (or the same) parts of a problem offers several
advantages: the most appropriate notation can be used for each part; the same design
can be expressed using different notations; different designers can communicate about
the same design using different notations; and organisations using different notations
can collaborate on projects. Integrated ISEE support for using different notations on
the same project is necessary, however, to provide consistency management between
each notation, and thus produce a consistent design for the problem as a whole. In
fact, integrated ISEEs enable the use of multiple notations. Without them, effective
use of multiple notations would not be feasible.

256

1 . 2 Our Approach

Providing integrated support for multiple development notations (whether to support
single or multiple phases of development), requires both static and dynamic
integration. We define static integration as the conceptual integration of the
description languages (or notations) that are used by the system developers. This
defines the requirements for how concepts in one notation map onto another notation.
Dynamic integration is concerned with how changes to one system description are
propogated to all other system descriptions, using the same or different notations.

l t m l l + m t a a ~ , l | + ++ '~
I" ~ 6 . 6+

+-+t I+ +.

ISEE Dictionary
Integration

Static
conceptual Notation
Data Model Integration ~ 4.

~aMo~

/ \
y/" ",,,x / \

Fig. 1. Integrating design notations via a hierarchical data model.

We present a new approach which supports both static and dynamic integration of
multiple notations, illustrated in Fig. l. The first 4 steps achieve static integration: 1)
The conceptual data models of different design notations are identified and documented.
2) Commonalities between aspects of these notations' conceptual data models are
identified, resulting in partial intgerated data models. 3) Dynamic mappings between
different notation components are identified i.e. how changes to data in one model are
translated into changes to the other. 4) Several levels of partial data models are built
up and collected to describe an integrated data model for all of the design notations.

The second 4 steps achieve dynamic integration of design and implementation
tools for the different notations, with the conceptual data models and mappings used
to implement an ISEE encorporating all of the notations. 5) Individual tools for each
notation are developed with the tool repository based on the notation's conceptual data
model. 6) Editors for this repository are developed, including multiple textual and

257

graphical notation views. 7) The integrated data model (and possibly the intermediate
partial data models) are used to define an integrated repository. 8) Data changes in one
notation's repository are propagated to other notation repositories via the integrated
repository, with change translation as specified by the mappings defined in step 3.

In the following sections, related research in integrating design notations is
discussed, and then an environment which incorporates integrated OOA/D and EER
tools, called OOEER, is illustrated. The development of conceptual data models for
individual OOA/D and EER notations, and an integrated conceptual data model, is
briefly described with mappings between the notations. Two previously developed
OOA/D and EER environments are introduced and the implementation of OOEER by
integrating these environments is decribed. The paper concludes with a brief
discussion of experience with this integrated tool and future research directions.

2 Related Research

Integrated ISEEs (or Integrated CASE tools and programming environments) allow
designers to analyse, design, and implement Information Systems from within one
environment, providing a consistent user interace and consistent repository (data
dictionary). They help to minirrfise inconsistencies that can arise when using several
separate tools for information systems development [17, 13].

Some work has been done on the static integration of notations. Wieringa [18] has
compared JSD, ER modelling and DFD modelling, and 'examined the possibilities of
integrating different aspects these methods. Data modelling has been used to compare
different notations [11] and support methodology engineering [10]. Process-modelling
has also been applied to compare and integrate notations [14]. There has been little
work at developing detailed integration of individual notations, and little has been
done to translate conceptually integrated notations into tool-based implementations.

Limited dynamic notation integration is supported by many CASE tools, such as
Softare thru Pictures TM [17] and TurboCASE TM [15]. These ICASE environments
allow developers to analyse and design software using a variety of different notations,
with limited inter-notation consistency. For example, entities from an EER model can
be used as objects in an OOA model, with name and attribute changes kept consistent.
Such tools do not generally support complex mappings between the design notations,
such as propagating an EER relationship addition to corresponding OOA diagram.
This greatly limits their usefulness for supporting integrated development using
different notations. The implementation of these environments is generally not
sufficient to allow different design notations to be effectively integrated, and
consistency between design and implementation code is often not maintained.

FIELD environments [13] utilise selective broadcasting, involving propagating
messages between separate Unix tools, to keep muliple tool views conistent. FIELD
can not effectively integrate different design notation tools, as it provides no integrated
repository. As more tools are added the translation process becomes complex and
difficult to implement. Dora [12] provides abstractions for keeping multiple textual
and graphical views consistent under change. These views share the same repository
and hence can more easily be kept consistent. Dora does not provide any mechanism
for propagating changes between views which can not be directly applied by the
environment. Thus some changes made to a design which can not be automatically
implemented in another notation by the environment can not be supported.

Two key methods are thus required for dynamic integration: (1) utilising an
integrated repository and (2) providing additional support for ensuring consistency

258

between aspects which cannot be automatically kept consistent by the environment.
Aspects that require human intervention to maintain consistency should be indicated
by the environment to the notation/tool user. This relies on being able to identify
aspects that can be automatically kept consistent and those which require human
intervention. Doing so requires effective static integration by identifying
commonalities and change mappings between the notation's conceptual data models.

3 A User's Perspective of OOEER

We have built an ISEE, called OOEER, which integrates the OOA/D and EER design
notations, in addition to supporting object-oriented program implementation and
relational schema definition. Unlike most CASE tools, OOEER propagates all
changes made to OOA/D diagrams to related EER diagrams, and vice-versa. This not
only includes simple mappings, such as entity, object and attribute addition, renaming
and deletion, but also all relationship manipulation in both models. While the
environment can only partially infer required changes to some diagrams when other
notation diagrams are modified, it always informs designers of such changes made, to
assist them in maintaining inter-notation consistency.

customc

! . rename class to customer
2 . rename feature name to cname
3. add attribute credit : money
4~ change attr ibute credit type to float

_> 5 . EER Update: Make exclusive subtype of person
_~ 6. generalise to person

8. EER Update: Add relationship invoice-of to invoice
-~ 9. add association invoice-of to invoice

I 0 . association invoice-of to invoice : change kind to aggregation
I 1 . EEl) Update: change invoice-of arity to I:N
12. aggregate to invoice : change supplier type to list(invoice)

-~ 13. EER Update: add attr ibute prefered
I-~ 14. add at t r ibute prefere(~ : aakeowa

16. change attr ibute prefered type to boolean

~ (Delete Update) ~History Updatej

customer-root entity

Fig. 2. The integrated OOEER environment.

A screen dump from OOEER is shown in Fig. 2. This shows an OOA view
('customer-root class') and an EER view ('customer-root entity') for an invoicing
Information System. The dialog shows the modification history for the customer

259

class. Items highlighted with a '---~' were actually made to the EER customer entity,
and were automatically translated to the OOA customer class by OOEER.

The OOA/D notation is based on [9]. Bold, arrowed lines represent generalisation
relationships, thin lines represent aggregation and shaded lines represent association.
Client/supplier relationships are represented by shaded lines with caller/called method
names and (optional) method arguments. The EER notation is based on Chen's ER
model [1]. Square icons represent entities with optional named attributes connected to
the icon. Diamond-shaped icons represent relationships with optional role names and
arities on the connecting lines. Subtyping is exclusive ('-') or inclusive ('+').

All of these views are kept consistent by OOEER. If a designer changes
information in an OOA view, this change is propagated to all other views which share
the changed information (00A/D, EER and implementation views). Where the
environment can automatically make an appropriate change to keep these views
consistent, the change is performed. For example, if the customer class were renamed
in the OOA view, the customer entity, method class name, and relational table would
also be renamed. The reverse is also true if any of the other views with this
information are updated,

For some view edits, OOEER can not directly update other affected views. For
example, when a relationship is added between two entities in an EER view, the OOA
view requires a relationship to be added. The EER update does not, however, specify
whether this relationship should be an association or aggregation relationship.
OOEER by default adds an association relationhip between the two classes in the
OOA view, but colours this relationship, indicating the designer needs to add further
information. In Fig. 2, change #8 was made to the EER view, while OOEER
autoamtically made change #9 to the OOA view. The designer can view the
description(s) of the EER view change(s) made which affect the OOA view, and which
could not be fully implemented by the environment. The designer then manually
changes the new OOA relationship to an aggregation relationship (change #10).

Fig. 2 shows some other EER changes on the customer entity and its
relationships, which have been (semi-)automatically translated into OOA view
updates. Some changes made in the EER view require the designer to further modify
the OOA view, to ensure it is correct. For example, making a customer entity an
exclusive subtype of the person entity (change #5) is directly translated into
generalising the customer class to the person class (change #6). Changing the arity of
a relationship (change #11), can not be automatically implemented by OOEER.
Instead, the designer is informed of the EER change by the presence of this change
description. The designer then must manually change the type of the aggregation
relationship between the customer and invoice classes to list(invoice) (change #12), to
implement this OOA/D relationship. Similarly, if an untyped attribute is added to the
customer entity (change #13), OOEER translates this into an attribute addition to the
customer class (change #14). The designer then must manually define an appropriate
attribute type (change #15).

OOEER also supports editable, textual object-oriented program views and
relational schema views. These are kept consistent with the graphical views by
expanding the change descriptions at the start of the textual view, as shown in Fig. 3.
These inform programmers of changes that need to be made to keep the
implementation view consistent. Designers can select change descriptions and request
the environment try to automatically update the view, or can manually implement an
appropriate change and then delete the change description. Thus unlike most CASE
tools, OOEER supports integrated design and implementation views. In total OOEER

289

supports fully integrated OOA, OOD, EER and debugging graphical views, and class
definition, class contract, method implementation, relational schema and general
documentation textual views.

c u s t o m e r - Relat ional Schema
~*updates_ftart(20).
update(5). ~ Make exclusive subtype
o f person

update(g). ~ Add relationship invoice-of to
invoice
updateC~), odd at t r ibu te prefered
updates.end. *;

I
tabteCcustomer,
FieldsC
no~ strtngCZ@) not.null " ,
c red i t_ l imi t moneyC7,2) not.nutt e . t t ,

[/*updates-stortC2e).
J [update(S)~dote: lioke exclusiw subt~pe I

of person
. t o p

I lupd*~CS).~EeUpdate: Add re=~io~,htp ~ I

L ~ . ~ _ J ~ ~ a t i o n invoio-of to ~ L~
invoice
updateC13). EER Update: add at t r tbute pre?ered,
updateC14). X odd at t r ibute peefered : unkno~
updates_end. * /

cta~sCcustomer ,
parentsCperson),
features~

name:st r ing,
credit_ttmit:lmney,

Can automatically apply
to update view's text and

keep fully consistent with EER
graphical view updates

Can automatically apply
to update view's text and

keep partially consistent with EER
graphical view updates

Fig. 3. OOEER textual view consistency.

4 Conceptual Data Model Integration

The first 4 steps in the tool integration process for OOEER involve developing
conceptual data models for the OOA/D and EER notations, and mappings between
them. We have developed these conceptual models, and a hiearchical, integrated
conceptual model, using a conceptual data modelling language called CoCoA [16].
Fig. 4 shows the conceptual data models for OOEER's EER and OOA/D notations.

OOMD: EER:

R d ~

Key:

~As.v~iaa~

Fig. 4. Separate conceptual data models for OOA/D and EER notations.

261

The OOMD notation has named objects, with a collection of named/typed attributes
and methods with arguments. Generalisation relationships indicate an object is
generalised to another object, aggregation relationships indicate an object is composed
of other object(s), and association relationships indicate an object is related to other
object(s) in some way. Client-supplier relationhips define method calling protocols.

The EER notation defines named entities which have a collection of named
attributes. Entities are linked by named relationships, each entity fulfilling a particular
role in the relationship. The role links between an entity and a relationship may be
named, may hold a cardinality (1:1, I:N or M:N), and may have an optional or
manditory flag. Subtyping relationships between entities have inclusive and exclusive
flags.

The integrated OOEER conceptual data model integrates the notation of
entity/attribute and object/attribute into a single entity/object notion. EER
relationships and OOA/D relationships are integrated by being described as sub-types
of a relationship notion, liked to entity/objects by a role, as shown in Fig. 5.

Atl

Fig. 5. An integrated data model for OOA/D and EER modelling.

5 Mappings Between Notation Data Models

There are some simple mappings between OOA/D information and EER information,
which we term direct mappings. These are illustrated in Fig. 6. An entity corresponds
directly to an object and an entity name to an object name. Entity attributes also
correspond directly to Object attributes, in OOEER, EER entities are thus described by
an OOA/D object with the same name as the entity name. Similarly, object attribute
names directly equate to entity attributes. To maintain consistency, when an
entity/attribute is added or deleted, a same-named object/attribute is added or deleted.

Many CASE tools support these direct mappings. Many other mappings also
exist between these notations, which we term indirect mappings, i.e. an EER change
can be translated to the integrated repository, but the resulting change on the
integrated model cannot be directly translated to the OOA/D model, and similar for
some OOA/D to EER changes. For example, the OOA/D notation specifies the type
of an attribute but the EER notation does not. Changes to an attribute's type are thus

262

either ignored by the EER notation or a description of the OOA/D change is presented
to users. A similar approach is used for object methods, which have no EER concept.

~name : string

,/
/ �9 : ! . . . ? (key) ~

�9 Account-of cardinaliCy 1 :N .. ' "

< so
~ A g g 9 e z .~"'"~-- /Association

opbional ,,.,. ") �9 ,. ~ ~ ' - ~ - - " - - - ' S P P

?. lier

�9 \

Extended Entlty-Relationship Object-Oriented Analysis~Design

Fig. 6. Mappings between OOA/D concepts and EER concepts.

Creation and deletion of OOA/D association relationships can be directly translated
into EER relationship addition and deletion. The reverse is not always true: if an EER
relationship is created, this may be implemented by an OOA association or
aggregation relationship. Such an inferred OOA relationship needs a change
description documenting the inferal, so a designer can appropriately make it an
aggregation or association relationship. EER relationships of greater than binary
cardinality, or with attributes, must be implemented by OOA/D objects, as must an
EER M:N relationship, via an objet and two 1 :N connections.

EER sub typ ing re la t ionsh ips loose ly co r r e sp o n d to OOA/D
generalisation/inheritance relationships. Mutually inclusive and exclusive EER
subtypes are not, however, supported in the OOA/D notation. A change to this
inclusive/exclusive state of an EER subtype thus can't be directly reflected in OOA/D
relationships, and a change description is needed to document this indirect mapping.

The OOA/D notation has no concept of EER primary or foreign keys. Changing
an OOA/D attribute which corresponds to part of a EER primary or foreign key must
be documented, as it impacts on the EER model semantic correctness. If a relationship
implemented by foreign key(s) is deleted, an indication should be given to the designer
that EER attributes should be removed or ammended. A notation's formal semantics
must thus be considered when determining automatic and semi-automatic translations.

Further indirect mappings exist when translating changes between the EER and
OOD notations. The OOD client/supplier relationship may implement an EER
relationship or may document a method call between two objects. Adding, removing

263

or changing a client/supplier relationship can thus only be indicated by a change
description in the EER model. The designer decides on whether an EER relationship
change is needed. EER 1:1 and I:N relationships may be implemented as OOD
reference-typed attributes or as generic collection classes. Various other mappings
between the EER notation and OOD notation, are not discussed further here but are
supported by OOEER.

6 Tool Implementation and Integration

6 . 1 M V i e w s

We have developed MViews, which provides abstractions for implementing integrated
ISEEs [3, 5]. New environments are constructed by specialising object-oriented
framework classes to describe the repository and program representation for ISEEs.
Software system data is described by a graph-based structure, with graph components
(nodes) specifying e.g. classes, entities, attributes and methods, and relationships
(edges) linking these components to form the system structure. Multiple views of this
repository are defined using the same graph-based structure. These views are rendered
and manipulated in concrete textual and graphical forms.

Fig. 7 illustrates the structure of SPE, an integrated ISEE for object-oriented
software development, developed using MViews [6]. The repository describes classes,
attributes and methods (features), inter-class relationships, and implementation code.
SPE multiple views include graphical OOA/D and textual implementation and
documentation views.

I C] ~ classl toot class

/ \
\

L/ i
~i t + +gP~+t++N+~++~+I++N+ N+N@+ N ~
/ ,+.<~+.+ ,+ +.'+
f / z "+

i i~ component-Class Definition

~:~ , ~--,, \ /~*~
I \ +,<"

rendering ~ ""~+', i
, t

Renderings/
Editors for Views

Multiple Views
of Dictionary

Data Dictionary

Fig. 7. Example of implementing an integrated ISEE using MViews.

26z.

MViews components support very flexible inter-component consistency managenent
by generating, propagating and responding to change descriptions whenever a
component is modified. A change description documents the exact change in the state
of a component and is propagated to all relationships the component participates in.
These relationships respond to change descriptions by applying operations to
themselves or other components, forwarding the description to related components, or
ignoring the component update. Most ISEE consistency management facilities are
supported by this technique, including flexible multiple view consistency, constraints,
attribute recalculation, undo/redo, and version control and cooperative work [7].

MViews is implemented in Snart, an object-oriented extension to Prolog.
Environment implementers specialise Snart classes to define new environment data
dictionaries, multiple views, and view renderings and editors. Snart is a persistent
language, with objects dynamically saved and loaded to a persistent object store,
making repository and view persistency management transparent for ISEE
implementers. External tools not built using MViews can be interfaced to the
integrated environment by using extenal views.

SPE was implemented as an ISEE for developing Snart programs [6]. It supports
analysis, design, implementation, debugging and documentation of object-oriented
programs using graphical and textual views. Views are kept consistent via the shared
repository, so information in one view is always consistent with other representations
in other views. This includes keeping analysis and design views bi-directionally
consistent with implementation views, not supported by most ISEEs. SPE has been
used to model large object-oriented software applications, including architectural
building model frameworks and the MViews and SPE frameworks.

MViewsER was implemented as an ISEE for EER modelling, and also supports
textual relational schema views [4]. GraphicaI EER design views are kept bi-
directionally consistent with textual relational schema views. MViewsER has been
used to model a variety of Information System problems, with the relational schema
exported to relational database environments for Information System implementation.

6 .2 The Integrated OOEER Environment

The conceptual data models used in the construction of SPE and MViewsER more or
less equate to those defined in Section 4. We have integrated SPE and MViewsER
into one integrated environment, OOEER, which supports integrated OOA/D and
EER design and implementation. All of these views are kept consistent by the
environment. As noted in section 3, some of these changes are (partially)
automatically carried out by OOEER, while for others change descriptions are
displayed to designers for manual implementation.

SPE and MViewsER were integrated by defining a repository based on an
integrated conceptual data model (section 4). Mappings (section 5) were used to link
the components and relationships in each notation's repository. The mappings also
define translations for change descriptions generated by each environment's repository
into updates on the integrated repository, then updates on the other notation's
repository.

When an SPE view is edited (1), the modification is translated into SPE repository
updates (2), generating change descriptions. The inter-repository relationships are sent
change descriptions, and respond to these by updating the integrated repository (3).
When the integrated repository components change, the inter-repository relationships
to MViewsER's repository components translate the integrated repository components

265

change descriptions into updates on MViewsER repository components (4). Indirect
mapping changes are defaulted where possible and change descriptions displayed in
views. Both SPE and MViewsER keep their multiple views consistent (5 and 6).

/ a, , , l -mot �9 ~ ~ customer-e. l ros 1

N~

(~1 II]II Iiliii I I I i i i i ' , I I I I I l l l l t

/<]
Renderimg

and Editors

~ / =~176
Dictionaries

Integrated
Data Dictionary

Fig. 8. Integrating SPE and MViewsER using the integrated data model.

Neither SPE nor MViewsER were modified in any way to support this integration
process to produce OOEER. Change descriptions from another notation are displayed
as special MViews "user updates" in the other notation's tools, requiring no special
display mechanisms in the other tool. Any semantic errors detected during translation
from the integrated repository are documented with "error" change descriptions.

6 .3 Inter-repository Relationships

Inter-repository relationships are implemented as specialisations of MViews' generic
many-to-many relationships. This allows one or more components from one
repository to be connected to one or more components in another repository. When a
change description from one component participating in the relationship is received,
the relationship component determines the appropriate change to make to other
participating components. This might be a simple update (automatic translation), a
partial update (semi-automatic translation) or simply storing the change description
against the affected component(s) (no automatic translation by OOEER possible).
Using MViews' change description composition facilities [7], the inter-repository
relationships can even wait for several change descriptions to be received and then
translate them into changes on other related components.

266

We used MViews' lazy processing capabilities to minimise response time delay
for users. Much of the update translation and view consistency management is done
on-demand when a view is selected for editing. Change descriptions are cached in the
integrated repository, and when a view from a different notation is to be edited, the
integrated repository actions any cached change descriptions. This results in a
minimum affect on tool response time when making discrete view edits.

6.4 Experience

We have used OOEER to model several small-to-medium Information System
designs. As both direct and indirect mappings between OOA/D and EER notations are
supported, both notations can be more effectively used on the same problem domain.
When working with a view, designers are informed of any related changes in both
other views for the notation and views for the other notation.

A major advantage of an integrated repository over a direct mapping between
notations is for environment extensibility. For example, if a NIAM notation tool
were to be added to OOEER, the concepts of the NIAM notation which directly and
indirectly relate to those in the other models are related via the integrated data model.
This reduces the number of mappings which have to be specified, as many
translations, particularly the direct ones, are already implemented. Individual tools are
also easier to extend, as the tool's repository can be extended with little affect on the
integrated repository or on the inter-notation mappings. The integrated repository also
provides a useful source for hypertext links between views for different notations.

Currently inter-repository relationships are automatically created by OOEER. We
are currently extending OOEER to support user-defined relationships between different
notation components, to allow a designer to relate one (or more) items in an OOA/D
model to one (or more) items in an EER model. Limited consistency management
across these relationships will be supported, mainly informing designers when a
component on one side of the relationship has been altered.

In this work we have considered mappings between graphical icon-and-glue and
textual OOA/D and EER notation components. Spatial constructs, such as Coad and
Yourdon subjects [2] can be implemented, if desired. We are designing new tools to
support NIAM diagrams, state transition diagrams and data flow diagrams, which will
be integrated into OOEER. These different notations can be kept partially consistent
with OOA/D and EER views using our technique. Some inter-notation consistency
issues are more difficult to implement than others for these notations, and for some
limited consistency can only be provided via user-defined relationships.

7 C o n c l u s i o n s

We have developed a new method for integrating different design notations within
ISEEs. The conceptual data models of different design notations are defined and then
an integrated data model derived, together with mappings of concepts and data changes
between each data model. Tools supporting each notation are implemented based on
this design by reusing the MViews framework. These separate tools are integrated by
implementing an integrated repository based on the integrated conceptual data model.
The concept and data change mappings are used to link related data from each
notation's repository, and to keep these dynamically consistent as they change. We
have developed OOEER, an ISEE which supports integrated OOA/D and EER
notations using this approach. OOEER propagates direct changes between the OOA/D

267

and EER notation views, such as entity, object and attribute creation, renaming, and
deletion. It also propagates indirect changes, such as adding and renaming EER
relationships and adding and changing OOA/D inheritance, aggregation and association
relationships, not supported by most CASE tools.

We are extending OOEER to use data model mappings to support decision
tracability between both analysis and design notations and different design notations.
This will allow designers to trace analysis and design decisions through each
notation's views and to implementation views. We are also extending OOEER to
support version control for analysis and design views and Computer-Supported Co-
operative Work facilities, as done for SPE [8]. Multiple designers will be able to
collaborate on analysis and design using both multiple views and multiple notations.
An issue is maintaining consistency between different notation views shared by
designers. Our inter-notation mapping technique is being used to support intra-
notation mapping in SPE i.e. mapping between analysis and design concepts and
keeping these consistent under change. User-defined links between differently-named
classes and entities, and their relationships, will allow designers to specify different
EER and OOA/D structures, which can be manually linked and partially keep
consistent by OOEER.

References

1. P.P. Chen: The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems 1, l (1976), 9-36.

2. P. Coad and E. Yourdon: Object-Oriented Analysis, Yourdon Press, Second
Edition (1991).

3. J.C. Grundy, and J.G. Hosking: A framework for building visusal programming
environments. In Proceedings of the 1993 IEEE Symposium on Visual
Languages, IEEE Computer Society Press, 1993, pp. 220-224.

4. J.C. Grundy: Multiple textual and graphical views for Interactive Software
Development Environments, Ph.D. dissertation, University of Auckland,
Department of Computer Science, June 1993.

5. J.C. Grundy and J.G. Hosking: Constructing Integrated Software Development
Environments with Dependency Graphs, Working Paper, Department of
Computer Science, University of Waikato, 1994.

6. J.C. Grundy, J.G. Hosking, S. Fenwick, and W.B. Mugridge:Visual Object-
Oriented Programming, Prentice-Hall (1994), Chapter 11.

7. J.C. Grundy, J.G. Hosking, and W.B. Mugridge, Supporting flexible
consistency management via discrete change description propagation, Working
Paper, Department of Computer Science, University of Waikato, 1995.

8. J.C. Grundy, W.B. Mugridge, J.G. Hosking, and R. Amor: Support for
Collaborative, Integrated Software Development. accepted to the 7th Conference
on Software Engineering Environments, IEEE CS Press, April 1995.

9. B. Henderson-Sellersand J.M. Edwards: The Object-Oriented Systems Life
Cycle. Communications of the ACM 33, 9 (1990), 142-159.

10. M. Heym and H. Osterle: A Semantic Data Model for Methodology
Engineering. In Proceedings of the Fifth International Workshop on Computer-
Aided Software Engineering, IEEE CS Press, Washington, D.C., 1992, pp.
142-155.

268

11. B. Nuseibeh and A. Finkelstein: ViewPoints: A Vehicle for Method and Tool
Integration. In Proceedings of the Fifth International Workshop on Computer-
Aided Software Engineering, IEEE CS Press, Washington, D.C., 1992, pp. 50-
61.

12. M. Ratcliffe, C. Wang, R.J. Gautier, and B.R. Whittle: Dora - a structure
oriented environment generator, lEE Software Engineering Journal 7, 3 (1992),
184-190.

13. S.P. Reiss: Connecting Tools Using Message Passing in the Field
Environment. IEEE Software 7, 7 (July 1990), 57-66.

14. X. Song, and L.J. Osterweil: A Process-Modeling Based Approach to
Comparing and Integrating Software Design Methodologies. In Proceedings of
the Fifth International Workshop on Computer-Aided Software Engineering,
IEEE Computer Society Press, Washingon, D.C., 1992, pp. 225-229.

15. TurboCASE Reference Manual, StructSoft Inc, 5416 156th Ave. S.E. Bellevue,
WA, 1992.

16. J.R. Venable:CoCoA: A Conceptual Data Modelling Approach for Complex
Problem Domains, Ph.D. dissertation, State University of New York at
Binghampton, 1993.

17. A.I. Wasserman, and P.A. Pircher: A Graphical, Extensible, Integrated
Environment for Software Development. SIGPLAN Notices 22, 1 (January
1987), 131-142.

18. R.J. Wieringa: Combining static and dynamic modelling methods: a comparison
of four methods, to appear in Computer Journal (1995).

