
Modelling Ways-of-Working

Vrronique Plihon, Colette Rolland
University of Paris I Panthron-Sorbonne

C.R.I., 17 rue de Tolbiac
75013 Paris FRANCE

email : { vplihon, rolland } @ masi.ibp, fr

Abstract. We propose in this paper, an approach for defining in a systematic manner, ways-of-
working providing guidelines for the development of information systems. It is a modelling
approach in which a given way-of-working is constructed by instantiation of a way-of-working
model allowing to deal with a large variety of situations in a flexible, decision-oriented manner.
The paper presents the way-of-working model and exemplifies the construction of a specific
way-of-working based on the OMT methodology.

1 Introduction

Despite thirty years of constant improvements of Information Systems (IS)
methodologies, the IS community is not satisfied with existing ways-of-working.
They are too large-grained descriptions of the system life-cycle, unclearly defined, do
not guide application engineers efficiently and consequently are not used as intended.
They lack flexibility and cannot be easily adapted to the requirements of a specific
project. One approach to solve the problem is to deal with methods as we deal with
information systems, i.e. to engineer a method as a product subject to design,
customisation, adaptation and evolution. This is the aim of Method engineering.
Method engineering is defined in [8] as the engineering discipline to design, construct
and adapt Information Systems Development Methods and CASE tools to specific
projects.

Within the area of Method Engineering (ME) the formal description of a method
takes an important place. Many definitions of a method have been proposed [2], [12],
[17], [10] and most of them converge to the idea that a method is based on models
(systems of concepts) and consists of a number of steps which must/should be
executed in a given order. For example [15] proposes a framework for information
systems development methods which comprises the way of thinking (the philosophy),
the way of modelling (the models to be constructed), the way of organising
(subdivided in the way of working, i.e. how to perform the development and the way
of control i.e. how to manage the development) and the way of supporting (the
description techniques and the corresponding tools).

In this paper we are concerned with the formal description of ways-of-working in the
sense of the above framework. Our proposal consists of a way-of-working model, i.e.
a set of generic concepts allowing to construct various ways-of-working for various
methods in a structured and detailed manner. The way-of-working model plays the
role of a theory and functions like a shell, a model from which specific ways-of-
working can be generated by instantiation and then executed to guide the
development of various projects.

127

Ways-of-working we want to generate are guidance centred process models. There is
a need for such process models, in particular, in the early phase of Requirements
Engineering (RE) and conceptual modelling. While performing highly intellectual and
creative activities required to construct the system specification, application engineers
need to be guided and advised, locally to handle the particular situations they are
faced to, and globally, to monitor the flow of decisions they have to make. The
required support is mainly based on heuristic knowledge. For this reason, our
approach differs from the Software Engineering (SE) process modelling view which
is focusing on process centred software environments (see a survey in [1]) for
enforcing process performance that conforms to some preceptive software process
definition [4].

The proposed way-of-working model corresponds to a certain way-of-thinking, a
philosophy for process guidance which is decision and situation based. In other
words, the underlying assumption of our way-of-working model is that the
Information Systems Development (ISD) process is mainly a decision making process
during which application engineers have to make decisions adapted to the situations
they are faced to. Consequently the way-of-working intends to capture the types of
situations the developer could encounter during ISD and to provide guidance, in each
situation-type, on the decisions to make.

The way-of-working model focuses on the Requirements Engineering phase of
systems development. It has been developed within the Process Theory of the
NATURE 1 project and is being implemented as part of the CAPE (Computer Aided
Process Engineering) environment to support process model definition, process
guidance, trace and improvement.

For the sake of clarity, informal examples are used to illustrate the way-of-working
structure; nevertheless a formal description of this process model, based on a
decisions algebra can be found in [14].

The paper is organised as follows. The core of the paper deals with the presentation of
the way-of-working model and its illustration to describe the OMT [13] method. This
is made in section 2. Section 3 is a discussion of the approach. Conclusions are drawn
in section 4.

2 The Way-of-Working Model

2.1 An Overview

The model we propose to support the construction of ways-of-working is centred
around the concept of context which constitutes the basic building block of our
approach. Contexts can be linked repeatedly in a hierarchical manner to define trees.
A way-of-working is therefore a forest of trees as it is shown in the overview of the
way-of-working model presented in the figure 1.

1 This work is partly supported by the Basic Research Action NATURE (ESPRIT
N~ which stands for Novel Approaches to Theories Underlying Requirements
Engineering.

~28

[iiiiilil;; i:;:iiiiiiiii! !

o [L N

I I

target LN

souse

Figure 1 : Overview of the Way-of-Working Model

A way-@working is represented as a collection of hierarchies of contexts that we
refer to as a forest. A hierarchy of contexts, called a tree, represents a structured piece
of knowledge for supporting decision making in the RE process; it is a process chunk
which aims at supporting the application engineers in making the most appropriate
decision according to the situation at hand. A tree is composed of contexts and links.
Links allow to relate contexts in a recursive manner to construct hierarchies of
contexts. As shown in figure 1, links are of two kinds : refinement links which allow
to refine a large-grained context into a finer ones and composition links allowing to
decompose a context into component contexts.

We detail in turn the notions of context, tree and forest and exemplify them with the
OMT methodology.

2.2 The Notion of Context

A context is defined as a couple (situation, decision), where the decision represents a
choice that an Application Engineer (AE) can make at a given point in time of the
development process and where the situation is defined as the part of the product it
make sense to make a decision on. A decision corresponds to an intention, a goal that
the application engineer wants to fulfil while the situation is a part of the product
under development the AE is working on. A context has also a type, namely
executive, choice or plan. As we will see in the following, each type of context plays
a specific role in a tree.

2.2.1 Executive-based Context
An executive-based context corresponds to a decision which is directly applicable
through an action inducing a transformation of the product under development. For
instance, in the OMT methodology, the creation of a candidate class is considered as
an action, it materialises the implementation of the executive-based context
<(Problem Statement Element), Identify Candidate Class>. Figure 2 is an
instantiation of this executive-based context (<(A manager leads a department),

129

Identify Candidate Class>) showing the consequence of its execution on the product (
the creation of the class Manager).

<(Problem Statement Element)
< (A manager leads a department),

, Identify Candidate Class>
Identify Candidate Class> / "--.,

I PRODUCT
STATEMENT:
A managerleads a depadment

IP"OOUCT I
CLASS :

Figure 2 : An OMT Executive-based Context

Executive-based contexts are the atomic blocks of our ways-of-working. Non atomic
blocks are built over contexts using refinement and composition links. Let us present
first, choice-based contexts which are built with a refinement structure, explain their
semantic and features.

2.2.2 Choice-based Context
When building a product, an application engineer may have several alternative ways
to modify the product. Therefore, he/she has to select the most appropriate one among
the set of possible choices. In order to model such a piece of knowledge, we introduce
a second type of context, namely the choice-based context. The execution of such a
context consists of choosing one of its alternatives, i.e. selecting a context
representing a particular strategy for the resolution of the issue raised by the context.

For instance in the OMT methodology (figure 3), there are several ways to yalidate a
class: by confirming, deleting or retyping the class into an attribute, an association or
an operation.

<(Class), Validate Class>

c c l / / I \
. ~ " cr ee3 cc4 <(Class), Retype into Operation>

<(Class),Confirm> / I N
<(Class), Delete Class> <(Class), Retype into Association>

<(Class), Retype into Attribute>

Figure 3: An OMT Choice-based Context

In our way-of-working model, arguments and choice criteria are defined to support Or
object to the various alternatives of a choice-based context. They are very helpful to
support the application engineer while choosing the most appropriate strategy.
Table 1 gives a description of the arguments and choice criteria associated to the
example of choice-based context introduced in figure 3.

arguments �9
al: The candidate class explicitly refers to a real world phenomenon relevant to the system.
a 2 : The candidate class expresses the same information than an existing object class and its
name is less descriptive than the other.
a3: The candidate class is not in the scope of the problem.
a4: The candidate class is ill defined and not precise accordin~ to the scope of the problem.

439

a5: The candidate class expresses an implementation construct.
a6" The name of the candidate class describes an individual object, the class has no specific
behaviour and represents an aspect or a property of an existing class.
a7: The candidate class represents something which is applied to the object.
a8: The candidate class expresses a role that is played in an association.
choice criteria :
ccl = al cc2 = a2 v a3 v a4 v a5 cc3 = a6 cc4 = a7 cc5 = a8

Table 1: An example of Textual Description for a Choice -Criteria

As illustrated in the table above, arguments serve as a basis to define choice criteria.
Each choice criterion is a condition for selecting one alternative, it is represented by a
logical formula combining arguments. For instance, CC2 expresses that if a2 or a3 or
a4 or a5 are true, then the context <(Class), Delete Class> should be chosen.

There are two major differences between the choice-based context and the executive-
based context : the first one lies in the absence of any alternatives in the latter and the
second is that a choice-based context has no direct consequence on the product under
development.
Finally it is important to notice that the alternatives of a choice-based context are
contexts too. In the case of figure 3 alternatives are executive-based contexts. But
they could be choice-based contexts introducing what is referred to as a refinement
link between contexts.

2.2.3 Plan-based Context
In order to represent situations requiring a set of decisions to be made to fulfil a
certain intention (for instance to build the object model in the OMT methodology) the
way-of-working model includes a third type of context called plan-based context. A
plan-based context can be looked upon as a macro issue which is decomposed in sub-
issues, each of them corresponding to a sub decision associated to a component
decision of the macro one. As alternatives for a choice-based context, components of
a plan-based context are contexts too related through a composition link.

For instance, the definition of an Object Model (figure 4) corresponds to a complex
issue, for two reasons. On one hand, the Object Model is a complex object composed
of a set of elements which are instances of concepts characterising the structure of the
target system and, on the other hand, the "Define an Object Model" decision requires
a set of decisions for identifying, validating and describing these elements.

I 1 <(Problem Statement), ! DeftheanObjectMod~l>

<(Problem Statement Element, Identify Candidate Element> J I <(Element), Validate Element>

<(Element), Describe Element in the Data Dictionary>

Figure 4: An OMT Plan-based Context

In the above example, the plan-based context <(Problem Statement), Define an Object
Model> is decomposed into three choice-based contexts, namely: <(Problem
Statement), Identify Candidate Element>, <(Element), Validate Element> and

131

<(Element), Describe Element in the Data Dictionary>. For achieving the intention
of defining an Object Model, the application engineer should iterate several times on
the three decisions "Identify Candidate Element", "Validate Element" and "Describe
Element in the Data Dictionary".

The ordering of the component contexts within a plan is defined by a graph named
precedence graph. There is one graph per plan-based context. The nodes of this graph
are the component contexts while the links -called precedence links (PL)- define
either the possible ordered transitions between contexts or their possible parallel
enactment. Based on arguments, a choice criterion may be assigned to a link. The
choice criterion defines when the transition can be performed. Figure 5 illustrates the
notion of precedence graph for the OMT plan <(Problem Statement), Define an
Object Model>.

,.~<(Problem Statement), Define an Object Model>~
PLOJ ~ ending points of the p/aJ

starting point of t

~ ~ p / a n ~. PL6 (33 ̂ ~C1 PL4 ~ in L7

~̂C1 C4 ̂ -C6 C4 ̂.C8

C1: All elements have been identified C5: An element has been identified
C2: An element has been validated C6: All elements have been validated
C3: Mode is Depth first C7: An element has been described
C4: Mode is Breadth first C8: All elements have been described

Figure 5: The Precedence Graph of the Plan <(Problem Statement), Define an Object Model>

One may observe in this graph that the validation of an element (i.e. the context
<(Element), Validate Element>) is executed either if all the elements have been
identified and if the mode chosen by the AE is breadth first, or if an element has been
identified and if the AE wants to follow a depth first mode. This remark leads us to
introduce the notion of an execution path, the AE can follow in a precedence graph,
to execute a plan. A path comprises a set of precedence links and proposes a way to
execute the plan which is most often, related to a particular mode (namely, breath first
or depth first). Figure 5 defines two paths for the Object Model construction :
- If the AE chooses the Depth first mode, each time an element is identified, it is
immediately validated and described in the Data Dictionary. Therefore, to build the
complete Object Model, the AE should iterate on the execution of three decisions,
namely "Identify Element", "Validate Element" and "Describe Element in the Data
Dictionary". This path corresponds to a loop composed of the three component
contexts of the plan and their relations PL2, PL4 and PL6.
- If the AE chooses the Breadth first mode, all the elements are first identified, by
iterating on the context <(Problem Statement Element), Identify Element>. Following
the precedence link labelled PL1, all the identified elements are then validated (PL3)
and finally, all the validated elements are described in the Data Dictionary (PL5). In
this path, Links PL2 and PL4 are used only once, whereas PL1, PL3, and PL5 are
used as many times as there are elements to be created in the Object Model.

"32

Thus, it is possible to evaluate the steps needed to create an Object Model. Apparently
in the above description of paths, the depth first path requires less steps than the one
defined for the breadth first mode. In fact it is possible to demonstrate that the size of
both paths is the same. The component contexts are executed the same number of
times, precedence links used in each case are different, but, as a link relates two
component contexts, the same number of PL is used in both cases.

Let us illustrate this on a concrete example. Assuming the AE has to create an Object
Model made of five elements, he will need to execute five times the three components
of the plan. The total number of precedence links the paths are made of is the same :
16. The Depth First Path is equal to PL0+5PL2+5PL4+4PL6+PL7, and the Breadth
First Path is equal to PLO+4PL1 +PL2+4PL3+PL4+4PL5+PL7.

More generally, choice criteria impact the ordering of components, not the size of the
path. Note that these measures have been done assuming that the components of the
plan were executive-based contexts. But as components can be non atomic contexts,
the metrics needs to be extended in order to take into account all the levels of
deepness of the graph. Every component of a plan which is itself a plan-based context
must be valued by the length of the path of its sub graph. For instance, if we assume
that a plan-based context P1 is composed of a plan P2 and an executive-based context
El, the calculation will be : length(P1)= length(P2)+ length (El) If P2 is composed of
three executive-based contexts E2, E3 and E4, then : length(P2) = length(E2) +
length(E3) + length(E4).
A more formal description of the precedence graph of the plan is provided in table 3,
where <ctxtl> (resp. <ctxt2> and <ctx3>) represents <(Problem Statement Element),
Identify Element> (resp. <(Element), Validate Element> and<(Element), Describe
Element in the Data Dictionary>).

{PL0. { ([<ctxtl >. PL2/(c3^c5). <ctxt2 >. PL4/(c3 ̂ c2). <ctxt3 > . PL6/(c3 ̂ (not

cl))]*[<ctxtl >. PL2/(c3 ̂ c5). <ctxt2 >. PIA/(c3 ̂ c2). <ctxt3 >. PL7/c8 ..])

u ([<ctxt 1 > . PL1/(c4 ̂ (not c5)). <ctxtl >]*. PL2/(c4/xcl). [<ctxt2 > . PL3/(c4^ (not c6)).

<ctxt2 >]*. PL4/(c4^c6). [<ctxt3 > . PL5/(c4A (not c8)). <ctxt3 >]*. PL7/c8 ..) } }

*: 0 to n times u: union . : Sequence ..: End of the Graph
Table 3 : An Example of Textual Description for a Precedence Graph

This description of a precedence graph shows the use of logical operators to represent
all paths of the graph, and to combine precedence links and nodes of the graph. This
particular example does not show the use of the "shuffle" operator required to
describe parallel execution paths in a plan.

To sum up we can say that plan-based contexts allow to prescribe the way to solve
complex issues by decomposing them in sub-issues. The precedence graph associated
to each plan provides a detailed description of the different possible execution paths
and make possible the measurement of the process performance. The metrics
associated to precedence graphs help in the evaluation of process performance costs.

133

2.3 The Notion of Tree

As introduced in the two previous paragraphs, contexts are related through refinement
and composition links. These links can be recursively used to define relations
between contexts. This recursive building results in a hierarchy of contexts called a
tree. Trees represent meaningful hierarchies of contexts which may be independent
one from the others.

A tree has a root which is, either a choice-based context, or a plan-based context. It
has 'n' levels (n > 2). There is one level between a choice (resp. plan) based context
and its alternatives (resp. components). The more global the root intention is, the
more levels are required to support its decomposition and/or refinement. One may
notice that the nodes of a tree are contexts of any of the three types : executive, choice
or plan. This results from the fact that any component of a plan-based context or any
alternative of a choice-based context may be a plan, an executive or a choice-based
context. Moreover, whereas the intermediate nodes of trees can be either choice or
plan-based contexts, executive-based contexts are always leaves of trees. The type of
the leaves of the tree enable to verify whether the tree is complete or not: if all the
leaves are executive, the tree is complete otherwise it is not. Figure 6 is an example of
an OMT tree : the one which intends to guide the application engineer in constructing
the Object Model.

<(Problem Statement), Define Object Mode/>

I
J (ElemJnt) I <(Problem Statement Element), < , <(Element),

Validate Element> Describe Element in the identify Candidate Element> . ,
/ ~ . ~ I " ~ ~ Data Dictionary>

P,obemS E) / ~ \ <<ct~o,r / ~ ~A., ibute, / ~
. ' I | ~ Varida e Class> I <lP,~3clatlonl Validate Attribute> f It ~
/clentlry oanataate t~/ass> J ' | ~ . ~ # ~ . ", A ~ " ~ < ,~l~rloute,

<(Problem Statement Element) ~ ~ �9 � 9 < IS A link Validate Assoctat~on> �9 ; , I I Describe Attribute in the ,den,'~C..d,'d.t.~..O~ ~ \ V.,Z.,;,.-.;,O*./ I \ " <(CI(ss), ~' DataOictionaty>
<(ProblemSt.tementEiamer.t). \ A / I X Describe Cla. in t,. O.t.
Ident/fy C~nd/d~t~ Aes=iatib., \ e e, �9 / I " % Oibtib,a~>

<(Problem St Element), <{Assoc.i~tion}, <{AsSociation)De<l~el~SSA~la~l~ . <(Ass~iation),
. Confirm Deco ose> Oescnbe Assoc a on in he Data Identify Candidate/S-A Link> �9 , mp

<lA=o~iat,o~ " ~ ' ' ' ~ , Ae~iatio~ D~t/on,,y,
Sprit in two Associations>

.Figure 6 : Example of an OMT Tree

The issue of the above tree is to achieve the complete description of the static aspects
of the Information System to be built. As shown in figure 6, several levels of
refinement/decomposition of the root context, namely <(Problem Statement), Def ine

an O b j e c t M o d e l > are needed to achieve this complex issue. The complete definition
of the Object Model is achieved by executing the components of the upper plan for
each elements.
The first decomposition level of this tree have been discussed in the previous
paragraph. It prescribes to organise the Object Model (OM) definition around three
main decisions that the AE should make for all the OM elements. The way-of-
working description suggests therefore to act in a plan composed of three contexts,
namely, <(Problem Statement), Iden t i f y C a n d i d a t e E l e m e n t > , <(Element), Validate
E l emen t> and <(Element), D e s c r i b e E l e m e n t in the D a t a D i c t i o n a r y > . The three
component contexts are choice-based ones.

~3~

Each of their alternatives is associated to a specific kind of Object Model Element.
For instance in the choice-based context <(Element), Validate Element>an element
can be a class, an attribute, an association or an IS-A link, each of these concepts is
related to an alternative of the above choice-based context. Thus, the alternatives are
<(Class), Validate Class>, <(Attribute), Validate Attribute>, <(Association), Validate
Association> and <(IS-A Link), Validate IS-A Link>.

Alternatives of the first component <(Problem Statement), Identify Candidate
Element> are executive-based contexts and leaves of the tree. Similarly, alternatives
of the third component, namely <(Element), Describe Element in the Data
Dictionary> are executive-based contexts whereas the second component, namely
<(Element), Validate Element> has alternatives which are choice-based contexts. The
sub-trees of the tree have a variable depth. For instance, in the definition of an Object
Model, the sub-tree dealing with Identification of Elements has two levels of depth,
whereas the one dealing with Validation has five levels.

2.4 The Notion of Forest

A process model is usually composed of a collection of trees, that we call a forest of
trees. The existence of multiple trees in a unique way-of-working comes from the
independence of some contexts due to the independence of either situations or
decisions. For example, a number of decisions which can be made from scratch,
participate to contexts which are roots of trees. Moreover a way-of-working is
difficult to define in one shot but will, more reasonably, be defined progressively by
constructing fragments represented by trees.

For instance, the OMT methodology can be considered as a forest of trees, where a
tree is associated to the definition of each analysis model, (the Object Model, the
Dynamic Model and the Functional Model), to the definition of the Problem
Statement, and to the refinement of the OMT schema.

<(Problem Statement, Object
<(Problem Statement, Model, Dynamic Modal); <(Analysis models),

Object Model); Define Functional mode/> Refine OMT analyeis
<(Probtern Statement), Define Dynamic model> efio. op/~ ~176176 C--+--Z

�9 �9 �9 o � 9 o � 9 �9 o o e � 9

n I n
<(Problem StatementElement), <(Element), <(Element), Describe

/danfify Candidate Element> Validate Element> El.merit tn the Data
" S I t I ~ " I ~ ~ Oic~ona~y>

<(Problem Stat~lentElement),/ ~ ~ < Association), Jr ~ <(Attribute, ~ " I
IdenttN Candtdate Ctess> # I ~Val/date Asaociation> �9 ~e ~ VaHdate Att/ibut.> I I

I / t ~ f L ~1~ �9 Jl~ ~ | <{Attribute),
m mine ~ � 9 1 4 9 11 ~ eo I ~ ~ " | DescrtbeAttdbuteintheDateDic#onarr < Problem S~tement ~nement), t ~ .

I Identify Candidate Attfbute> ~ <!problem Sta!ementElement), f ~ . . <(Ass~tetiot~), , .
<(P roNem S Elem;nt) 'ant/f/Candi -A L,nk~escribe CJas~ !C~a te De;~b~ Assoc/ he Ca te D

i /den#P/Candidate Association> tF>

Figure 7 : The Forest describing the OMT Way-of-Working

To achieve the definition of an OMT schema, the application engineer needs to go
through the forest depicted figure 7. The application engineer starts by describing the
Problem Statement with users. Then, he/she creates the three analysis models and
finally improves these models applying the refinement guidelines provided by the
methodology. As the elaboration of the analysis models can be done in any order, the
building of each analysis model is represented by an independent tree. In [13], the

135

authors recommend however to start with the Object Model, because it is easier to
elaborate and helps in the definition of the Dynamic and the Functional models.

The construction of the Object Model which aims to describe the structure of the
future information system has already been presented in the paragraph 2.3. We focus
now on the way-of-working to build the Dynamic Model. Figure 8 summarises the
OMT guidelines to construct this model which aims at describing the system
behaviour as a set of state diagrams.

<{ problem Stalern~t, Obi~t iMod~4), C~ane Dy~ /c Mo~l>
/

' I ~(Problam Statement),
Dednel~cena#o>

I <(scenar os)
<(Ploble~ S~ternent) <(Scenario) Bui/dSlat~Diagrams>

I < Elaborated Scenedo. Snenedo Ev~t T r ~

Nomed Scenario> I E3aborale u ~ E ~ r <(Seenark~. Events, Agents); - - O " t Stat~ Cta r ams
4Normal Scenario), Sc~ ' t a r k~> L ~ E v e n t s l a t o e v e n t T r a c e . I | <(t : ~ , g

Elaborate Special ~ / ~ of the obj~t);
Scenario> <(Elaborated Sc~rio), J J Mer#e>

Iden~tyQMTEvent> ~Scenados,Events,.Agent s); <(Scenario Event Trace},
I I ~r~te event P t ~ ularlmm> Define Slatl~ Diaotam>

I i <(Elaed ated Scenado, < LN Even, I |
Identifl~ LN Event> Retype lafo QMT Event> <(Scenario Event Trace), <(Object, Scenario Event Trace);

~ / | ~" ~ I IdentltyOblect> Cr~teSlalaDlaqram>
. . . . l - - " �9 " <(at Scenado) , . '

<(Elab=alad~anado), I <(El~raladScenedo), den~h/OMT~ven> Det~neOMTEv~'nt>
Identify Transi~on Event> I Identify D~s~on Event> I

<(Elaborate~l Scenaed), I |

Figure 8 : The OMT Tree describing the Dynamic Model Elaboration

To achieve the building of State diagrams, the authors suggest to start with the
elaboration of scenarios as descriptions of sequences of events expressed in natural
language. Scenarios are built in an incremental way. Normal scenarios are defined
first and then special cases are taken into account; finally the exceptions which could
happen are also added to improve the special scenarios.

In our approach, the elaboration of a scenario is represented as a plan where each
context deals with a specific aspect of the construction or the refinement of a
scenario. The refinement can be done either immediately after the description of the
Normal scenario or when the three analysis models have been created.
Scenarios are used as a basis to identify the events happening in the system life cycle
and to build an Event Trace Diagram describing events, their ordering and impacts on
actors. The knowledge presented in the Event Trace Diagram is summarised into the
Event Flow Diagram where events and actors are related in a static manner (without
representing the events ordering).
These diagrams are then used to build State Diagrams. A state diagram describes the
state transitions, of an object, each transition comprising two states and an event with
the action or activity it triggers. As the consequence of the event is a modification of
the state of the object, the event is represented by an arrow linking the initial state of
the object to the final state it will be transformed in. A State Transition is created for
each event identified in the Event Trace Diagram, it can be nested in order to express
complex behaviours. The nested State Diagrams are obtained through several
refinements. When all the needed State Diagrams have been elaborated, they are
merged to define a unique Dynamic Model.

~3~

3 Discussion

In the IS community, quality criteria have been defined for evaluating conceptual
schema, [9], but very few efforts have been made for defining quality criteria of IS
processes. Method comparisons [6], [7] focus, for the process aspects, on the number
of activities a process model is made of, on how in depth the decomposition of
activities is done, etc. This helps to compare the nature of activities, but does not
contribute to defining quality criteria applicable to process models. The Software
Engineering (SE) community has been more involved with the definition of quality
criteria [1], [4] to evaluate SE process models.
Based on the criteria established by the SE community, taking into account the
various shortcomings of methods which have been reported in the literature [3], [16],
[5] and also the specificity of guidance centred ways-of-working, we propose a set of
five criteria, namely modularity, genericity, comprehensibility, granularity and
guidance, to evaluate IS process models. In the following we show how our approach
meets these criteria.

3.1 Modularity and Genericity : Towards Process Knowledge Capitalisation

The proposed approach takes the position that ways-of-working should have a
theoretical foundation which is provided in our case by the way-of-working model.
This to ensure properties such as modularity and genericity.

Modularity has proved to be a key issue in many aspects of information and computer
science. We believe that modularity of ways-of-working descriptions is useful to
ensure an easy evolution and improvement of the method. It facilitates training of the
methodology, makes easier the construction of a way-of-working by composing
existing fragments and facilitates automation in a tool based environment.
Our approach structures a way-of-working into units such as contexts and trees which
ensures modularity of process models descriptions. Modules of a way-of-working are
obtained by applying the decomposition and refinement mechanisms to contexts.
These notions are generic i.e. independent of a particular methodology and powerful
enough to represent many various and complex situations in an homogeneous fashion.

The application of the approach for describing a number of existing ways-of-working
[11] has demonstrated its genericity : similar process patterns appear several times in
the same methodology and even in different methodologies. The properties of
modularity and genericity introduce the idea of using factorisation means to allow
both a more concise and meaningful description of a given way-of-working and to
facilitate the reuse of generic process patterns.

In order to optimise the description of a way-of-working, contexts and trees sharing
common features are factorised: If several contexts of the same type share common
properties such as an intention or a product part of the same type we suggest to
factorise them and to introduce a new higher abstraction level in the way-of-working
description where guidelines are expressed at the factorised components level. This
factorisation approach is illustrated in the following with the OMT methodology
example. The stepwise approach recommended by the OMT methodology [13]

137

corresponds to the plan sketched in the figure 10. The plan suggests to proceed in turn
to the identification of each object model element.

<(Problem statement), Define an Objact Mode/>

-, L - ol < m am n ~n , byap~es lv~phr~) . DeflneA~octation>
I <(P m State~nt

~e#lne ClasS> Define ~Tu te> I I Noun ph r~ wJh
i | �9 <(Problem State~nt =(Associalion), vado,Js adjective),

IdenUfyC/~ C~sc#beCl~inthe Nounfollowedbya O e ~ b e ~ u t e i n Y n ~ Identi~/ Assoda~on> the ry~

~ DM), Da r l t ~ = = = L ~ | Verb phrase,) I u~ll ,o I . r star), tdenti[y ~rmbuta> <(Problem Staterne
/denti~y ~ndtdate C~ss:* Validate ctass> Identify A ~ c i a ~ > |

<(A~at ion) ,
Validate ~ i a ~ o n > ~ H * o * e

~'~' ,~ I, ~ . o �9 o> R g,p t At~ut

Figure 10 : The Way of defining an Object Model following a Step by Step Approach

The definition of each element, namely class, attribute, association and is-a link, is
described in a two levels hierarchy of plans whose component decisions are of the
same type, namely for the upper plan "Identify ...", "Describe ... in the Data
Dictionary", and for the lower one "Identify candidate..." and "Validate ... ".
We suggest to apply a factorisation mechanism to reorganise this hierarchical
description as shown in the figure 6. This transformation leads first, to create the
"factorised" contexts <(Problem Statement), Identi fy Candidate Element>,
<(Element) Validate Element> and <(Element) Describe in a Data Dictionary>,
second to relate them at a new level in the hierarchy to express things at the factorised
level and third, to introduce choice-based contexts allowing to select the alternative
appropriate to the element to be defined as a refinement of the factorised contexts.
These alternatives are then refined as in the initial description using the two level plan
based description.
This factorisation attitude leads to a more synthetic description of a way-of-working
but also helps in identifying generic process chunks that can be reused in other
methodologies. For instance, the generic context <(Problem Statement Element),
Identify Element> has been instanciated for the definition of other ways-of-working (
e.g. O*, E/R., OOA).

3.2 The Granularity Feature

The ability to describe ways-of-working at different levels o f granularity, in a
uniform manner is provided by the recursive application of refinement and
decomposition mechanisms on contexts. High level intentions such as "the definition
o f an O M T schema " or lower level ones such as "the identification o f an event o f the
O M T dynamic model " are modelled using the same concept (context) and can be
hierarchically connected using the refinement and decomposition mechanisms. We
believe that this is a powerful feature for modelling complex process situations which
are not supported by most existing process models. As alternatives of choice-based
contexts and components of plan-based contexts are contexts too, the way-of-working
model provides an elegant solution to solve the granularity problem by describing
hierarchies of contexts.

~3~

3.3 The Comprehensibility Capability

The graphical representation used to represent trees and precedence graphs leads to
an easy understanding of the methodological process. It enhances the
comprehensibility of the method. The highest levels of the hierarchy describe globally
the process by presenting an overview of the way-of-working. The lowest levels of
the hierarchy provide a fine-grained description of the executable decisions. The
representation of the precedence graph clearly presents how a plan is executed.

3.4 The Guidance Feature

The model has been primarily designed to capture formal and heuristics knowledge
able to support the application engineer in his/her activities. Each type of context
provides a specific guidance. Executive-based contexts automate the execution of
actions. Arguments and choice criteria advise the AE when he/she has to make a
choice. Modes and approaches make guidance within a plan more flexible. Finally the
various levels of granularity enable to guide the AE from the beginning to the end of
his/her work.

4 Conclusion and Future Work

In this paper, an approach for defining ways-of-working in a structured and
systematic manner has been presented, exemplified with the OMT methodology and
evaluated against five quality criteria. The approach leads to construct ways-of-
working able to represent a large variety of situations in a decision oriented manner,
with a reasonable level of genericity, at various levels of detail, in a modular and
hierarchical manner. The graphical representation of the way-of-working makes its
understanding by the application engineer easier and enhances the guidance
capabilities. Finally the factorisation mechanism helps optimising the way-of-working
description and the discovery of reusable process chunks. In addition, metrics can be
defined to measure the cost of using a given way-of-working. As illustrated in section
2.2.3, metrics can be used to compare different paths in a precedence graph. It can be
defined for the whole hierarchy in order to calculate the time needed to build an
application and to compare two paths in a given hierarchy or to compare several
methodologies.

We are looking for the introduction of new features such as dynamic change which
has been identified as a key issue of SE process models. We are currently
implementing the approach in a CAPE Environment able to monitor method
engineers in the definition of ways-of-working, and to guide application engineers in
the use of ways-of-working for elaborating high quality products. Another topic of
research work is to define a complete set of metrics for evaluating and comparing
methodological processes. Finally, we are populating a library of reusable process
chunks which will be the basis of a meta-methodology for defining a new way-of-
working within a specific methodology.

139

R e f e r e n c e s

.

,

3.

,

5.

.

.

.

,

10.

11.

12.

13.

14.

15.

16.

17.

P. Armenise, S. Bandinelli, C. Ghezzi, A. Morzenti, A survey and
assessment of software process representation formalisms, Int. Journal
of Software Engineering and Knowledge Engineering,Vol. 3, No. 3, 1993.
Brinkkemper S, "Formalisation of Information systems modelling", Ph.D.
Thesis, University of Nijmegen, Thesis Publishers, Amsterdam, 1990.
Bubenko J.R., Bubenko J.A., "Information System Methodologies - A
Research View", in Olle T.W., Sol H.G., Verrijn-Stuart A.A. (Eds.) :
"Information Systems Design Methodologies : Improving the practice, North-
Holland, Amsterdam, The Netherlands, 1986, pp 289-318.
M. Dowson, Software Process Themes and Issues, IEEE int. conf., 1993.
L.J.B. Essink, A Conceptual Framework for Information System Development
Methodologies, Memorandum INF-86-34, Univ. Twente, Enschede, The
Netherlands, 1986.
Goor G. van den, Brinkkemper S., Hong S.; "Formalization and comparison of
six Object Oriented Analysis and Design Methods", Report Method
Engineering Institute, University of Twente, 1992.
Iivari J., "Object-oriented information sytems analysis: A comparison of six
object-oriented analysis methods", IFIP Int. Conf. on "Methods and associated
Tools for the Information Systems Life Cycle" (A-55), North Holland, 1994.
Kumar K., Welke R. J., "Methodology Engineering : A prposal for situation-
specific Methodology Engineering", Challenges and strategies for research in
Systems Development, J. Wiley & sons Ltd., 1992, pp. 257-269.
Lindland O.I., Sindre G., Solvberg A., "Understanding Quality in
Conceptual Modeling", IEEE software, March 1994.
Lyytinen K., Smolander K., Tahvanainen V.-P., "Modelling CASE Environ
-ments in sytems Work", CASE89 conference papers, Kista, Sweden, 1989.
Plihon V., "The OMT,The OOA ,The SA/SD,The E/R ,The O*, The OOD
Methodology" NATURE Deliverable DP2, 1994.
Prakash N., "A Process View of Methodologies", Proc 6th Int. Conf. on
"Advanced Information Systems Engineering" (CAISE), Sprg. Vg, 1994.
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Loresen : "Object-
oriented modeling and design", Prentice Hall international, 1991.
Schwer S. R., Rolland C. ,"Formalization of the Information System Design
Process", Internal Report C.R.I., 1994.
Seligmann P.S., Wijers G. M., Sol H.G., "Analyzing the structure of I.S.
methodologies, an alternative approach", in Proc. of the 1st Dutch Conference
on Information Systems, Amersfoort, The Netherlands, 1989.
Sol H.G.: "Kennis enervaring rond het ontwerpen van informatiesystemen",
Informatie, Vol. 27, N~ 1985.
Wynekoop J.d., Russo N.L., "System Development methodologies:
unanswered questions and the research-practice gap", Proc. of 14th ICIS
Orlando, USA, 1993, pp. 181-190.

