
Facet Models for Problem Analysis

Andreas. L. Opdahl 1 and Gut torm Sindre 2

1 Dept. of Information Science, University of Bergen, N-5020 Bergen, Norway
2 Fac. of El. Eng. and Comp. Sci., Norwegian Institute of Technology, N-7034

Trondheim, Norway

Abstract . The paper points to weaknesses of modelling approaches
which are orientated towards certain aspects of the problem analysis do-
main (e.g., process orientation, object orientation.) It is concluded that
modelling approaches are needed that allow the modeUer to 1) choose
to represent a wide range of aspects of real-world phenomena depending
on the problem at hand, and 2) simultaneously represent several aspects
of the same real-world phenomenon whenever needed. A framework for
facet modelling of real-world problem domains is therefore outlined. It is
discussed how facet models can be defined and visualised to deal with the
complexity of contemporary problem domains, and with the complexity
inherent from the ambition of the facet-modelling framework itself.

1 Introduct ion

In problem analysis, models of the problem are established, assessed, improved
and used as a starting point for IS design. Different paradigms have emerged for
this purpose, corresponding to various classes of modelling approaches. Each of
the approaches are orientated towards certain aspects of the phenomena in the
real-world problem domain. Some of the most prominent types are: 1) function
or process orientation (i.e., structured analysis, SA), emphasising the activities
performed in the real-world system, e.g. [6, 8]; 2) information orientation (i.e.,
entity-relationship (ER) modelling), emphasising the information resources of
the system and their relationships, e.g. [4, 24]; 3) object orientation, emphasising
the objects manipulated by the system, e.g. [22, 5], and 4) subject orientation
(or agent orientation), emphasising the roles, units etc. performing the activities
in the system, e.g. [7].

Each of these orientations has its pros and cons. Criticism of structured anal-
ysis can be found in, e.g., [18, 3, 16]; of purely information-oriented approaches
in, e.g., [10], and of object-orientation in, e.g., [15, 12, 13, 2]. The more recent,
subject-oriented approaches have been less critieised in literature so far.

This paper is written from the viewpoint that clearly orientated models are
not to be striven for in the early phases of problem analysis, but rather a source of
problems on their own. The rest of the paper will explore this hypothesis. First,
Section 2 will discuss what orientation really means, before Section 3 presents
the facet-modelling framework which attempts to limit orientation problems to
the extent possible. Afterwards, Section 4 will go on to outline important facet
types, and Section 5 will discuss how to visualise the resulting models. Finally,
section 6 will conclude the paper and suggest some paths for further work.

55

2 Orientation

2.1 W h a t is It?

Four examples of possible orientations for modelling a problem domain were
given above. One might think that the difference between them is that they
capture different aspects of the real world, i.e., that process-orientated mod-
els capture information about processes, information-oriented ones about data
structures, object-orientated ones about encapsulated data types, and so on.
However, this is only half the truth. The point is rather that they capture real-
world aspects differently. The final IS, if it is built, will have to deal with both
processes and data in a manner satisfactory to human agents. Hence, all the
aspects mentioned in Section 1 must be captured one way or the other at some
stage of development. The difference between the modelling approaches therefore
becomes one of priority:

- Some aspects are captured explicitly, others only implicitly
- Some aspects are captured earlier than others.
- Some aspects are shown in diagrams, others only textually.

Also, orientated approaches tend to promote a single aspect (e.g., functional
transformations in dataflow diagrams) as fundamental to modelling. The cor-
responding modelling construct is therefore equipped with the most powerful
abstraction mechanisms, and the other kinds of constructs are grouped around
it. For instance, SA explicitly captures the processes performed, their composi-
tion to higher level processes, their sequence, and how the output of one process
is passed as input to the next. This is not given as high a priority in object-
oriented analysis (OOA) approaches, in which it is not easy to grasp overall
dynamics without elaborate model assessment. On the other hand, OOA does
easily capture that a number of processes are working on objects of the same
class. This is not shown explicitly in SA and can only be established through
tedious inspection of the model.

2.2 W h y A v o i d I t ?

Obviously, the priorities set by choosing one particular orientation will mean that
the aspects not promoted by that orientation will be more difficult to account
for during analysis. For instance,

- In SA, it is not easy to see which processes are dealing with the same objects.
This makes it difficult, e.g., to ensure change-locality.

- In OOA, it is not easy to comprehend sequences of low-level processes, and
since low-level processes are not aggregated to higher level processes, it is also
difficult to see exactly how end-to-end services are delivered to the system's
users [1]. This makes dynamic analyses more difficult.

5~

- In both SA and OOA, the human actors in the information system and their
interrelationships are usually not described in detail (e.g., persons and units,
their competence and the roles they can play, the responsibility of each role
etc.). This makes it difficult for future users to relate to the model and to
evaluate organisational changes caused by the system.

- Most traditional modelling methods are weak on requirements traceabil-
ity [9]. Since for wicked problems the solution itself is likely to later become
part of new problems [19], traceability (i.e., of the requirements that led to
the current state of the problem domain) should be an integrated part of
the problem analysis model, just as representations of processes performed
in sequence or of processes and the objects they work on.

The above points explain why it might be a good idea to reduce the impor-
tance of orientation in analysis:

Avoid ing r ep resen ta t iona l bias" Orientation means that some aspects of phe-
nomena in the problem domain will be difficult to capture and/or easy to
forget because the modelling constructs which represent them are less im-
portant in (or even missing from) the modelling approach used.

Avoid ing perspec t ive bias" Orientation means that the problem domain will
be looked at from one particular perspective the whole time, thus hiding
weaknesses that would be more apparent from other perspectives.

Avoid ing c o m m u n i c a t i o n bias: Orientation means that it will be difficult
to communicate a model to people to whom the particular orientation is
unnatural, although easy to others.

Avoid ing in te res t bias: Orientation means that the problem-domain models
may inherently support the participation and interests of some of the indi-
viduals and groups affected by development, but not those of others.

Another problem with orientation is that it will force you to see any phenomenon
- - or any aspect of a phenomenon - - as represented by one particular construct
of the modelling approach. However, in reality several aspects of the same phe-
nomenon may be simultaneously important for the problem at hand. It may be
important for a single modeller to be able to represent several of these aspects at
the same time, and it may be important to be able to co-represent aspects em-
phasised by several of the individuals or groups involved or affected. Capturing
several different aspects at the same time is difficult in a strictly orientated ap-
proach, where it is often necessary to select a single modelling construct to cover
a phenomenon, or at least to use several independent modelling constructs for
each of its aspects. A particularly interesting remark in this direction is made in
[12]: With the increasing distribution and interoperability among applications,
the same or overlapping information is likely to be used for many different pur-
poses, i.e., by different applications with different perspectives. This is used as an
argument against pure objects, which focus on the information itself as opposed
to the different perspectives on the information.

Example 1. Consider the development of an information system for managing the
production and administration equipment of a beverage production company,

57

which produces both beers and soft drinks. The new equipment administration
system (EAS) is to keep an inventory of each of the production tools (robots,
computers, etc.) owned by the company, together with information about, e.g.,
its current state, application, and placement.

An assembly line in the beverage company can be perceived from several
perspectives, e.g., as an entity (information about the assembly line), as a re-
lationship between two entities (the start and stop area), as a transportation
or functional transformation of workpieces, as a process in which workpieces
are crafted, as a store (since it introduces production delays), and as an agent
transporting or processing items. Furthermore, the appropriate perspective will
depend on the subjects perceiving the assembly line, e.g., inventory managers
(who see it as an entity), the workers labouring along it (who see it as a process
or a flow), and process managers (who see it as a store or delay). []

3 T h e F a c e t - M o d e l l i n g F r a m e w o r k

Having discussed the weaknesses of orientation, the high-level goals for a mod-
elling approach which attempts to avoid orientation can be identified:

- It should enable the modeller to capture any aspect of a problem-domain
phenomenon, and any kind of relation between phenomena and between
aspects. The choice of what to represent should be left to the modeller on
basis of the problem at hand.

- If several aspects of the same phenomenon are relevant for the problem at
hand, it should be possible to capture them simultaneously, instead of having
to use several separate modelling constructs.

These are the two main properties of what is now to be introduced as the facet-
modelling framework. The framework has the power to embed many of the ori-
ented approaches. Hence it implicitly covers problem domains where these ap-
proaches are already sufficient. The facet-modelling framework is therefore not
"yet another modelling approach," but an offer to generalise, integrate and ex-
tend contemporary approaches to make orientation problems less dominating
in the early phases of IS development. Also, it is not in any fundamental sense
"orientation free" : Modelling is always about selecting certain aspects of the real
world at the expense of ignoring others. What the facet-modelling approach con-
tributes is a simple and intuitive, yet powerful and formalisable way of extending
the set of aspects available, thus alleviating many orientation problems.

3.1 I t ems and Facet Types

A facet model represents concrete and abstract phenomena in the analysis do-
main as items. The term "item" has been chosen deliberately to avoid conno-
tations to other analysis approaches such as ER-diagrams ("entities") or OOA
("objects"). Items do, however, share with objects the possession of an identity.
The modeller's perception of a real-world phenomenon is represented in the facet

58

The real-world The facet mode l

Phenomena Items
Aspects Facets

Relations Referencing facets ("links")

Table 1. The relation between the real-world problem domain and basic
facet-modelling concepts.

model as one or more typed facets belonging to the item, as shown in Table 1.
This means that any number of aspects of the phenomenon that are relevant for
the problem at hand can become facets of the corresponding item. Apart from
its identity, an item encompasses nothing more than a set of facets.

A facet-modelling language is defined as a non-empty set of facet types. A
facet model is correspondingly a non-empty set of items. All the items in_ a facet
model have the same type, which is implicitly defined by the facet types in the
language.

Hence, the facet types available to the modeller will depend on the particular
facet-modelling language being applied. Examples of facet types are methodolog-
ical facets such as the purpose of and requirements put on an item; existential
facets such as the lifetime, physical location and movement of an item, and its
material substance; organisational facets such as the actor of an item, the re-
sponsibilities assigned to an item, its capabilities and the roles it may assume;
informational facets such as the material properties and data contents of an
item; structural facets such as the parts, members, instances and refinements
of an item; and finally behavioural facets such as the transformations, trans-
portations and preservations effectuated by an item. This particular set of facet
types is by no means the only one possible, and the authors do not attempt to
argue that it is in any sense "better" than other alternatives. Hence this paper
simultaneously deals with two problem-levels:

1. The idea of facet modelling in general.
2. An example of a particular facet-modelling language.

The second level serves to exemplify the first.

Example 2. Consider a facet-modelling language which integrates some of the
modelling orientations commonly applied in structured analysis: dataflow dia-
grams, ER-diagrams, and agent models. The following facet types are needed:

- Dataflow diagram types for: external entity node, process node, store node
and flow edge.

- El~-diagram facet types for: entity node, relationship node and subset edge.
- Agent model facet types for: agent node, role node, agent-role edge, and

subagent edge.

59

Fig. 1. Some perceived objects in the EAS.

- Inter-model facet types for: entity-flow edge (which entities move on which
flows) and role-process edge (which roles perform which processes).

Hence the facet-modelling language has one facet type for each node type sup-
ported by the orientated modelling approaches it embeds, as well as additional
types used for inter-model connections. An advantage with the facet based ap-
proach is that these important inter-model connections become part of the facet-
modelling language, at the same level as other statements. []

3.2 Facets and Links

As already mentioned, each relevant aspect of a real-world phenomenon is repre-
sented as a facet of the corresponding item. Each item in a facet model therefore
has a non-empty set of facets. Every facet has one and only one facet type.

Example 3. The arbitrariness of choosing which real-world aspects to represent
can now be demonstrated in terms of the equipment administration system
(EAS) example:

Choosing an information- or object-oriented approach, one might decide to
explore what different kinds of equipment there are (i.e., build a classification
hierarchy with relations.) In an object-oriented model, it would also be interest-
ing to specify which possible operations have to be supported for each of these,
as well as identifying other objects relevant for the equipment administration.
A small example is shown in Figure 1, where every piece of equipment has a
vendor, a manual, and a responsible maintainer within the company. It is also
considered interesting to have information about what activities are using the
various forms of equipment. Notice, however, that the "maintainer" and "activ-
ity" nodes represent only information about the phenomena, rather than the
"maintainer" itself as an agent or the "activity" itself as a process.

60

From a process-oriented perspective, the modeller might start capturing the
activities involved in equipment administration, such as equipment purchasing,
registration, control, maintenance, and out-phasing. The phenomena modelled
here are seen as the ongoing actions themselves and not as information about
the processes, as was the case with "activity" in the object-oriented case.

From an agent-oriented perspective, one would instead start with the roles
of the company, in particular those involved in equipment administration, such
as equipment manager, equipment engineer, equipment assistant, operator, and
secretary. These phenomena would primarily be seen as roles in the organisation,
not as objects that information would have to be stored about, as was the case
for "maintainer" in the object-oriented model.

The idea of a facet-modelling framework is that any orientation (function-,
information-, object-, subject-, or other) may be useful, and the framework
should be able to capture them explicitly whenever needed. Hence, e.g., an
"equipment maintenance" phenomenon will have several "facets:

- A process facet, the activity, which will have links to other activities done
in connection with maintenance (at the same level of abstraction), and to
activities above or below it in the decomposition hierarchy.

- An entity (or object) facet, the information about maintenance, which will
have links to other information objects, again both to the same level of
abstraction and to the levels below and above.

- A role facet, the maintainer, which may be linked to other roles that it
communicates with and to agents able to fill this role. O

A facet is specified according to its facet type. Facet type outlines will be
presented in Section 4. In general, a facet is either a single (typed) value, or a
set or tuple of subfacets. Examples of vMue types are conventional types, such
as integers and free text, as well as references which link facets to other items.
Subfacets are themselves facets which may in turn have subfacets on their own.
Links are directional in that they always go from the facet being specified to
the item which is referenced. Hence the concept of "link" is not basic in the
facet-modelling approach. It is just another (referencing) type of facet value. It
is nevertheless a useful term when discussing and presenting facet models, and
it will therefore be used in the sequel.

Example 4. In Example 2 some of the facet types could be conveniently defined
as links:

- For DFD diagrams: (external entity node, flow edge), (process node, flow
edge), and (store node, flow edge).

- For ER-diagrams: (entity node, relationship node) and (entity node, subset
edge).

- For agent diagrams: (agent node, subagent edge), (agent node, agent-role
edge), and (role node, agent-role edge).

In addition, the inter-model facet types would probably also be represented as
link facet types. []

6]

4 O u t l i n i n g F a c e t T y p e s

Section 3 mentioned a large number of facet types for a particular facet-modelling
language. Although it is not the purpose of this paper to define each of these
proposals in detail, it is nevertheless clarifying to discuss some of them more
elaborately.

4.1 Facet Type Out l ines

Methodological facets such as the purpose of and the requirements placed on
items might easily be specified as free text associated with the item. As the
facet model becomes more detailed, it should also be possible specify require-
ments in 1. order predicate calculus. Furthermore, it should be possible to link a
requirement facet to other items to represent how requirements trickle through
the model. In this way, traceability is incorporated as part of the facet model
itself. The structural facet types outlined below will provide such links.

Existential facets of an item are represented as simple, valued facets: Its
lifetime is defined by birth and death times, while physical location and item
movement are represented as a location facet. The presence of material substance
of an item in the model is represented as a truth valued facet.

Organisational facets such as actors, responsibilities, capabilities and roles
may again best be represented textually. Actor and role facets should of course
have links to represent actor-subactor and actor-role relationships.

Informational facets such as the material properties and the data contents
of an item are represented as sets of typed values.

Structural facets are represented as links to other items. Hence, the parts of
an item are a set of references to items. Similarly, the members, instances and
refinements of an item are also represented as links. Links can be traversed in
both directions, so the inverse structural relations are also covered.

Behavioural facets are unsurprisingly the most complex facet types to de-
fine. The authors have previously considered this problem in [16, 17], and the
facet-modelling framework has been designed to incorporate the ideas presented
there. More specifically, a transportation (or flow) is an (instantaneous or grad-
ual) modification of another item's position facet leaving its other facets un-
changed, while a preservation (or storage) is a conservation of position. In its
most primitive form, a transformation is a modification of an informational facet.

Example 5. Section 3.1 presented a simple first example which integrated some
of the modelling orientations of structured analysis. It turns out that some of
the facets introduced for that purpose correspond to those presented here:

- Dataflow diagrams facet types for processes, stores and flows correspond to
transformation, preservation and transportation facets, as discussed in [16].
As for the external entity facet type, the actor or role facet of this section
seems appropriate.

~2

- EP~-diagram facet types for entities are represented through the data contents
(and possibly material properties) facets of this section. The relationship
facet can be represented as a part facet comprising references to items with
related entity facets.

- Agent model facet types for agents are best represented as actor facets, while
roles of course remain roles. Subagents are again best represented through
the part facet type.

4.2 Facet Type Dependencies

The facets defined for an item are obviously not independent. Instead, the value
of one facet - - or the fact that it is specified or unspecified - - has consequences
for facets of the same or of other items.

Most fundamental is the lifetime facets of an item, which restrict the spec-
ification of facets such as position, as well as the item's participation in trans-
portation, preservation, and transformation. Along the same lines, an item can
only have material properties if it has material substance.

Rather than adding complexity to the framework, these and other depen-
dency rules aid the modelling process by 1) making inconsistencies easy to
detect by inspection or by formal verification; 2) making changes made to one
facet immediately apparent in terms of another facet also; 3) implicitly speci-
fying facets as consequences of other explicitly specified ones, and 4) designing
versatile and friendly user interfaces.

5 Visual isat ion

Visual representation has many advantages over textual representation, both
when it comes to comprehension (e.g., in providing at a glimpse overviews) and
expressive economy [11, 23]. Therefore, many modelling languages have been
designed with a particular visuM representation in mind.

Large facet models will have many items, and even more interconnections
among these along various dimensions. Hence they will be impossible to display
nicely in two dimensions and possibly hard also in three. This is not really a new
problem - - all realistic models of detailed material- and information-processing
systems will be too complex to visualise all at once. Therefore, abstractions and
filtering techniques are needed [20, 21]. However, the inherent complexity of the
facet-modelling framework makes such visualisation and filtering techniques all
the more important.

No visualisation tool has yet been built for the approach presented in the
previous sections. Still, it is found important to discuss visualisation here to
indicate the feasibility of the facet approach for visuM presentation. Actually,
this section attempts to demonstrate that the facet-modelling framework may
have an advantage in providing greater flexibility for views, since no particular
view is promoted by the modelling framework as such. The ideas presented here
are partly inspired by [21].

63

Fig. 2. An item-cube

Visualisation may be addressed according to two different principles: 1) brow-
sing and 2) associatively selected views. In both cases, useful views will have to
rely on filtering, i.e., not showing the entire model at once. The difference is that
for browsing, filtering will be implicit: the nodes which are far away from the
current viewpoint, will be vaguely or not at all visible. For associatively selected
views, on the other hand, the user will describe through some suitable interface
what should be included in the view.

Looking at browsing first, although the screen is two-dimensional, the user
can easily be provided with 6 working directions: up, down, left, right, in, out,
providing a three-dimensional feeling. As long as items have a fairly limited
number of facets, this can be utilised to create a versatile interface for brows-
ing. Imagine one item presented as a cube where different sides correspond to
different facets. In the example in Figure 2 we see the front side being used for
a process facet, the right side for an object (or entity) facet, and the top side
for an agent (or role) facet. The three remaining sides are still vacant for other
facets of interest. Turning the cube around, the user can focus on the facet of
most interest, whose relations to other nodes will then also be shown. Moreover,
zooming into a particular side, the decomposition of the corresponding facet
will emerge (e.g., the decomposition of "Maintain" into lower lever activities),
and zooming away from it, the composition will emerge (e.g., the higher level
business function that "Maintain" is part of).

With such an approach, one could browse around more complex structures
such as the one indicated in the upper part of Figure 3. However, browsing may
not be suitable for all situations. For rapid exploration into a complex model, it
is probably a good idea, but for detailed discussions of the model among a large
group of people, it will probably be necessary to generate more persistent views.
Filtering for such views may be done by

- facet (i.e., stating what facets should be included and/or excluded)
- item (i.e., stating what items should be included and/or excluded)

Of course, it should be possible to combine facet and item filtering, and also
filtering statements of the inclusive (what should be in the view) and exclusive
(what should be hidden) kind. In the example of Figure 3, a messy model - -

Messy model ~ "~~
. . ," / = "...

decomposed / / ~li~. '=
entity, process, agent / gr..lp , , ~ I

i

View 1

I
View 2

Fig. 3. Filtering

which is still only a small fraction of what would be the total facet model for a
large system - - has been filtered to two different views. In View 1, only flows,
agents, flow-agent, and agent-agent edges are shown. Assuming that the diagram
has been sensibly annotated, this could be a useful view for seeing what is moving
around in the system and who is responsible for the transportation. View 2
displays only the node whose process facet is marked A in the messy picture,
the edges directly connected to this node, and the nodes connected to these
edges (i.e., filtering by item.) Both the resulting views have become so simple
that they can be displayed nicely in two dimensions. For larger models, the first
filtering operation might not be sufficient to yield a good looking view, so that
several iterations of filtering will be required. Combining filtering and browsing
might also be a good idea in many cases.

6 C o n c l u s i o n

The paper has explained why clearly orientated models is not anything to strive
for in the early phases of problem analysis, but rather a source of problems

65

on their own. To alleviate this situation, a facet-modelling framework was in-
troduced, and a simple facet-modelling language was outlined. The paper also
outlined important facet types, as well as visualisation.

Facet models represent the dynamics, processing, functions, structure and
purpose of items using natural and dedicated concepts, while maintaining an
internal representation of the item per se, as a sum of its defined facets. Hence,
the facet approach is a departure from conventional problem analysis approaches
in several ways:

- From visual models to visualisable structures.
Instead of designing modelling approaches with visualisations in mind, the
facet modelling approach encourages selection of important aspects of the
real-world problem domain as a distinct activity from visualisation.

- From diagrams on paper to diagramming tools.
A diagrammatic modelling language as of 1995 must fully utilise contem-
porary technology. The facet-modelling framework has been designed with
powerful visualisation mechanisms in mind.

- From items as objects to items with aspects.
While the object-oriented modelling approaches focus on the real-world phe-
nomena per se, the facet-modelling approach focusses on representing im-
portant aspects of the phenomena. Furthermore, a rich set of concepts is
provided for specifying relevant facets. Hence facet modelling is a departure
from claims made by OOA-proponents that a single concept (the object) - -
or at least a small set of core concepts (e.g. objects, states, classes, inheri-
tance, instances, operations and messages) - - is sufficient to create rich and
intuitive models of real-world problems.

- From description-driven to problem domain-driven methodology.
Available SA and OOA approaches are description-driven in that the de-
scription techniques themselves set the agenda for which pieces of knowl-
edge about the problem domain to collect at any given time of analysis. A
facet model can be extended at any time with any type of problem-domain
knowledge that may become relevant. This is in line with recent methodology
frameworks, e.g., [14], which emphasise IS development as inquiry processes
driven by the analysis problem itself, rather than by assumptions inherent
in some fixed modelling language.

- From repositories of separate models to a single integrated model.
Instead of distributing the specification of a real-world system between sev-
eral (visual) models and then maintaining the references between model
components, the facet-modelling approach maintains a single model only.
The simplifications implied by this are obvious.

Facets can also be added for non-functional aspects of the problem domain,
such as performance and reliability, and for representing developers and the
development process itself as part of the model. It may be possible to regard the
final implementation itself as a set of linked facets of items.

Of course, the facet-modelling framework is more ambitious than the tradi-
tional approaches. Thus, if a traditional approach is able to deliver a satisfactory

s~

model for a certain problem, the facet framework might not be needed. However,
there are several reasons to believe that there is a need for an ambitious approach
covering many aspects of the problem area in one comprehensive model:

First, real-world problem domains are becoming ever more complex, part ly
because the easier problems are being solved and turned into shelfware, frame-
works, or reusable libraries, leaving only the difficult problems for analysis.

Second, problem domain models are becoming assets in themselves, because
of the drastically increased turbulence in organisations and society. The trend to-
wards virtual organisations, organising on demand to do a particular job, means
that organisations will end up being more short-lived than the ISs they use. If a
company is supposed to live only for a year or two, not to speak of a month or
two, it is no longer feasible to take up a traditional development project, mak-
ing a detailed analysis model for business processes and the IS support needed.
Instead, it will be necessary to reuse, modify and combine existing models for
similar businesses, so that the IS support for the organisation can be up and
running from day one, with just some customisation afterwards. When the or-
ganisation phases itself out, the models of IS support that it has generated, will
be useful input to new organisations popping up. Hence, models will be a com-
modi ty in their own right, to a much larger extent than today (when many regard
them mostly as a necessary step towards a running software system). Then it
will also make sense to invest more resources in the construction of high quality
models, and to have an ambitious approach to allow flexible customisation of

these models.

R e f e r e n c e s

1. S. C. BMlin. An object-oriented requirements specification method. Communica-
tions of the ACM, 32(5):608-623, May 1989.

2. T. Bryant and A. Evans. OO oversold. Information and Software Technology,
36(1):35-42, January 1994.

3. J. A. Bubenko jr. Problems and unclear issues with hierarchical business activity
and data flow modelling. Technical Report 134, SYSLAB, Stockholm, June 1988.

4. P. P. S. Chen. The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9-36, March 1976.

5. P. Goad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs, 1990.

6. T. DeMarco. Structured Analysis and System Specification. Yourdon Inc., New
York, 1978.

7. E. Dubois et al. ALBERT: an agent-oriented language for building and eliciting
requirements for real-time systems. In Proc. o] HICSS'27, vol.IV, Information
Systems: Collaboration Technology, Organizational Systems and Technology, pages
713-722. IEEE Computer Society Press, 1994.

8. C. Gane and T. Sarson. Structured Systems Analysis: tools and techniques.
Prentice-Hall International, 1979.

9. O. C. Z. Gotel and A. C. W. Finkelstein. Modelling the contribution structure
underlying requirements. In K. Pohl et al., editor, Proc. 1st International Work-

67

shop on Requirements Engineering: Foundation of Software Quality (REFSQ'94),
Utrecht, June 1994.

10. 3. A. Gulla, O. I. Lindland, and G. Willumsen. PPP - - an integrated CASE en-
vironment. In R. Andersen, J. A. Bubenko jr., and A. Sr editors, Advanced
Information Systems Engineering, Proc. CAiSE'91, Trondheim, pages 194-221,
Heidelberg, 1991. Springer Verlag (LNCS 498).

11. D. Hard. On visual formalisms. Communications of the ACM, 31(5):514-530,
May 1988.

12. W. Harrison and H. Ossher. Subject-oriented programming (a critique of pure
objects). In A. Paepcke, editor, OOPSLA '93 Conference Proceedings, pages 411-
428. ACM Press, 26 Sep-1 Oct 1993. (Also as ACM SIGPLAN Notices 28(10),
Oct 1993).

13. G.M. Hcydalsvik and G. Sindre. On the purpose of object-oriented analysis.
In A. Paepcke, editor, OOPSLA '93 Conference Proceedings, pages 240-255. ACM
Press, 26 Sep-1 Oct 1993. (Also as ACM SIGPLAN Notices 28(10), Oct 1993).

14. J. Iivari and E. Koskela. The pioco model for information systems design. MIS
Quarterly, pages 401-419, September 1987.

15. S. McGinnes. How objective is object-oriented analysis? In Proc. CAiSE'92: The
Fourth Conference on Advanced information Systems Engineering, Manchester,
UK, Heidelberg, 1992. Springer Vedag (LNCS 593).

16. A. L. Opdahl and G. Sindre. Concepts for real-world modelling. In C. Rolland
et al., editor, Advanced Information Systems Engineering, Proc. CAiSE'93, Paris,
pages 309-327. Springer Verlag (LNCS 685), 1993.

17. A. L. Opdahl and G. Sindre. Representing real-world processes. In J. F. Nuna-
maker and R. H. Sprague, editors, Proc. of the 28th Annual Hawaii International
Conference on System Sciences (HICSS'28), volume IV, pages 821-830.. IEEE CS
Press, 1995.

18. C. A. Richter. An assessment of structured analysis and structured design. SIG-
SOFT Software Engineering Notes, 11(4), 1986.

19. H. Rittel. On the planning crisis: Systems analysis of the first and second genera-
tions. Bedrifts~konomen, (8), 1972.

20. A. H. Seltveit. An abstraction-based rule approach to large-scale information sys-
tems development. In C. Rolland et al., editor, Advanced Information Systems
Engineering, Proc. CAiSE'93, Paris, pages 328-351. Springer Verlag (LNCS 685),
1993.

21. A. H. Seltveit. Complexity Reduction in Information Systems Modelling. PhD
thesis, DCST, NTH, University of Trondheim, 1994. NTH 1994:121.

22. S. Shiner and S. J. Mellor. Object-Oriented System Analysis: Modeling the World
in Data. Prentice-Hall, Englewood Cliffs, N J, 1988.

23. G. Sindre. HICONS: A General Diagrammatic Framework for Hierarchical Mod-
elling. PhD thesis, Faculty of Electrical Engineering and Computer Science, Uni-
versity of Trondheim, 1990. NTH 1990:44, IDT 1990:31.

24. G. Verheijen and J. van Bekkum. NIAM: an information analysis method. In
T. W. Olle et al., editor, Information Systems Design Methodologies: A Compara-
tive Review, Amsterdam, 1982. North-Holland.

