
Linguistically-based Event Modeling:
A General Approach to Dynamic Modeling

J.F.M. Burg ~ and R.P. van de Riet

Department of Computer Science
Vrije Universiteit

Amsterdam, The Netherlands
{j fmburg, vdriet }�9 vu. nl

A b s t r a c t . This paper introduces a way of modeling the dynamic as-
pects of an Information and Communication System in which all the
occurring events are listed and ordered in time. These graphical Event
Models are based on formal (logical) specifications. Event Models are
very close to the specifications in the informal requirements document,
which describes the Universe of Discourse. By means of the underlying
formal specifications Natural Language sentences are generated auto-
matically, in order to give some feedback to the designer and user. By
combining this feedback feature and the power of the logical foundation,
the Event Models can be verified and validated. We will also present
an algorithm and its implementation to generate State Transition Dia-
grams from Event Models automatically. This is especially useful in o u r

environment in which programming code-generation is the key objective.

1 I n t r o d u c t i o n

The name of our current project, C O L O R - X , is an acronym for the COnceptual
Linguistically based Object oriented Representation Language for Information
and Communicat ion Systems (ICS abbreviated to X). In the COLOR-X project
we are using the logical conceptual modeling technique CPL (Conceptual Pro-
totyping Language) [8], which is linguistically based, as a formal foundation for
graphical modeling techniques. This approach is chosen to facilitate the process
of conceptual modeling and which leads to more consistent and complete models
that are linguistically correct. COLOR-X is the first phase of a larger project
which has as objective the generation of object-oriented programming code from
a natural language based modeling technique, which brings, a s n side-effect, the
conceptual models closer to programming code. In addition, by using a modeling
technique based on linguistic notions, we are narrowing the gap between require-
ments documents, written in natural language, and conceptual models as well.
The COLOR-X project is divided into several parts, analog to existing concep-
tual modeling methods, like OMT [20]). This paper contains the dynamic part,

* Supported by the Foundation for Computer Science in the Netherlands (SION)
with financial support from the Dutch Organization for Scientific Research (NWO),
project 612-123-309

27

whereas [4] describes the COLOR-X Static Object Model (CSOM), in which the
static aspects of the Universe of Discourse (UoD) (i.e. objects, classes and the
relations, like generalization and aggregation, between them) are contained. The
graphical CSOMs are linguistically-based, and logically founded by underlying
CPL-specifications. The CSOM-model contains the overall structure of the UoD
for the programming code generator.

COLOR-X is part of the LIKE-project (Linguistic Instruments in Knowledge
Engineering) which is a consortium of researchers of three disciplines: Linguistics,
Business Administrators and Computer Science. The LIKE-project is focusing
research around the theme: how linguistic instruments can be used profitably in
the area of Knowledge Engineering, e.g. to build Information and Communica-
tion Systems (ICSs).

One of the main reasons to use linguistic knowledge is to make the use of
words appearing in the models consistent, and thus making the models as a
whole more meaningful. Earlier projects conducted in our group have shown the
profitability of this approach, [3], [2], [4] and [5]. Another reason to use linguistic
knowledge in modeling techniques is to give more expressive power to them. For
example, it is now possible to express which events should and which could occur
in a certain UoD. An additional nice feature of a linguistically based modeling
technique is that it is relatively easy to generate natural language sentences from
it, in order to give some feedback to the system designers and to the end-users
as well, see also [7]. This feedback consists of generated sentences during the
modeling phase, in order to check if the model is consistent with the requirements
and on the other hand this feedback consists of explanation facilities, like [11].
The first kind of feedback is already incorporated into COLOR-X.

Now that we know why to use linguistic knowledge, we need to know how
to use it. We will use a lexicon as a source containing this knowledge. Such
a lexicon contains information about taxonomies, verb frames, synonym sets,
etcetera. We are using (an extension of) WordNet [17], which is the result of
an ongoing research program at Princeton University in the representation of
lexical information.

The remainder of this paper is organized as follows: First we will give an
overview of and remarks about the traditional way of dynamic modeling. Af-
ter that we will offer an alternative by introducing COLOR-X Event Models
(CEMs). The generality of this approach will be shown in section 5 and section
4.1 by generating State Transition Diagrams and formal CPL Specifications out
of CEMs. We will conclude this paper by giving some conclusions and by listing
work and research that is still to do.

2 Dynamic Modeling

The purpose of Dynamic Modeling is to show the time-dependent behaviour of
the system as a whole or a particular part of the system. In general, there are
three ways of modeling this information:

1. Dynamic and Deontic Logic, [8], interested in the states between actions

28

2. Process Algebra, [22] and [13], concentrating on the actions themselves
3. Petri Nets, which are useful in environments where simulation plays an im-

portant role [12], but which will not be discussed in this paper.

A popular example of a process algebra-based modeling technique is the
graphical State Transition Diagramming (STD) technique, [20]. The use of STDs,
however, causes some problems:

- It is not clear whether you should model one STD per object, one STD for
the system as a whole or a mixture of these two approaches. Because of the
lack of consensus concerning this point, it is very hard to parse or interpret
STDs in computerized tools.

- The words used as transitions- and state-labels are not constrained by rules.
The models would be more comprehensible if the kind of words used for
actions, events and states would be pre-defined (like controlled verbs, non-
controlled verbs and nouns, respectively). Another rule could constrain the
form of the words, like infinitive verbs and singular nouns. Both kind of rules
would facilitate the interpretation of the models and thus the generation of
programming code out of them, but it is very hard to identify them and to
establish some agreement about them.

- By adding different modalities (like necessary and possible) to actions and
events, the resulting STD models would have more expressive power. In
traditional STD techniques, just one modality (factual) is used.

- A state is not only defined by the attribute values of some object or (sub-)
system, but also by common sense knowledge which is hard to capture in
attributes (e.g. "a person is ill").

An example of a dynamic and deontic logic-based modeling technique is
the Conceptual Prototyping Language (CPL) [8]. The main problem with this
approach is the awkward formal syntax, and the difficult underlying linguis-
tic theory. To overcome these problems, we will propose Event Models in the
next chapter. These models have CPL-specifications as an underlying formal
representation. To understand these models properly we will first give a short
introduction to CPL.

2.1 An I n t r o d u c t i o n to C P L

The Conceptual Prototyping Language (CPL) has been developed as a specifica-
tion language as close as possible to natural language, by basing it on Functional
Grammar [9], but formal enough to specify the requirements of an ICS in a pre-
cise and unambiguous way. The formal semantics, as defined in [8], is based on
predicate, modal, deontic and temporal logic. Each CPL construct is translated
into some combination of these logics. The general form of a CPL specification
language is as follows:

Mode : Tense : Predication T l ' . . T~ (id: ...) (sit: . . .)

29

Mode = F A C T U A L] M U S T I N E C] P E R M I T
Tense = A C T I O N [D O N E I P R O S P [P E R F I P R E T
Predication = a relation between n terms Ti " . T,~,
Ti = a term denotes a (set, with cardinality c, of) object(s).

Each object occurs in a specific role.
id = identification of the objects
sit = situation in which this CPL specification is supposed to hold

For example, the following specification says that
When a company has sold a car to a customer, it has to send a bill to this cus-
tomer within a week.:

M U S T : A C T I O N :
send(ag=C in company) (pat=bill) (dest=C2 in customer) (t emp=T2 in time)

(id: T2 = T1 + 1*week)
(sit: P E R F : sell(ag=C in company) (pat=car) (dest=C2 in customer)

(t emp=T1 in time))
The meaning of the used modalities (M U S T means 'should'), tenses (AC-

T I O N means 'present tense' and P E R F means 'perfect tense') and semantic
functions (ag, go, pat , des t are the agent, goal, patient and destination of the
event and t e m p is the time at which the event takes place) can be found in [8].

3 C O L O R - X E v e n t M o d e l i n g

The COLOR-X Event Model (CEM) is merely a trace of the events that could
and should be performed in the Universe of Discourse (UoD). This way of mod-
eling the dynamic aspects of the UoD links up very well with the way these
aspects are described in the requirements document. There is however no auto-
matic acquisition of conceptual models out of these natural language sentences
provided yet, as [1] and [19] propose. The following example will illustrate this
correspondence:

R e q u i r e m e n t s Documen t : A user can borrow a book f rom a library. I f

a user has borrowed a book he has to return it within three weeks, before he is
allowed to borrow a book again.

C O L O R - X Event Mode l (CEM): Figure 1 shows the corresponding
CEM. It is fairly easy to read and corresponds very closely to the natural lan-
guage sentences.

Informally, a box represents an event that could, should or has to take place
(depending on the modality), a straight arrow represents the actual occurrence
of that event and a 'lightning'-arrow represents the fact that the specific event
did not take place.

A strong point of CEMs is the possibility to express the modality of the
sentences. The occurrences of the words 'can' and 'is allowed to' in the require-
ments document trigger a PERMIT-box . The MUST-box is caused by the
words 'has to'. As will be shown further on in section 3.1 when we will treat the

30

PERMIT: ~ MUST: _~
l. borrow(ag)(go=book) ~ 1. return(ag=uscr)(go=book) k ~

(src=library)(tmp=timeTl) j | [...!dest-l.i.br~w?!!m.p-!!m~T2) ..1 "-,1 ~
I ~ i d : T 2 < T l + 3 * w e e k

Fig. 1. Example of a COLOR-X Event Model

syntax and semantics of CEMs, a MUST-event requires two outgoing arrows to
succeeding events: the obligatory event has taken place (as it should be) or the
obligation is violated. Because of the fact that in our simple example there is no
event specified that has to be done when the book is not returned within three
weeks, the outgoing ('lightning'-) arrow ends in an end-node.

3.1 S y n t a x a n d S e m a n t i c s of C E M s

The graphical notations of CEMS can be found in Figure 2. An event box,
Figure 2(a), consists of a modality, one ore more event descriptions and zero or
more constraint descriptions. An event description consists of a verb denoting
an event, which is either an action (an event controlled by some agent) or a (not
controlled) process, and one or more terms. The (CPL-) syntax of these terms
is: [<eardinality>] role = [variable in] noun 2 The components of a term were
already mentioned in section 2.1. An example clarifies this abstract formulation:

one user borrows four books ~ borrow(<1> ag = user) (<4> go = book)

This formal event representation expresses exactly what the modeler wants,
which is not always true when using ambiguous natural language sentences.
Another advantage of this approach is that it is now possible to use automatic
tools to support the modeling process. It is always possible to generate natural
language sentences automatically out of the CPL constructs.

A constraint description constrains the value of one or more terms (through
the use of variables) absolutely (age > 21) or relatively (age father > age son).
The syntax used to express these constraints is the same as the one used in CPL:
(id" V1 > 21) and (id" VI > V2).

Besides the event-nodes there are two special nodes that denote start and
final points (Figure 2(b) and (c), respectively).

Because of the fact that there are three modalities to use (permit, necessary
and must), there are three different kinds of event-boxes (Figure 2(d) - (f)). In
this way a certain degree of completeness is accomplished. When a MUST-box
is used there are always two succeeding events to be specified. After finishing the
model the remark "the model does not specify what has to be done when event
X has not taken place" will not occur! One has always to specify a relative or
absolute expiration-time, which may be infinite, when using a MUST-box, in
order to verify whether the obligation has been violated or not. The event-boxes

2 everything between square brackets ([..]) is optional

3]

Modality:
1. event(<terJns>)

n. event(<terms>)

id: constraint I

id: constraint m

(a)

~ NEC: >

(b) (c) (d)

[id: Expiration_Time

(e) (f)

Fig. 2. CEM Notation, (a) general event, (b) start node, (c) final node, (d) necessary,
(e) permitted, (f) obligatory

are connected with arrows which denote the fact that one or more events are
performed (depicted by a straight arrow with one or more event-numbers) or are
not performed at all (depicted by a lightning-arrow).

Crea t ing CEMs: Almost every current conceptual modeling method con-
tains some step in which the events occurring in the UoD are listed, see for
example OMTs event traces [20]. CEMs do not only contain this kind of infor-
mation, but also formalize it. The process of creating CEMs is supported with a
lexicon. Although the initial step, listing the events and ordering them in time
in an informal way, should be done manually by the modeler, the creation of
the CEM itself is embedded, and thus supported, by a CASE-environment. The
availability of standard building blocks, the reusable event specifications from
a lexicon and the complementary information, like antonym-events that will be
treated later on, generated out of the lexicon, will help the modeler very much
in creating correct and complete CEMs.

4 C o r r e c t a n d C o m p l e t e C E M s

In this section we will give an overview of the advantages yielded by our ap-
proach in which a lexicon plays an important role. After modeling a certain
UoD, regardless the method used, there remain always two questions:

Correctness, i.e. Is this model right? Is the model constructed according to the
syntax and semantics of the method used? By offering standard building blocks,
see Figure 2, the resulting model could not be offending the graphical syntax
rules. By checking if there exists exactly one start and final state, and that every
arrow goes from one block into another, we can verify if the model is syntactically
correct. The kind and form of the words used in the model are constrained by
the use of a lexicon. The following information is retrieved from the lexicon in
order to get the kind and the form of the words right, respectively.

1. An event is identified by a verb, and one or more nouns, that play certain
roles. We retrieve the verb frame corresponding to the verb from the lexicon
and check if the entered role-playing nouns fit into this frame. For example:

32

Verb a n d N ouns : borrow, user and book
Verb F ra me : somebody borrows something 3
M a t c h : user is a somebody a , book is a something 3

2. When entering nouns in the plural form, it is very easy to obtain the singular
form from the lexicon, in order to further standardize the model.

Completeness, i.e. Is this the right model? Does the model contain all the infor-
mation from the requirements document? To verify if the model corresponds to
the text from the requirements document it is very helpful to generate a verbal-
ized form of the model, see also [3], [18] and [7]. This is made possible in CEMs
because the underlying CPL specification can be verbalized. Another heuristic
to verify if a CEM contains all the information from the requirements document
is to generate the antonym-events , which can be found in the lexicon, of all the
events occurring in the CEM and to check if they appear in this CEM already.
In the library-example, section 6, the free-event was generated as antonym of the
block-event and added to the CEM. The antonym-event of borrow (i.e. return),
however, is already appearing in the model. The next two sections will show the
CPL- and Natural Language generators.

4.1 G e n e r a t i n g C P L Spec i f ica t ions

The generation of CPL-specifications from CEMs is fairly easy, because CPL is
used as a foundation for CEM. We will review all the concepts used in CEMs
and give their CPL counterparts, as our demo-tool CEM2CPL generates:

1. CEMs start- and end-node and their in- and outgoing arrows have no CPL
equivalent

2. C E M : general event box with modality Modality, events e v e n t l . . , e venh
and corresponding terms t e r m i l . . . t e r m i ~ , 1 < i < l, constraints q ' " c k
and outgoing arrows at �9 �9 �9 ah, 1 < h < l
C P L : for each arrow aj, 1 < j < h, with label n&. �9 ~m, 1 < n, m < l:

M o d a l i t y : event,~(t e r m ~ . . . t e r m ~)
and . . . a n d
M o d a l i t y : e v e n t ~ (terrain. �9 . termm~,~)

All the CPL-blocks belonging to a certain arrow are OR-ed together (dis-
junctive normal form).
All the constraints Cl �9 �9 �9 ck are AND-ed together (disjunctions between con-
straints should be expressed as one constraint).

(id: ct) a n d . . , a n d (id: ck)
If a 'lightning'-arrow is appearing in the model, the negation of the event(s)
will appear in the CPL-specification.

3. C E M : a certain event box EB~ with all its predecessors (E B t . . . E B I - t ,
without their modalities and tenses). Each E B j , 1 < j <_ i contains events
Ejl . . . E j l

3 Retrieved from WordNet

33

CPL: Each EBj, 1 < j < i, is translated into a CPL-disjunction CPLj
according to step 2. Combining each CPLj will result in:
CPLi
(sit: D O N E : CPLi_I)
(sit: P E R F : CPL~_2) ... (sit: P E R F : CPL1)
For i = 2 the CPL specification looks like: CPL2 (sit: D O N E : CPL1)

There are four reasons why we would like to generate CPL-specifications:

1. It is possible to generate Natural Language (NL) sentences out of CPL spec-
ifications. Because CPL exists for several years now, we have got some CPL-
parsing and NL-generation tools already (section 4.2).

2. Because CPL is logically founded, see [8], it is possible to formally derive
new specifications out of existing ones and to check if the specifications are
correct. We will not treat the logical foundation of CPL in this paper.

3. CPL supplies formal semantics for the dynamic, as well as the static, aspects
of a UoD and its related database, which restricts the behaviour of the
generated computer programs exactly to the behaviour modeled.

4. By using CPL as the underlying specification language for all kinds of
COLOR-X models, we have a uniform way of representing different kinds
of information. This uniform format facilitates the integration of the dif-
ferent views on a UoD and makes updates and queries on the integrated
information more manageable.

4.2 Generating Natural Language

Our Prolog-translator CPL2NL translates any form of CPL-specifications into
correct Natural Language sentences. In this translation process the lexicon plays
a very important role, because it contains (information about) verb derivations,
plural and singular form of nouns, numerals, adjectives, determiners, etc. We
will list some aspects of the CPL specifications that have their impact on the
generated sentences. First, the modality determines the auxiliary verb of the
sentence as follows: NEC, M U S T and P E R M I T trigger obliged to, should
and permitted to respectively. Secondly, the cardinality of the subject (agent or
zero) of the relationship determines the singular or plural form of the related
verb. The identification of the objects is added as a subordinate clause, starting
with where Finally, the satellites of the CPL specification are translated into
adjuncts of place or time.

There are three basic forms of CPL-specifications: 4

1. Unconditional:
P E R M I T : A C T I O N : borrow(ag=user)(< +>go=book)(< l>src=library)

[an,user,is,permitted to,borrow,one or more,books,from,a,iibrary]

4 The consonant sound of user is not noticed because we do not use a phonetica]

analyzer. Therefore, the article a n is generated instead of a.

3L

2. Conditional:
M U S T : P R O S P : return(ag=user) (<+>go=book)(< l>dest =library)
(sit: P E R F : borrow(ag=user)(<+>go=book)(<l>src=library))

[if, an, user, borrowed, one or more, books, from, a, library,
then, an,user,will have to,return,one or more, books,to,a,library]

3. Identified:
P E R F : borrow(ag=user)(go=book)(tmp=V1 in time)(id: V1 = yesterday)

Jan,user ,borrowed, a, book, at, a,time ,Vl ,where ,Vl, is ,yesterday]

5 G e n e r a t i n g S T D s

There are mainly two reasons to generate State Transitions Diagrams (STDs)
out of COLOR-X Event Models:

1. STDs have become a standard (to a certain degree) in modeling the dynamic
aspects of an ICS. Although we have had some difficulties and problems
using STDs, see section 2, we have shown that our CEMs contain also the
information normally found in STDs by generating STDs out of CEIVis. The
reverse process is only possible if the STD is not violating the STD-rules
that are mentioned below.

2. A lot of research in the field of programming code generation from STDs is
already done, and most of the existing CASE-tools support such a generation
facility, see for example [21]. We can gain from this knowledge and experience
by generating STDs as intermediate results.

The generated STDs satisfy the following rules:

- Every STD belongs to exactly one active object occurring in the UoD. Active
objects are nouns that play the agent-role in one or more CEM-events.

- A state is represented by a box, identified by a unique number. A verbal
label can be added manually, but has no semantic meaning in the model.
This decision is made because it is really hard to find meaningful labels for
every state, and to maintain a certain degree of conformity among the labels.

- A transition is represented by a uni-directional arrow labeled with a verbal
phrase, describing the event that causes the state-transition. Constraints can
be attached to a transition as an optional component of it.

- There exist two special states: the start~state and the final-state, that are
connected with the first 'real' state (i.e. the state before the first event) and
the last state, respectively, by empty transitions. These states correspond to
the creation and destructions, respectively, of the object.

The next section will describe the algorithm that generates STDs for each
active object out of CEMs.

35

5.1 A l g o r i t h m

The following steps describe roughly the STD-generation process, which has as
an input a COLOR-X Event Model, consults a lexicon, and has as an o u t p u t
STDs for each active object of the CEM:

1. create the start-node (Ns), the first node (N1 and an empty transition (Te)
between them

2. for each event box (EBi) with events E i l " ' Ei,: create for each outgoing
arrow (with label n & . . . &m, 1 < n, m _< l) a state transition to a new or
an existing node (depending on whether the succeeding event box (EBj) is
already traversed (j < i) or not (j > i)). The label attached to this transition
is a conjunction of the verbalized event descriptions of each Eik, 1 <_ k < I.
The verbal phrase describing event Ei~ are adjusted as follows: it is stripped
from its modality and tense, and

- if the object, described by the STD, is the agent of the CEM-event, the
CEM-event is copied into the transition-label

- otherwise, the sentence is transformed into a new one in which the object
is the linguistic subject of it. To achieve this the perspective antonym
of the verb describing the event is retrieved from the lexicon. This new
sentence becomes the transition-label. E.g. the transition label in the
library-STD corresponding to the CEM-event "a user borrows a book
from a library" will become "a library lends a book to a user".

If the CEM-arrow is a 'lightning'-arrow the negation of the verbal phrase is
attached to the STD-transition.
The (optional) constraint descriptions of event box EBi is attached to the
constraint part of the transition.

3. create the final node (NI) , and an empty transition (Te) from the last state
(N~) to it

Implementation We have implemented the algorithm as described in the pre-
vious section. The resulting Prolog-translator CEM2STD reads in a CEM and
generates for each active object occurring in the CEM a corresponding STD-
description. These STD-descriptions are translatable into internal representa-
tions of several tools. One of these tools is the CASE-tool Software through Pic-
tures (StP), another one is of course the code-generator of our overall project.

5.2 R e l a t e d W o r k

In [15] the inference of state machines out of OMT trace diagrams [20] is de-
scribed. The main difference between their approach and ours is the fact that
we use a formalized input, whereas their OMT trace diagrams are informal. The
advantages we gain out of this difference are the natural language generation
facility, the possibility to use other kinds of (logical) inferences (also using the
static information, which has the same logical foundation [4]) and the syntac-
tical and semantical verification of the models. Another difference is that we

3~

are generating STDs as an intermediate result to generate programming code,
and [15] are incorporating their method into an environment which supports the
conceptual modeling process using the OMT methodology.

6 E x a m p l e

To visualize the techniques, algorithms and tools described in this paper, we
wilt present an example. This example consists of the simplified library book
circulation system.

Library: R e q u i r e m e n t s Documen t : The library gives passes to persons
that want to become users of the library. I f a person does not want to be a user
any more, he returns his pass. A user can borrow a book for three weeks. At the
end of the allowed lending period, the user should return the book. I f a user does
not return a book action is taken, by sending him a reminder. I f one week after
the reminder is sent there is no message from the user, he must pay a fine of Dfl
70 and is blocked for borrowing any more books until the book is returned and

the fine is paid.
Library: C O L O R - X Event Model : Figure 3 shows the COLOR-X Event

Model corresponding to the requirements stated in the previous chapter, which
is syntactically correct, i.e. the model is right, and it is semantically correct, i.e.
the right model, according to the rules, stated in section 4.

Library : C P L and NL: The CEM2CPL tool has generated all the CPL-
specifications, which we will not show here. Some corresponding NL-sentences
(generated by CPL2NL) are listed below:

I. [a, library, is, permitted to,give, a,pass ,to, an,user]
2. [if, a, library,gave, a,pass, to, an, user,

then, an, user, is, permitted to, borrow, a, book, from, a, library]

4. [if, a, library,blocked, an, user,
and,an,user,did not return,a,book,to,a,library,
and, a, library, sent, a, reminder, to, an, user,
then, an,user, should, return, a, book, to, a, library, at, time ,T4,
and, an,user, should, pay, a, fine,F, to, a, library, at, time, T4,

where ,F, is ,70 ,and,where ,T4, is, infinite]

Library: S ta te Transi t ion Diagram: We haven chosen to let the CEM2STD-
tool generate a State Transition Diagram for the active object Library. This has
led to sentences at the transition-labels in which the library is the subject, see
Figure 3 (e.g. borrow has become lend).

7 C o n c l u s i o n s a n d F u r t h e r R e s e a r c h

This paper shows an approach to dynamic modeling (COLOR-X Event Mod-
eling, CEM), the result of which is very close to the original natural language
sentences that describe the Universe of Discourse. By facilitating the modeling

37

PERMIT: EB 1

MUST; EB 1

/i& T2 < T + 3 * week]

r
NEC: EB ~

1. send(ag=ilbrary)(go=reminderXd~t =user)

MUST: EB~ 1
.k ~t~.~(~g.:~g2_b~?~!!~r!!b~a[.yXy~:~m~..!:~!,. ' ..~2~
d: T3 < T2 + * week j

§
NEC: EB ~

1. block(ag=llbrary)(go=user)

MUST: EB~
1. pay(ag=userXgo=fioe F)(dest=libraryX~anp=lime "I'4)

1. fxee(a g =IN bet: :ry) (g) E B ~] I

bloc user

~'r receive fine rom user &
receive bo4 : from user

Fig. 3. The CEM and library-STD of a Library Book Circulation System

process itself, by means of a lexicon and offering standard building blocks, the
resulting models will tend to be correct and complete. By generating natural
language sentences out of CEMs the correspondence with the requirements doc-
ument can be verified. A nice feature of CEMs is the fact that for each object
a State Transition Diagram can be generated, which gives in turn very useful
information (object states, state transitions and causes for those transitions)
for a programming code generator. A similar project which focuses on Jacksons
Entity Structure Diagrams [14] is currently carried out. We are also comparing
CEMs with process graphs [10]. All these steps are meant to narrowing the gap
between problem specification and implementation.

The resulting dynamic event model is one way of viewing the Universe of
Discourse. To get a complete view of the UoD, we have already defined the
COLOR-X Static Object Model (CSOM), [4], that describes the static aspects
of the UoD in a linguistically-based graphical way, that links up closely with the
object model of the OMT-method, [20]. We have also defined a logical founda-
tion of CSOM by giving a translation to CPL-facts. The CSOM-model contains
the overall structure of the UoD for the programming code generator.

38

After finishing the COLOR-X project we will gain advantages in the fields of pro-
gramming code generation, reusable models (also by using a lexicon, which can
be regarded as a repository of reusable relationships and objects) and software
and feedback facilities.

With respect to the CEMs the following aspects are still researched:

- The addition of more semantic information to the arrows. For now, we have
just one kind of arrow: the conditional one (if event~ has taken place then
eventj could/should/has to take place). Other kinds of (rhetorical) relation-
ships could include causal, resulting and concurrent relations [16], [11].

- The relations between the dynamic CEM-models and the static CSOM-
models. The events from CEM will have their impact on the relations and
objects of CSOM. The kind of impact will also be described by means of
rhetorical relations.

- We are still analyzing some aspects of State Transition Diagram- Techniques,
like triggered operations and nested diagrams, that are not expressable in
CEM-models, yet.

We are still working on the kind of information a lexicon should contain
to be useful in the construction process of an Information and Communication
System. We have carried out some previous projects, in which a lexicon was
used in a data-dictionary environment [6], to interpret ER-diagrams [3], and
a general feasibility study to use linguistic knowledge during the conceptual
modeling process [2].

The tools described in this paper are still preliminary demos, although fully
functional. We are (re-) implementing these tools in a more efficient way into a
coherent environment at the moment. This should lead to a CASE-environment
in which a Lexicon Management System plays an important role. The overall
idea is to support the modeling process, according to the COLOR-X method,
with linguistic knowledge and tools in order to generate correct programming
code easily.

R e f e r e n c e s

1. W.J. Black. Acquisition of conceptual data models from natural language descrip-
tions. In Proceedings of the 2nd Conference of the European Chapter of the ACL,
Copenhagen, 1987.

2. P. Buitelaar and R.P. van de Riet. A feasibility study in linguistically motivated
object-oriented conceptual design of information systems. Technical Report IR-
293, Vrije Universiteit, Amsterdam, 1992.

3. P. Buitelaar and R.P. van de Riet. The use of a lexicon to interpret er diagrams:
a like project. In Proceedings of the ER Conference, Karlsruhe, 1992.

4. J.F.M. Burg and R.P. van de Riet. Color-x: Object modeling profits from linguis-
tics. Technical Report IR-365, Vrije Universiteit, Amsterdam, 1994.

5. J.F.M. Burg and R.P. van de Riet. Color-x: Object modeling profits from linguis-
tics. 1995. To appear in the Proceedings of the KB&:KS'95, the Second Interna-
tional Conference on Building and Sharing of Very Large-Scale Knowledge Bases,
Enschede, The Netherlands.

39

6. J.F.M. Burg, R.P. van de Riet, and S.C. Chang. A data-dictionary as a lexicon: An
applicication of linguistics in information systems. In B.Bhargava, T.Finin, and
Y.Yesha, editors, Proceedings of the 2nd International Conference on Information
and Knowledge Management, pages 114-123, 1993.

7. H. Dalianis. A method for validating a conceptual model by natural language
discourse generation. Proceedings of the ~th International Conference on Advanced
Information Systems Engineering, 1992.

8. F.P.M. Dignum. A Language for Modelling Knowledge Bases. Based on Linguis-
tics, Founded in Logic. PhD thesis, Vrije Universiteit, Amsterdam, 1989.

9. S.C. Dik. The Theory of Functional Grammar. Part I: The Structure of the Clause.
Floris Publications, Dordrecht, 1989.

10. R.B. Feenstra and R.J. Wieringa. Lcm 3.0: A language for describing conceptual
models - syntax definition. Technical Report IR-344, Vrije Universiteit, Amster-
dam, 1993.

11. J.A. Gulla. Deep Explanation Generation in Conceptual Modeling Environments.
PhD thesis, University of Trondheim, Trondheim, 1993.

12. K.M van Hee, L.J. Somers, and M. Voorhoeve. Executable specifications for
distributed information systems. In E.D. Fa!kenberg and P. Lindgreen, edi-
tors, Information System Concepts: An In-depth Analysis, pages 139-156. North-
Holland/IFIP, Amsterdam, 1989.

13. A.H.M. ter Hofstede. Information Modelling in Data Intensive Domains. Phi:)
thesis, Katholieke Universiteit Nijmegen, Nijmegen~ 1993.

14. M Jackson. System Development. Prentice-Hall, 1983.
15. K. Koskimies and E. Makinen. Inferring state machines from trace diagrams.

Technical Report A-1993-3, University of Tampere, 1993.
16. W.C. Mann and S.A. Thompson. Rhetorical structure theory: Description and

construction of text structures. In G. Kempen, editor, Natural Language Gen-
eration: New Results in Artificial Intelligence, Psychology and Linguistics, pages
85-95. Martinus Nijhoff Publishers, 1987.

17. G.A. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. Miller, and R. Tengi. Five
papers on wordnet. Technical report, Cognitive Science Laboratory, Princeton
University, 1993.

18. G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design
: A Fact Oriented Approach. Prentice Hall, 1989.

19. C. Rolland and C. Proix. A natural language approach for requirements engineer-
ing. In P. Loucopoulos, editor, Proceedings of the ~th International Conference on
Advanced Information Systems Engineering. Springer-Verlag, Manchester, 1992.

20. J. Rumbaugh, M. Blaha, W. Premerla~i, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall International, Inc., Englewood Cliffs,
New Yersey, 1991.

21. A.I. Wasserman and P.A. Pirchner. A graphical extensible integrated environ-
ment for software development. In P. Henderson, editor, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical S o , ware De-
velopment Environments, pages 131-142. ACM, ACM Press, March 1986.

22. R.J. Wieringa. Algebraic Foundations for Dynamic Conceptual Models. PhD the-
sis, Vrije Universiteit, Amsterdam, 1990.

