
A Model Inference System for Generic
Specification with Application to Code Sharing

Didier Bert , Catherine Oriat

LGI - IMAG, BP 53, 38041 Grenoble Cedex 9, France
e-mail : {Didier. Bert , Catherine. 0 r i a t } @imag. f r

A b s t r a c t . This paper presents a model inference system to control in-
stantiation of generic modules. Generic parameters are specified by prop-
erties which represent classes of modules sharing some common features.
Just as type checking consists in verifying that an expression is well
typed, model checking allows to detect whether a (possibly generic) in-
stantiation of a generic module is valid, i.e. whether the instantiation
module is a model of the parameterizing property. Equality of instances
can be derived from a canonical representation of modules. At last, we
show how the code of generic modules can be shared for all instances of
modules.

1 I n t r o d u c t i o n

Genericity is a useful feature for specification languages, and for programming
languages alike, because it allows to reuse already writ ten packages by instan-
tinting them on various ways, thus limits the risk of bugs and reduces software
costs. When a generic module is instantiated and impor ted into another module,
one has to check tha t the instantiation is valid, i.e. that the instantiation module
is a model of the formal part . For that , one can either rely on the syntax, i.e.
on the theory defined by the modules, or on the semantics of the modules in
the given specification language. In the first case one has to prove that some
formulae are theorems in the theory. This problem is semi-decidable if the se-
mantics is purely loose, but is undecidable if we work in an initial semantics
[14]. In the second case, one has to check properties on classes of algebras, which
is hard to do automatically. Consequently, in almost all specification languages
(e.g. PLUSS [11, 6, 7], A C T - T W O [9], OBJ [10, 12], . . .), such verifications are
left to the user.

In this paper, we show that such verifications can par t ly be done automat i -
cally. We describe the model inference system used by the specification language
LPG to control instantiation of generic modules. LPG (Langage de Programma-
tion G~n~rique, i.e. language for generic programming) is a specification language
developed at the IMAG Inst i tute by Didier Bert and Rachid Echahed [4, 5]. LPG
allows on the one hand to define and combine generic components of specifica-
tions, and on the other hand to make prototypes thanks to an evaluation tool.
There is also a solver of goals associating functional and logic programming.

In LPG, generic modules are parameterized by properties. The semantics of
LPG mixes loose and initial features: the semantics of a proper ty is a class of

742

algebras, while the semantics of a generic module is a free functor. An LPG
module can be instantiated by another one only if the other module is a model
of the required property. Properties and modules are related by constraints.
These constraints are similar those given by Ehrig and Mahr [9] in that they put
restrictions on classes of algebras. However, they differ in several points: firstly,
Ehrig and Mahr only consider inclusion of specifications, whereas we consider any
morphism in LPG. Secondly, for Ehrig and Mahr, the initial (or free) semantics
of a specification is stated at the time of its importation. In other words a
specification boolean can be imported once with a loose semantics, and once
with an initial semantics. In LPG, the semantics of a unit is stated once for all at
the time of its definition. Thirdly, and this is the original feature of LPG we want
to stress in this paper, the language provides an inference system to generate
new constraints from declared ones.

This inference system can be compared to type systems used for program-
ming languages: just as types allow to control utilizations of variables, constraints
allow to control instantiations of modules. There is one important difference
though: constraints apply at the level of units, and are therefore category theo-
retic (i.e. formulated with morphisms) rather than set theoretic (i.e. formulated
with membership or inclusion). In particular, there are various ways a module
can be a model of a property.

Such verifications for modules already exist in some programming languages.
For instance in Ada [1], homology rules are used to check the validity of instanti-
ations; e.g. with private and limited types. In Ada, these rules apply to one type
only. In contrast, M. V. Aponte proposed a type system for checking SML mod-
ules [2], based on unification and sharing, and which performs verifications w.r.t.
the whole specification of the generic part of a module. In this approach, verifi-
cations are based on the names of types and functions, and therefore there are
not various ways an SML-structure (i.e. a module) can match an SML-signature
(i.e. a property).

Constraints allow us to reason locally about units. The semantics of algebraic
specification languages often seems complicated because it is global, i.e. one has
to know the semantics of all imported units to know the semantics of the current
unit. Making constraints explicit does not change the semantics, but allows to
make safe deductions without having to be aware of all importations at the same
time. The inference system presented in this paper is sound with respect to the
algebraic semantics of the language. Note that it is not complete, and cannot be
complete with respect to this semantics. One reason is that we work in initial
algebras, and therefore it is impossible to deduce all semantically true statements
from any deductive system. All we can do is to rely on the user's declarations,
and make safe deductions.

The paper is organized as follows: section 2 and 3 present LPG units and
constraints. In section 4 we describe the inference system which allows to de-
duce new constraints, and thus checks the validity of instantiations. In section
5 we show the representation used for instances of generic modules. This repre-
sentation allows to share imported modules consistently. Section 6 presents the

743

compilation of modules. In contrast to languages such as Ada [1] or C + + [13],
generic modules are compiled only once in LPG, all the instantiations sharing
the same code. This is an interesting feature for a prototyping language, because
it reduces compilation times a lot when developing highly generic programs.

2 The Language Constructions

The LPG language has two kinds of units, namely properties and modules. LPG
modules allow to define abstract data types, and more generally to group to-
gether a set of types and operators logically related. LPG modules can be generic,
i.e. parameterized by a set of types and operators. The generic part of a module
is itself an LPG unit, and is called the property required by the module. LPG
units are composed of a signature and a set of formulae, which are conditional
equations. In modules, the equations may be oriented; in this case they can be
compiled and executed by the evaluation tool.

module BOOLEAN

types boolean

constructors

true, false : boolean

operators

not : boolean -> boolean

and : boolean, boolean -> boolean

or : boolean, boolean-> boolean

equations

not(true) ==> false

not(false) ==> true

and(true,x) ==> x

and(false,x) ==> false

or(true,x) ==> true

or(false,x) ==> x

property ANY

types any

property DISCRETE

types t

operators first, last : t

next : t -> t

property MONOID

types t

operators e : t

op : t,t -> t

equations

op(e,x) == x
op(x,e) == x
op(x ,op(y ,z)) == op(op(x ,y) , z)

Fig. 1. Simple examples of modules and properties

Figure 1 shows some simple examples of LPG units: the module BOOLEAN, the
properties ANY (specifying a single type any), DISCRETE and MONOID. Figure 2
defines the generic module of lists, parameterized by the property ANY.

module LIST requires ANY[elem]

types list

constructors nil : list ; cons : elem,list -> list

operators head : list -> elem ; tail : list -> list

equations head(cons(e,1)) ==> e ; tail(cons(e,1)) ==> 1

Fig. 2. Generic module of lists

744

Given a module M which requires a property P , there is an injective signature
morphism from P to M, which is merely a renaming of the types and operators
of the property P into the module M. These morphisms are noted P r M. The
module of lists is noted ANY ~ LIST, where r is the morphism {any ~ elem}.
r is given in the module LIST by the statement r e q u i r e s ANY[elem].

A non generic module M (such as BOOLEAN for instance) can be considered
as a generic module qs, tM > M parameterized by the empty property O, which
contains no types nor operators, tM is the only morphism from O to M. (Cate-
gorically speaking, 4~ is the initial object of the category of signatures.)

We suppose the reader is familiar with basic concepts of algebraic specifi-
cation (see e.g. [8]). The class of algebras which satisfy a unit U together with
homomorphisms is a category noted Alg (U). If m : U1 --+ U2 is a signature
morphism, then there is a forgetful functor U~ : Alg ([72) --+ Aft(U1), and a
free functor left adjoint to/A,~, .~',~ : Alg(U1) -+ Alg(U2). We do not define the
whole semantics of LPG here, but only present the features which are relevant
for this paper. For a complete description of the semantics of LPG, see [15].

D e f i n i t i o n 1. (s e m a n t i c s o f a p r o p e r t y) The semantics of a property P is
a class of algebras rood (P), which satisfy the specification P , i.e.: rood (P) C
Alg (P). The semantics of a property need not be the whole class Alg (P) because
some algebras may be left out to preserve imported modules.

D e f i n i t i o n 2. (s e m a n t i c s o f a m o d u l e) The semantics of a module P r M
is the free functor .~'~ : Alg (P) ---+ Alg (M). The free functor associates to each
algebra of Alg (P) the algebra freely generated on M. This functor must be
strongly persistent on algebras of rood (P), i.e.: for all algebras A of rood (P),
N~ (Jc, (A)) = A .

This condition expresses that previously defined units must be preserved, i.e.
that introducing a new module does not change the semantics of old units. Let 1
be the only algebra satisfying the empty property 4~. When a module is not
generic, i.e. when P is the empty property, then 9~(1) is the initial algebra.

3 C o n s t r a i n t s

There are five kinds of constraints relating LPG units, namely model, satisfaction,
combination, importation of a module into a property, and into a module. A
constraint is composed of a signature morphism and of a semantic condition,
which states the validity of the constraint.

D e f i n i t i o n 3. (m o d e l c o n s t r a i n t) A module P ~ M is a model of a property
P1 if there is a signature morphism P1 "~ > M and if the formulae of P1 hold
(through the translation induced by m) in M.

Model(P~ ~ >M) ~!=e? f Ltm(~',~(mod(P)))C rood(P1)

745

For instance, we can express that the module BOOLEAN is a model of the proper ty
ANY with the following declaration of model (written in the module BOOLEAN):

models ANY[boolean]

This declaration defines the signature morphism {any ~+ boolean} from ANY to
BOOLEAN. As there is no equation in the proper ty ANY, nothing else has to be
checked. In the same way, we can define different models of DISCRETE with nat-
ural numbers, for instance the natural numbers from 1 to 10 with the successor
operator; or natural numbers from 49 to O, with the predecessor operator.

models DlSCRETE[natural,l,10,succ], DISCRETE[natural,49,0,pred]

We can also express that the module BOOLEAN is a model of MONOID:

models MON01D[boolean,true,and], MON01D[boo!ean,false,or]

D e f i n i t i o n 4. (s a t i s f a c t i o n c o n s t r a i n t) A proper ty P2 satisfies a proper ty P1
if there is a signature morphism P1 ~ > P2 and if any module which is a model
of P2 is (through the translation induced by s) a model of P1.

Sat(P1 8>P2) ~f bl~(mod(P2)) C_ mod(P~) ~ rood(P2) C_ lT~-~(mod(P~))

For instance, we can state that the proper ty MONOID satisfies ANY, with the
declaration s a t i s f i e s ANY[t] in the unit MONOID. The declaration states that
there is a morphism ANY 8 >MONOID = {any ~-+ t} , such that any model of
MONOID is a model of ANY.

C o m b i n a t i o n . Propert ies can be combined, i.e. put together to form a new
property. Figure 3 shows a proper ty specifying any type and a discrete type.

property ANY+DISCRETE
combines ANY[elem], DiSCRETE[index,first,last,next]

Fig. 3. Property ANY+DISCRETE

The combination constraint states that any model of ANY+DISCRETE is a model of
ANY and is a model of DISCRETE (i.e. ANY+DISCRETE satisfies ANY and DISCRETE).
Conversely, any two models of ANY and DISCRETE allow to construct a model of
ANY+DISCRETE.

In this example, the "union" of both properties happens to be disjoint, i.e.
no symbol of type nor operator appears twice. We can for instance specify a
property ANY_DISCRETE, where the type of ANY and the type of DISCRETE are
shared. We thus specify a class of modules with one type which is a model of
both ANY and DISCRETE. Then any two models of ANY and DISCRETE which share
this type allow to construct a model of ANY_DISCRETE.

746

D e f i n i t i o n 5. (c o m b i n a t i o n c o n s t r a i n t) A proper ty P is a combination of
the properties P1,P2,...Pk w.r.t, the morphisms Pi c, ~p, Vi E { 1 , . . . k } if
models of P1, P2 , . . . P~, which share the same types and operators as specified in
P allow to construct a model of P .

k

Comb (P1, . . . Pk cl,...c~ > p) def rood (P) = N U~ 1 (rood (PO)
i=1

v ie {1,...k}, U~,(mod(P)) C_ mod(PO
r VAEAIg(P), (Vi E {1 k}, L/~,(A) E mod(Pi)) ~ AEmod(P)

I m p o r t a t i o n a n d I n s t a n t i a t i o n . Once a generic module has been defined, it
is possible to use it in another unit. This is called importat ion into a module or
into a property. When a module is imported, its formal par t (i.e. the signature
contained in its required property) must be instantiated, either with actual, or
formal parameters , or both. This instantiatlon defines a signature morphism
from the imported module to the currently defined unit.

We define on figure 4 a module called VECTOR, parameterized by the proper ty
ANY+DISCRETE. The proper ty ANY gives the type of information stored in a vector,
and the proper ty DISCRETE defines the index. We are not concerned here with
the actual representation of vectors, therefore we only specify two operations:
s t o r e which assigns a new value to an index, and ge t which picks up the value
associated to an index. From now on, the axiomatization of operators is omitted.

module VECTOR requires ANY+DISCRETE[t,index,first,last,next]

types vector

operators store : vector, index, t -> vector

get : vector, index -> t

Fig. 4. Part of the module VECTOR

Then we may define vectors of integers with some new operations. For that ,
we have to import the module INTEGER containing integer values as well as usual
operations on them. This module no longer requires a type for the information
stored, so it is only parameterized by the proper ty DISCRETE.

module INTEGER_VECTOR requires DISCRETE[index,first,last,next]
imports INTEGER, VECTOR[integer,index,first~last,next]

operators scalar_prod : vector, vector -> integer

Fig. 5. Module of vectors of integers

Another example: given a binary operator on the type t , we can define a
binary operator on vectors. The module figure 6 defines a null vector and a sum
of vectors, given a null element e and an associative binary operator op. Note
that we have also stated that vectors with these two operators form a monoid.

747

module VECTOR_SUMrequires MONOID+DISCRETE[t,e,op,index,first,last,next]

imports VECTOR[t,index,first,last,next]

operators null_vect : vector ; sum_vect : vector, vector -> vector

models MONOID[vector,null_vect,sum_veet]

Fig. 6. Vectors with a binary operator

In example 5, the type v e c t o r refers to the type vector of integers, whereas
in example 6 it refers to vector of t. There is no confusion because the module
VECTOR is only imported once in each module. If we want to import a module
several times (with different instantiations) in a module, we have to name the
instantiated modules:

INTEGER_V = VECTOR [integer, index, first, last, next]
T_V = VECTDR [t, index, first,last, next]

and then to refer to the types and operators as INTEGER_V.vector, T_V.vector,

INTEGER_V. store and so on.
The originality of LPG is that not any importat ion is valid. For instance, the

importation imports LiST[integer] is valid only if the module INTEGER is a
model of the property ANY with the morphism {any ~-> integer}. This can be
the case either if the user has defined such a model with the declaration models
ANY [integer], or if the system can deduce it from other declarations, using the
inference system presented next section. For instance, if INTEGER is a model of
MONOID, and if MONOID satisfies ANY, then INTEGER is a model of ANY.

The examples we have presented here are importations of a module into
another module. It is also possible to import a module into a property.

Definition 6. (constraint of importation of a module into a module)
Let PI �9 and P2'r~>A/f2 be two modules. PI'rI>M1 is imported into
P2 �9 with themorphism MI i >M2 if:

Import_M(M1 ~>M2) ~=~f bl~(Jz,=(mod(P2))) C .,Wrl(llzod(Pl))

<f Model (P1 _jorx ~ M2)
r [VA2 E ~nod(P2), ~i(JFr2 (A2)) = ,~Frl (~,/r~ (ZJi(.~Fr2 (A2)))) (at{M)

The morphism i expresses the instantiation of the generic par t of the module
P1 ' ~i ~ M1 with a par t of the module P2 ' ~2 ~ M2, and the inclusion of the non
generic part of P1 ' rl > M1 into P2 ~ ~" > M2.

D e f i n i t i o n 7. (c o n s t r a i n t o f i m p o r t a t i o n o f a m o d u l e in to a p r o p e r t y)
Let P1 ' ~ >/141 be a module, P2 be a property. P1 ' rl ~ M1 is imported into /'2
with the morphism M1 ~ > P2 if:

hnpo r t -P (M1 i) P 2) ~ f bl~(mod (P2)) C_ .T,.~ (rnod (P~))

Sat (P1 _ior~ ~ P2)

r VA2 E mod(P2), Ni(A2) = $c~I(L/~(UI(A2))) (Tip)

748

4 I n f e r e n c e R u l e s for M o d e l C h e c k i n g

In this section, we describe the rules which allow to combine constraints to build
new ones, and thus provide an inference system of constraints. Every declaration
of a model, satisfaction or combination constraint gives a corresponding axiom.
The user must check that these axioms are semantically correct, i.e. that the
associated semantic condition is satisfied.

{riM} Model (P1 ",?r~ >/I//2) (IM) {7"/p} Sat (P1 "~0~) P2) (IP)
Import_M (M1 ~ Me) Import_P (M~ ~ / ' 2)

Sat (~ ~" ~ P)

C o m b (~ ! . . . P ~

C o m b (~ , . . . P k

(1) Modei (~ r ~ M) (2) Model (P ~) M) (3)

Sat(P1 81) p2) ; Sat(P2_AL+ p3)
sat (P~ ~o~ ~ p~) (4)

Sat (/)1 ~) Pc) ; Model (/'2 m ~ M)
Model (P1 mo~) M) (5)

Model (P "~) &ll) ; Import_M (M1 _2.+ M2) (6)
Model(P ,ore , M2)

Model (P1 m) Me) ; Import_P (M2 _A_+ pa)
Sat (PI iota) P3) (7)

Comb (P 1 , . . . Pk el,. %) p)

Vj E {1,. . . k}, Sat (P, ~.r) P) (8)

c~ ~>P) ; V j E { 1 , . . . k } , Sat(P~ ~o~,)p,)
s~t (P 8 ~ p ,) (0)

c ~ . . ~) p) ; V jE{1 , . . . k} , Model(P, m~)M')
Model(P m i M') (10)

Fig. 7. Main inference rules

Figure 7 shows the set of main rules used by the system. Properties are noted
P , P1, P2, Modules such as P~ r ~ M , P1 ' rl) M1, /'2 ~,r~ ~M2, . . . are just
noted M, M1, M2, The rules (IM) and (IP) are associated to declarations
of importations. Their application is conditioned by the hypothesis ~ M or ~/p,
which must be checked by the user. The other rules are not associated with any
hypothesis, which means that their application is always possible. Axioms 1 and
2 state that any property P satisfies the empty property ~, and that any module
P ~ + M is a model of 4~. As �9 is initial, the morphisms Cp and CM are unique.
Axiom 3 expresses that a module P c.L+ M is a model of its own property P ,
with the morphism r. In particular, if two modules are parameterized by the
same property, then one can instantiate one module with the formal part of the

749

other one. Rules 4 to 7 are composition rules. Rules 8 to 10 are related to the
combines constraint.

Import_P (M -L4 I~ ; Sat (P1 __2_84 p:)

Import_P (M 80, ~ P2)

Import_P (M --~ P~) ; Model (/)1 m) M2)
Import_M (M too,) M2)

hnport_M (M~ ,1) M2) ; Import_P (M2 '~)/)3)

Import_P (M1 ,2o,i) P3)

Import_M (M1 ,1 ~ M2) ; Import_M (M2 '~ ~ M3)

Import_M (M1 ,2o,i) M3)

Fig. 8. Derived inference rules

(11)

(12)

(13)

(14)

These rules are actually used by the LPG system. One can note that we
have not considered all possible compositions. The remaining compositions are
described in figure 8. These derived rules are not used by the system, because
we have the following result:

Theorem 8. Any proof involving derived rules can be transformed into a proof
only involving main rules.

Proof. Any introduction of an Import_P constraint is preceded by a satisfaction
constraint, and any Import_M constraint is preceded by a model constraint. This
allows to get rid of all derived rules, from the axioms to the conclusion.

Theorem 9. The inference system is sound with respect to the semantics.

This result means that provided the conditions associated to declaration axioms
and rules (IM, IP) are satisfied, the constraints deduced by the inference system
are semantically correct.

E x a m p l e s o f D e d u c t i o n s . In this paragraph, we reconsider the examples of
importations given in the previous section and prove their validity using the
inference system.

The importat ion of a non generic module into a module or into a property
is always valid in the system, provided that the corresponding condition 7-/M or
~t~p is satisfied. This can be shown by using rule (2) followed by rule (IM), or by
using rule (1) followed by rule (IP). In particular, the importation of the module
INTEGER into INTEGER_VECTOR (figure 5) is valid.

Let us now consider the importat ion of VECTOR into INTEGER_VECTOR (figure
5), as well as the importat ion of VECTOR into VECTOR_SUM (figure 6). We are going
to take shorter notation, in order to be able to draw the proofs.

750

Properties Modules
ANY A

INTEGER I
DISCRETE D

VECTOR AD ~ m > V
MONOID M

INTEGER_VECTOR D ~ ~ > IV
ANY+DISCRETE AD

VECTOR_SUM M D ~ ra > V S
MONOID+DISCRETE MD

Model(A m)I) Import_M(I " >IV)
Model(A .~o,, >IV) (6)Model(D r~ >IV) (a)

Comb (A,D q'~,2) AD) Model (A ' > IV) (=) Model (D ' 2 > IV) (=)
(10)

Model(AD ,or~ > rV) (IM)
Import_M (V ~ IV)

Comb (M, D d, ,~ > MD)
1) MD) Model (MD > Sat.(M r (8) ~a VS) (3)

(a)
Sat (A-2-+ M) Model (M ~aoe', ~ VS)

(5)
Model (A ~aor ~ VS)
Model (A /) VS) (=)
I t

Comb(M,D %'% >MD)
Sat (n r > MD) (8) Mo---del (MD

Comb(A.D ~ > AD)

Model (D ; > VS)
Model (D _~'o ~ VS) (=)

,.3 > v s) (3)
(~)

Model(A ,'or > VS) ModeI(D ,'orlo~-2 > VS) (10)

Model(AD /o,-, > VS)_ (IM)
hnport_M (V / > VS)

Fig. 9. Proofs of importations

We suppose the user has dec la red the following cons t ra in ts :

INTEGER is a mode l of ANY: Model (A ~ > I) . MON01D satisfies ANY: Sat (A s > I) .

ANY+DISCRETE is a combina t ion of ANY and DISCRETE: Comb (A, D ci,o2 > AD);
t I

and MONOID+DISCRETE of MONOID and DISCRETE: Comb (M, D c,,c a > M D) .

T h e i m p o r t a t i o n of INTEGER into INTEGER_VECTOR is no ted I m p o r t _ M (I 91 > IV) .

T h e proofs t ha t I m p o r t _ M (V ~ > I V) and I m p o r t _ M (V ~' > V S) are valid a re
shown figure 9. Note t ha t we use a rule called (=) which means t h a t we use an
equa l i ty be tween morph i sms . Indeed we have i i o m = i o r i o Cl, r2 = i o r i o c2,

' i ' raoc ' l o s = i ' o r l o c i , a n d r a o % = o r i o c 2 . Th is rule a ppe a r s here ma in ly
to clar i fy the proofs. I t is not used as such by the sys t em which works wi th an
in te rna l r ep resen ta t ion of morph i sms as a set of pairs , and not wi th a symbol ic
no ta t ion .

751

5 Representation of Imported Modules

When a module is instantiated and imported, there is no creation of a new
module. For instance when we write

imports T_V = VECTOR[t,index,il,in,s]

T_V2 = VECTOR[t,index,il,in,s]

T_V and T_V2 represent the same module, and in particular, T_V.vector and
T_V2.vector refer to the same type.

This implies tha t instantiations can be done in various orders, as shown
figure 10: the names INT_MAT1 and INT_MAT2 refer to the same module. We thus
have an equality of modules which is stronger than equality of names, in the sense
that two modules with different names may be equal. The equality is of course
extended to types and operators. This allows to make multiple enrichments:
we may for instance make an enrichment of VECTOR by import ing two different
enrichments ENRICH_VECTORI and ENRICH_VECTOR2. The common part of both

modules (i.e. the module VECTOR) will be shared correctly.

module ENRICH_VECTOR requires ANY+DISCRETE[t,ind,il,in,s]
imports INTEGER

T_V = VECTOR[t,ind,il,in,s]
T_MAT = VECTOR[T_V.vector,ind,il,in,s]
INT_V = VECTOR[integer,ind,il,in,s]
INT_MATI = T_MAT[integer,ind,il,in,s]
INT_MAT2 = VECTOR[INT_g.vector,ind,il,in,s]

Fig. 10. Example of instantiations

To achieve this, modules are encoded with two pieces of information: first the
origin module (i.e. the module we want to import) , and secondly the morphism
from the required proper ty of the origin module to the current module. Tha t way,
named intermediary modules used for clarification are never stored in the system.
Similarly, types and operators are encoded with three pieces of information: their
name, the module they come from and the morphism from the required proper ty
of the origin module to the current *nodule. For instance, addition on integers
is coded as + = (% INTEGER, {}>, where {} is of course the initial morphism
gi _.~ > I . Let now m be the morphism

m = {elem ~+ integer, index ~+ ind, first ~+ il, last ~+ in, next ~+ s}:

INT_V.vector ---- <vector, VECTOR, m>

INT_MAT1. store ---- INT_MAT2. store =

< store, VECTOR, {elem ~+ < vector, VECTOR, m >,

index ~+ ind~ first ~+ il, last ~ in, next ~+ s } >

752

6 Compilation of Modules

The representation of imported modules allows to perform fast code generation
for operators of generic modules. The point is to share the code of generic op-
erators with all their instantiations. So, code generation is modular and avoids
multiple copies of the common parts. Notice that copying the code of generic
modules can be an option for run-time optimization, as for on-line generation of
the code of procedure bodies. In this section, we give insights on principles of
code generation without too many details about the generated code.

The execution abstract machine for generic operators is constituted of the
usual components of such machines, i.e. return-address stack (r - s t) , parameters
and memory stack (m-st) and evaluation stack (v-st). It can also deal with
exception recovery mechanism and handling contexts. The technique presented
here is independent from these features.

Compiling generic operators requires the introduction of a new stack to per-
form generic parameter bindings. At run-time, only generic parameters with
dynamic behaviour have to be stored in this stack, which is called generic pa-
rameter stack (or g - s t) . For example, we assume that types have only a static
scope and do not need to be represented in the g-stack. The dynamic part of a
property P is noted dyn(P). In the framework presented in the paper, dyn(P)
is the list of operators of P. So, for a generic module P ' ~ M the g-stack is
intended to represent the morphism which binds formal operators of dyn(P)
to effective functions. The morphism i restricted to the operators of dyn(P) is
noted dyn(i). Its cardinality is written #(dyn(P)).

The compilation procedure compile is presented for an expression in a generic
module P ~ M. It takes an expression and produces the corresponding code for
a machine with a state (v - s t ,m-s t , r - s t , g-st>. Operations on stacks and other
macro-commands for the abstract machine are defined figure 11. At run-time,
the result of the evaluation of an expression is always at the top of the evalu-
ation stack: v - s t . Moreover, the elements at the top of g - s t are the addresses
of the effective functions bound to the formal operators of P. The convention
adopted here is that identifiers of the compiling procedure are in italic type style
whereas generated macrocode is in type-written type style. The procedure gen
generate a macro-instruction for the abstract machine. All generating procedure
can be used as functions. In this case, the value returned is the address of (or a
reference to) the beginning of the generated code. In this text, address variables
are "logical" variables, because they can be used before having been assigned to.
If this happens, these variables are flagged by "~" (for "before").

compile (f (e i , . . . , en)) ----
compde (el);
gen ("m-st. push(v-st . r top) ");

compile (en);
gen ("m- s t . push (v- s t . r top) ");
compile_op (f , 0);
gen ("m-st. pop (n) ");

- - code for evaluating ei
- - the value of ei will be kept in m-st

- - code for evaluating e~
- - the value of e, will be at the top of m-st
- - code for the call of f
- - code to remove the arguments of f

753

For a stack object s t the following operations are available in the abstract machine:
s t .push(x) push x at the top of s t
s t . top return the value of the top of s t
s t . pop remove the top element of s t
s t .pop(n) remove n elements at the top of s t
s t . r top return t o p (s t) and also perform pop(s t)
s t . e lem(n) return the element of s t at offset n from the top.

s t . e lem(0) is the same as s t . t op .
The following macro instructions are used in the paper:
c a l l (f) push the address of the next statement onto r - s t

and jump to the address of the beginning of code of f.
f c a l l (• push the address of the next statement onto r - s t and jmnp

to the address of g - s t . e lem(i) . Notice that i is a constant.
r e t u rn perform r - s t . r t o p and jump to this address.
jump_to(a) go to the given address a.

Fig. 11. Operations of the abstract machine

For example, if f is a function with n parameters the code generation corre-
sponding to the use of the variable xi in the body of f is:

compde (x~) -- gen ("v - s t .push(m-st . elem(n -- i))");

Now, let us consider the procedure compile_op (f , k) . k is an integer giving the
depth in the g-stack where the binding morphism of the current module P r M
is. For the call above, the depth is clearly 0. Three cases have to be considered.
1. f is declared in M and is not a formal operator of the required property:

compile_op (f , k) ---- gen ("ca l l (f)") ;

2. f is declared in P ~ M and is a formal operator, at rank j in the list of
operators. The address of the effective operator is in the g-stack:

compite_op (f , k) = gen (" f c a l l (# (d y n (e)) - j) ") ;

3. f is declared in the module 1~ ' ~1 > A41, imported in M: ImportAM (A41 { ~ M) .

compite_op (f , k) =
install_generic_context (dyn(i o ri), k);
gen ("call (f) ");
g e n (" g - s t . p o p (# (d y n (P l))) ") ; - - restore the generic context

The installation of the generic context consists in pushing onto the g-stack the
addresses of pieces of code performing calls to each effective parameter . So, the
first step is to develop the installation for each operator:

install_generic_context ({ot ~ f l , . . . , ol ~ ft}, k) =
compile_va,'({ol ~ •}, k);
. . .

eom;il~_pa,-({o, ~ f, }, k);

Now, for each binding, two cases occur: either the target operator f j is an effec-
tive operator (in the module M) and then, we have to generate the call to f j as
a thunk and to push the address of this thunk on the g-stack, or the target is a

754

formal operator in M, say o~ and then, at run-time, the address of the effective
operator bound to o~ will be already in the g-stack at a given offset from the top.
In the first case, the depth of the morphism of the current required property P
must be increased by the cardinality of the binding morphism of P1. These two
cases are presented below:
1. The target .fj is effective:

co,~pile_pa~({ o~ ~ /~ }, k) =
t en ("jump_to (hnk_address ~) ");
thank_address := compile_op (f j , k + #(dyn(P1)));
gen ("return");
link_address := gen ("g-st.push(thunk_address) ");

2. The target o~ is formal in M. The address to be fetched is at # (d y n (P)) - i
from the top of g - s t of the evaluation context of M. This top is at depth k,
and has been modified by the installation of the generic context of the new call.
So, the right address depends on the values of k and j , and is computed by the
function fetch:

compile_par({oj ~-~ o: },k) =
g e n (" g - s t . p u s h (g - s t . e l e m (f e t c h (# (d y n (P)) - i , k , j)))");

In this paper, we do not develop the proof of correctness of code generation.
That can be done by showing that for each ground expression e, the semantics
of the evaluation of e is equivalent to the result of evaluation of the compiled
code of e with the abstract machine presented here.

The main characteristics of this code generation is that installation of a
generic context (parameters in the g-stack) is done only for context changes and
not for each call of generic operators as in higher-order functional programming.
For example, all the local calls inside a generic module (including recursive calls)
have no overhead with respect to non generic calls. In the same way, optimization
is possible if there exist several consecutive calls with the same effective generic
context, or for calls of operators of imported modules if they have the same list
of formal operators as the current module. Last point, this implementation has
been carried out successfully for the LPG language. The compilation technique
presented here can be applied to languages with generic units if the effective
generic context of any module M1 imported into a module M2 can be related to
the generic context of M2 (by the morphism i o r l) .

7 C o n c l u s i o n

We propose a model inference system to check the validity of instantiation of
generic modules. This system is based upon constraints relating whole units. We
think these relationships are suitable for modules, whereas other notions such as
subtyping or type hierarchies are more adapted to single types. We have shown
that the rules of the system are sound with respect to the algebraic semantics
of the language. The LPG language allows to instantiate modules either with
formal or actual parameters, or both, thus provides partial instantiation at the

755

level of modules. I t is possible to define multiple enrichments with consistent
sharing of submodules, in spite of renaming possibilities, thanks to a canonical
form for types and operators of impor ted modules. From a practical point of
view, all instances of a generic module share the same code~ which is interesting
for prototyping, specially for highly generic programs with a lot of code reuse.

References

1. Reference Manual of the Programming Language Ada. ANSI/MIL-STD 1815A,
1983.

2. M. V. Aponte. Extending record typing to type parametric modules with sharing.
In 20 *h Symposium-on Principles of Programming Languages, 1993.

3. G. Bernot and M. Bidoit. Proving correctness of algebraically specified software:
Modularity and observabitity issues. In Proceedings of AMAST'91. Springer-
Verlag, 1991.

4. D. Bert and R. Echahed. Design and implementation of a generic, logic and func-
tional programming language. In Proceedings of ESOP'86, number 213 in LNCS,
pages 119-132. Springer-Verlag, 1986.

5. D. Bert et al. Reference manual of the specification language LPG. Tech-
nical Report 59, LIFIA, mars 1990. Anonymous ftp at imag.fr , in
/pub/SCOP/LPG/NewSun4/man_Ipg. dvi.

6. M. Bidoit. The stratified loose approach: A generalization of initial and loose
semantics. Technical Report 402, Universit4 d'Orsay, France, 1988.

7. C. Choppy. About the "correctness" and "adequacy" of PLUSS specifications. In
Recent Trends m Data Type Specifications, number 785 in LNCS, pages 128-143.
Springer-Verlag, 1992.

8. H. Ehrig and B. Mahr. Fundamentals of algebraze spec~ficatwn 1. Equatwns and
initzal semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1985.

9. H. Ehrig and B. Mahr. Fundamentals of algebraic specification 2. Module Specifica-
twns and Constraints, volume 21 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1990.

10. K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles of OBJ2.
In Proc. Principles of Programming Languages, pages 52-66, 1985.

11. M.-C. Gaudel. A first introduction to PLUSS. Technical report, Universit6
d'Orsay, France, 1984.

12. J.A. Goguen, C. Kirchner, H. Kirchner, A. M6grelis, J. Meseguer, and T. Winkler.
An introduction to OBJ3. In Proceedings of the I s~ International Workshop on
Conditional Term Rewmting Systems, number 308 in LNCS~ pages 258-263. Sprin-
ger-Verlag, 1987.

13. S. B. Lippman. C4-+ Primer. Addison-Wesley, 1992.
14. F. Nourani. On induction for programming logic. EATCS Bulletin~ 13:51-63, 1981.
15. J.C. Reynaud. S6mantique de LPG. Research Report 651 I IMAG~ LIFIA, mars

1987.

