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A b s t r a c t .  This  paper presents a model inference system to control in- 
stantiation of generic modules. Generic parameters are specified by prop- 
erties which represent classes of modules sharing some common features. 
Just as type checking consists in verifying that an expression is well 
typed, model checking allows to detect whether a (possibly generic) in- 
stantiation of a generic module is valid, i.e. whether the instantiation 
module is a model of the parameterizing property. Equality of instances 
can be derived from a canonical representation of modules. At last, we 
show how the code of generic modules can be shared for all instances of 
modules. 

1 I n t r o d u c t i o n  

Genericity is a useful feature for specification languages, and for programming 
languages alike, because it allows to reuse already writ ten packages by instan- 
tinting them on various ways, thus limits the risk of bugs and reduces software 
costs. When a generic module is instantiated and impor ted  into another  module, 
one has to check tha t  the instantiation is valid, i.e. that  the instantiation module 
is a model of the formal part .  For that ,  one can either rely on the syntax, i.e. 
on the theory defined by the modules, or on the semantics of the modules in 
the given specification language. In the first case one has to prove that  some 
formulae are theorems in the theory. This problem is semi-decidable if the se- 
mantics is purely loose, but is undecidable if we work in an initial semantics 
[14]. In the second case, one has to check properties on classes of algebras, which 
is hard to do automatically. Consequently, in almost all specification languages 
(e.g. PLUSS [11, 6, 7], A C T - T W O  [9], OBJ [10, 12], . . .  ), such verifications are 
left to the user. 

In this paper,  we show that  such verifications can par t ly  be done automat i -  
cally. We describe the model inference system used by the specification language 
LPG to control instantiation of generic modules. LPG (Langage de Programma-  
tion G~n~rique, i.e. language for generic programming) is a specification language 
developed at the IMAG Inst i tute  by Didier Bert  and Rachid Echahed [4, 5]. LPG 
allows on the one hand to define and combine generic components of specifica- 
tions, and on the other hand to make prototypes thanks to an evaluation tool. 
There is also a solver of goals associating functional and logic programming.  

In LPG, generic modules are parameterized by properties. The semantics of 
LPG mixes loose and initial features: the semantics of a proper ty  is a class of 
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algebras, while the semantics of a generic module is a free functor. An LPG 
module can be instantiated by another one only if the other module is a model 
of the required property. Properties and modules are related by constraints. 
These constraints are similar those given by Ehrig and Mahr [9] in that  they put  
restrictions on classes of algebras. However, they differ in several points: firstly, 
Ehrig and Mahr only consider inclusion of specifications, whereas we consider any 
morphism in LPG. Secondly, for Ehrig and Mahr, the initial (or free) semantics 
of a specification is stated at the time of its importation. In other words a 
specification boolean  can be imported once with a loose semantics, and once 
with an initial semantics. In LPG, the semantics of a unit is stated once for all at 
the time of its definition. Thirdly, and this is the original feature of LPG we want 
to stress in this paper, the language provides an inference system to generate 
new constraints from declared ones. 

This inference system can be compared to type systems used for program- 
ming languages: just as types allow to control utilizations of variables, constraints 
allow to control instantiations of modules. There is one important  difference 
though: constraints apply at the level of units, and are therefore category theo- 
retic (i.e. formulated with morphisms) rather than set theoretic (i.e. formulated 
with membership or inclusion). In particular, there are various ways a module 
can be a model of a property. 

Such verifications for modules already exist in some programming languages. 
For instance in Ada [1], homology rules are used to check the validity of instanti- 
ations; e.g. with private and limited types. In Ada, these rules apply to one type 
only. In contrast, M. V. Aponte proposed a type system for checking SML mod- 
ules [2], based on unification and sharing, and which performs verifications w.r.t. 
the whole specification of the generic part of a module. In this approach, verifi- 
cations are based on the names of types and functions, and therefore there are 
not various ways an SML-structure (i.e. a module) can match an SML-signature 
(i.e. a property).  

Constraints allow us to reason locally about units. The semantics of algebraic 
specification languages often seems complicated because it is global, i.e. one has 
to know the semantics of all imported units to know the semantics of the current 
unit. Making constraints explicit does not change the semantics, but allows to 
make safe deductions without having to be aware of all importations at the same 
time. The inference system presented in this paper is sound with respect to the 
algebraic semantics of the language. Note that it is not complete, and cannot be 
complete with respect to this semantics. One reason is that  we work in initial 
algebras, and therefore it is impossible to deduce all semantically true statements 
from any deductive system. All we can do is to rely on the user's declarations, 
and make safe deductions. 

The paper is organized as follows: section 2 and 3 present LPG units and 
constraints. In section 4 we describe the inference system which allows to de- 
duce new constraints, and thus checks the validity of instantiations. In section 
5 we show the representation used for instances of generic modules. This repre- 
sentation allows to share imported modules consistently. Section 6 presents the 
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compilation of modules. In contrast to languages such as Ada [1] or C + +  [13], 
generic modules are compiled only once in LPG, all the instantiations sharing 
the same code. This is an interesting feature for a prototyping language, because 
it reduces compilation times a lot when developing highly generic programs. 

2 The Language Constructions 

The LPG language has two kinds of units, namely properties and modules. LPG 
modules allow to define abstract data types, and more generally to group to- 
gether a set of types and operators logically related. LPG modules can be generic, 
i.e. parameterized by a set of types and operators. The generic part  of a module 
is itself an LPG unit, and is called the property required by the module. LPG 
units are composed of a signature and a set of formulae, which are conditional 
equations. In modules, the equations may be oriented; in this case they can be 
compiled and executed by the evaluation tool. 

module BOOLEAN 

types boolean 

constructors 

true, false : boolean 

operators 

not : boolean -> boolean 

and : boolean, boolean -> boolean 

or : boolean, boolean-> boolean 

equations 

not(true) ==> false 

not(false) ==> true 

and(true,x) ==> x 

and(false,x) ==> false 

or(true,x) ==> true 

or(false,x) ==> x 

property ANY 

types any 

property DISCRETE 

types t 

operators first, last : t 

next : t -> t 

property MONOID 

types t 

operators e : t 

op : t,t -> t 

equations 

op(e,x)  == x 
op(x,e)  == x 
op(x ,op(y ,z ) )  == op(op(x ,y ) , z )  

Fig. 1. Simple examples of modules and properties 

Figure 1 shows some simple examples of LPG units: the module BOOLEAN, the 
properties ANY (specifying a single type any), DISCRETE and MONOID. Figure 2 
defines the generic module of lists, parameterized by the property ANY. 

module LIST requires ANY[elem] 

types list 

constructors nil : list ; cons : elem,list -> list 

operators head : list -> elem ; tail : list -> list 

equations head(cons(e,1)) ==> e ; tail(cons(e,1)) ==> 1 

Fig. 2. Generic module of lists 
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Given a module M which requires a property P ,  there is an injective signature 
morphism from P to M, which is merely a renaming of the types and operators 
of the property P into the module M. These morphisms are noted P r M. The 
module of lists is noted ANY ~ LIST, where r is the morphism {any ~ elem}. 
r is given in the module LIST by the statement r e q u i r e s  ANY[elem]. 

A non generic module M (such as BOOLEAN for instance) can be considered 
as a generic module qs, tM > M parameterized by the empty property O, which 
contains no types nor operators, tM is the only morphism from O to M. (Cate- 
gorically speaking, 4~ is the initial object of the category of signatures.) 

We suppose the reader is familiar with basic concepts of algebraic specifi- 
cation (see e.g. [8]). The class of algebras which satisfy a unit U together with 
homomorphisms is a category noted Alg (U). If m : U1 --+ U2 is a signature 
morphism, then there is a forgetful functor U~ : Alg ([72) --+ Aft(U1), and a 
free functor left adjoint to/A,~, .~',~ : Alg(U1) -+ Alg(U2). We do not define the 
whole semantics of LPG here, but  only present the features which are relevant 
for this paper. For a complete description of the semantics of LPG, see [15]. 

D e f i n i t i o n  1. ( s e m a n t i c s  o f  a p r o p e r t y )  The semantics of a property P is 
a class of algebras rood (P), which satisfy the specification P ,  i.e.: rood (P) C 
Alg (P). The semantics of a property need not be the whole class Alg (P) because 
some algebras may be left out to preserve imported modules. 

D e f i n i t i o n  2. ( s e m a n t i c s  o f  a m o d u l e )  The semantics of a module P r M 
is the free functor .~'~ : Alg (P) ---+ Alg (M). The free functor associates to each 
algebra of Alg (P) the algebra freely generated on M. This functor must be 
strongly persistent on algebras of rood (P),  i.e.: for all algebras A of rood (P), 
N~ (Jc, ( A ) ) = A .  

This condition expresses that previously defined units must be preserved, i.e. 
that  introducing a new module does not change the semantics of old units. Let 1 
be the only algebra satisfying the empty property 4~. When a module is not 
generic, i.e. when P is the empty property, then 9~(1) is the initial algebra. 

3 C o n s t r a i n t s  

There are five kinds of constraints relating LPG units, namely model, satisfaction, 
combination, importation of a module into a property, and into a module. A 
constraint is composed of a signature morphism and of a semantic condition, 
which states the validity of the constraint. 

D e f i n i t i o n  3. ( m o d e l  c o n s t r a i n t )  A module P ~ M is a model of a property 
P1 if there is a signature morphism P1 "~ > M and if the formulae of P1 hold 
(through the translation induced by m) in M. 

Model(P~ ~ >M) ~!=e? f Ltm(~',~(mod(P)))C rood(P1) 
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For instance, we can express that  the module BOOLEAN is a model of the proper ty  
ANY with the following declaration of model (written in the module BOOLEAN): 

models ANY[boolean] 

This declaration defines the signature morphism {any ~+ boolean}  from ANY to 
BOOLEAN. As there is no equation in the proper ty  ANY, nothing else has to be 
checked. In the same way, we can define different models of DISCRETE with nat- 
ural numbers,  for instance the natural  numbers from 1 to 10 with the successor 
operator;  or natural  numbers from 49 to O, with the predecessor operator.  

models DlSCRETE[natural,l,10,succ], DISCRETE[natural,49,0,pred] 

We can also express that the module BOOLEAN is a model of MONOID: 

models MON01D[boolean,true,and], MON01D[boo!ean,false,or] 

D e f i n i t i o n  4. ( s a t i s f a c t i o n  c o n s t r a i n t )  A proper ty  P2 satisfies a proper ty  P1 
if there is a signature morphism P1 ~ > P2 and if any module which is a model 
of P2 is ( through the translation induced by s) a model of P1. 

Sat(P1 8>P2) ~f bl~(mod(P2)) C_ mod(P~) ~ rood(P2) C_ lT~-~(mod(P~)) 

For instance, we can state that  the proper ty  MONOID satisfies ANY, with the 
declaration s a t i s f i e s  ANY[t] in the unit MONOID. The declaration states that  
there is a morphism ANY 8 >MONOID = {any ~-+ t} ,  such that  any model of 
MONOID is a model of ANY. 

C o m b i n a t i o n .  Propert ies can be combined, i.e. put  together to form a new 
property. Figure 3 shows a proper ty  specifying any type and a discrete type. 

property ANY+DISCRETE 
combines ANY[elem], DiSCRETE[index,first,last,next] 

Fig. 3. Property ANY+DISCRETE 

The combination constraint states that  any model of ANY+DISCRETE is a model of 
ANY and is a model of DISCRETE (i.e. ANY+DISCRETE satisfies ANY and DISCRETE). 
Conversely, any two models of ANY and DISCRETE allow to construct a model of 
ANY+DISCRETE. 

In this example, the "union" of both properties happens to be disjoint, i.e. 
no symbol of type nor operator appears twice. We can for instance specify a 
property ANY_DISCRETE, where the type of ANY and the type of DISCRETE are 
shared. We thus specify a class of modules with one type which is a model of 
both ANY and DISCRETE. Then any two models of ANY and DISCRETE which share 
this type allow to construct a model of ANY_DISCRETE. 
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D e f i n i t i o n  5. ( c o m b i n a t i o n  c o n s t r a i n t )  A proper ty  P is a combination of 
the properties P1,P2,...Pk w.r.t, the morphisms Pi c, ~p, Vi E { 1 , . . . k }  if 
models of P1, P2 , . . .  P~, which share the same types and operators as specified in 
P allow to construct a model of P .  

k 

Comb (P1, . . .  Pk cl,...c~ > p )  def rood (P) = N U~ 1 (rood (PO) 
i=1  

v ie  {1,...k}, U~,(mod(P)) C_ mod(PO 
r VAEAIg(P), (Vi E {1 . . . .  k}, L/~,(A) E mod(Pi)) ~ AEmod(P) 

I m p o r t a t i o n  a n d  I n s t a n t i a t i o n .  Once a generic module has been defined, it 
is possible to use it in another unit. This is called importat ion into a module or 
into a property. When a module is imported, its formal par t  (i.e. the signature 
contained in its required property)  must be instantiated, either with actual, or 
formal parameters ,  or both. This instantiatlon defines a signature morphism 
from the imported module to the currently defined unit. 

We define on figure 4 a module called VECTOR, parameterized by the proper ty  
ANY+DISCRETE. The proper ty  ANY gives the type of information stored in a vector, 
and the proper ty  DISCRETE defines the index. We are not concerned here with 
the actual representation of vectors, therefore we only specify two operations: 
s t o r e  which assigns a new value to an index, and ge t  which picks up the value 
associated to an index. From now on, the axiomatization of operators is omitted. 

module VECTOR requires ANY+DISCRETE[t,index,first,last,next] 

types vector 

operators store : vector, index, t -> vector 

get : vector, index -> t 

Fig. 4. Part of the module VECTOR 

Then we may define vectors of integers with some new operations. For that ,  
we have to import  the module INTEGER containing integer values as well as usual 
operations on them. This module no longer requires a type for the information 
stored, so it is only parameterized by the proper ty  DISCRETE. 

module INTEGER_VECTOR requires DISCRETE[index,first,last,next] 
imports INTEGER, VECTOR[integer,index,first~last,next] 

operators scalar_prod : vector, vector -> integer 

Fig. 5. Module of vectors of integers 

Another example: given a binary operator  on the type t ,  we can define a 
binary operator  on vectors. The module figure 6 defines a null vector and a sum 
of vectors, given a null element e and an associative binary operator  op. Note 
that  we have also stated that  vectors with these two operators form a monoid. 
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module VECTOR_SUMrequires MONOID+DISCRETE[t,e,op,index,first,last,next] 

imports VECTOR[t,index,first,last,next] 

operators null_vect : vector ; sum_vect : vector, vector -> vector 

models MONOID[vector,null_vect,sum_veet] 

Fig. 6. Vectors with a binary operator 

In example 5, the type v e c t o r  refers to the type vector of integers, whereas 
in example 6 it refers to vector of t. There is no confusion because the module 
VECTOR is only imported once in each module. If we want to import  a module 
several times (with different instantiations) in a module, we have to name the 
instantiated modules: 

INTEGER_V = VECTOR [integer, index, first, last, next] 
T_V = VECTDR [t, index, first,last, next] 

and then to refer to the types and operators as INTEGER_V.vector, T_V.vector, 

INTEGER_V. store and so on. 
The originality of LPG is that  not any importat ion is valid. For instance, the 

importation imports LiST[integer] is valid only if the module INTEGER is a 
model of the property ANY with the morphism {any ~-> integer}. This can be 
the case either if the user has defined such a model with the declaration models 
ANY [integer], or if the system can deduce it from other declarations, using the 
inference system presented next section. For instance, if INTEGER is a model of 
MONOID, and if MONOID satisfies ANY, then INTEGER is a model of ANY. 

The examples we have presented here are importations of a module into 
another module. It is also possible to import a module into a property. 

Definition 6. (constraint of importation of a module into a module) 
Let PI �9 and P2'r~>A/f2 be two modules. PI'rI>M1 is imported into 
P2 �9 with themorphism MI i >M2 if: 

Import_M(M1 ~>M2) ~=~f bl~(Jz,=(mod(P2))) C .,Wrl(llzod(Pl) ) 

<f Model (P1 _jorx ~ M2) 
r [VA2 E ~nod(P2), ~i(JFr2 (A2)) = ,~Frl (~,/r~ (ZJi(.~Fr2 (A2)))) (at{M) 

The morphism i expresses the instantiation of the generic par t  of the module 
P1 ' ~i ~ M1 with a par t  of the module P2 '  ~2 ~ M2, and the inclusion of the non 
generic part  of P1 ' rl > M1 into P2 ~ ~" > M2. 

D e f i n i t i o n  7. ( c o n s t r a i n t  o f  i m p o r t a t i o n  o f  a m o d u l e  in to  a p r o p e r t y )  
Let P1 ' ~ >/141 be a module, P2 be a property. P1 ' rl ~ M1 is imported into /'2 
with the morphism M1 ~ > P2 if: 

hnpo r t -P (M1  i ) P 2 )  ~ f  bl~(mod ( P2 ) ) C_ .T,.~ (rnod ( P~ ) ) 

Sat (P1 _ior~ ~ P2) 

r VA2 E mod(P2), Ni(A2) = $c~I(L/~(UI(A2))) (Tip) 
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4 I n f e r e n c e  R u l e s  for  M o d e l  C h e c k i n g  

In this section, we describe the rules which allow to combine constraints to build 
new ones, and thus provide an inference system of constraints. Every declaration 
of a model, satisfaction or combination constraint gives a corresponding axiom. 
The user must check that  these axioms are semantically correct, i.e. that  the 
associated semantic condition is satisfied. 

{riM} Model (P1 ",?r~ >/I//2) (IM) {7"/p} Sat (P1 "~0~ ) P2) (IP) 
Import_M (M1 ~ Me) Import_P (M~ ~ / ' 2 )  

Sat (~ ~" ~ P) 

C o m b ( ~ ! . . . P ~  

C o m b ( ~ , . . . P k  

(1) Modei (~ r ~ M)  (2) Model (P ~ ) M) (3) 

Sat(P1 81 ) p2) ; Sat(P2_AL+ p3) 
sat  (P~ ~o~ ~ p~) (4) 

Sat (/)1 ~ ) Pc) ; Model (/'2 m ~ M) 
Model (P1 mo~ ) M) (5) 

Model (P "~ ) &ll) ; Import_M (M1 _2.+ M2) (6) 
Model(P ,ore , M2) 

Model (P1 m ) Me) ; Import_P (M2 _A_+ pa) 
Sat (PI iota ) P3) (7) 

Comb ( P 1 , . . .  Pk el,. % ) p )  

Vj E {1,. . .  k}, Sat (P, ~.r ) P) (8) 

c~ ..... ~>P) ; V j E { 1 , . . . k } ,  Sat(P~ ~o~,)p,) 
s~t (P 8 ~ p , )  (0) 

c ~ . . ~ ) p )  ; V jE{1 , . . . k} ,  Model(P, m~ )M')  
Model(P m i M') (10) 

Fig. 7. Main inference rules 

Figure 7 shows the set of main rules used by the system. Properties are noted 
P ,  P1, P2, . . . .  Modules such as P~ r ~ M ,  P1 ' rl ) M1, /'2 ~,r~ ~M2, . . .  are just 
noted M, M1, M2, . . . .  The rules (IM) and (IP) are associated to declarations 
of importations. Their  application is conditioned by the hypothesis ~ M  or ~/p, 
which must be checked by the user. The other rules are not associated with any 
hypothesis, which means that  their application is always possible. Axioms 1 and 
2 state that  any property P satisfies the empty property ~, and that  any module 
P ~ +  M is a model of 4~. As �9 is initial, the morphisms Cp and CM are unique. 
Axiom 3 expresses that a module P c.L+ M is a model of its own property P ,  
with the morphism r. In particular, if two modules are parameterized by the 
same property, then one can instantiate one module with the formal part  of the 
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other one. Rules 4 to 7 are composition rules. Rules 8 to 10 are related to the 
combines constraint. 

Import_P (M -L4 I~ ; Sat (P1 __2_84 p:) 

Import_P (M 80, ~ P2) 

Import_P (M --~ P~) ; Model (/)1 m ) M2) 
Import_M (M too, ) M2) 

hnport_M (M~ ,1 ) M2) ; Import_P (M2 '~ )/)3) 

Import_P (M1 ,2o,i ) P3) 

Import_M (M1 ,1 ~ M2) ; Import_M (M2 '~ ~ M3) 

Import_M (M1 ,2o,i ) M3) 

Fig. 8. Derived inference rules 

(11) 

(12) 

(13) 

(14) 

These rules are actually used by the LPG system. One can note that  we 
have not considered all possible compositions. The remaining compositions are 
described in figure 8. These derived rules are not used by the system, because 
we have the following result: 

Theorem 8. Any proof involving derived rules can be transformed into a proof 
only involving main rules. 

Proof. Any introduction of an Import_P constraint is preceded by a satisfaction 
constraint, and any Import_M constraint is preceded by a model constraint. This 
allows to get rid of all derived rules, from the axioms to the conclusion. 

Theorem 9. The inference system is sound with respect to the semantics. 

This result means that provided the conditions associated to declaration axioms 
and rules (IM, IP) are satisfied, the constraints deduced by the inference system 
are semantically correct. 

E x a m p l e s  o f  D e d u c t i o n s .  In this paragraph, we reconsider the examples of 
importations given in the previous section and prove their validity using the 
inference system. 

The importat ion of a non generic module into a module or into a property 
is always valid in the system, provided that  the corresponding condition 7-/M or 
~t~p is satisfied. This can be shown by using rule (2) followed by rule (IM), or by 
using rule (1) followed by rule (IP). In particular, the importation of the module 
INTEGER into INTEGER_VECTOR (figure 5) is valid. 

Let us now consider the importat ion of VECTOR into INTEGER_VECTOR (figure 
5), as well as the importat ion of VECTOR into VECTOR_SUM (figure 6). We are going 
to take shorter notation, in order to be able to draw the proofs. 
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Properties Modules 
ANY A 

INTEGER I 
DISCRETE D 

VECTOR AD ~ m > V 
MONOID M 

INTEGER_VECTOR D ~ ~ > IV 
ANY+DISCRETE AD 

VECTOR_SUM M D ~ ra > V S 
MONOID+DISCRETE MD 

Model(A m )I)  Import_M(I " >IV) 
Model(A .~o,, >IV) (6)Model( D r~ >IV) (a) 

Comb (A,D q'~,2 ) AD) Model (A ' . . . . . .  > IV) (=) Model (D ' . . . . .  2 > IV) (=) 
(10) 

Model(AD ,or~ > rV) (IM) 
Import_M (V ~ IV) 

Comb (M, D d, ,~ > MD) 
1 ) MD) Model (MD > Sat.(M r (8) ~a VS) (3) 

(a) 
Sat (A-2-+ M) Model (M ~aoe', ~ VS) 

(5) 
Model (A ~aor ~ VS) 
Model (A / . . . . . .  ) VS) (=) 
I t 

Comb(M,D %'% >MD) 
Sat (n  r > MD) (8) Mo---del (MD 

Comb(A.D .... ~ > AD) 

Model (D . . . .  ; > VS) 
Model (D _~'o . . . . .  ~ VS)  (=) 

,.3 > v s )  (3) 
(~) 

Model(A ,'or . . . .  > VS) ModeI(D ,'orlo~-2 > VS) (10) 

Model(AD /o,-, > VS)_ (IM) 
hnport_M (V / > VS) 

Fig. 9. Proofs of importations 

We suppose  the  user  has dec la red  the  following cons t ra in ts :  

INTEGER is a mode l  of ANY: Model  (A ~ > I ) .  MON01D satisfies ANY: Sat  (A s > I ) .  

ANY+DISCRETE is a combina t ion  of ANY and  DISCRETE: Comb  (A, D ci,o2 > AD); 
t I 

and  MONOID+DISCRETE of MONOID and  DISCRETE: Comb  (M,  D c,,c a > M D ) .  

T h e  i m p o r t a t i o n  of INTEGER into INTEGER_VECTOR is no ted  I m p o r t _ M  ( I  91 > IV) .  

T h e  proofs  t ha t  I m p o r t _ M  (V ~ > I V )  and  I m p o r t _ M  (V ~' > V S )  are  valid a re  
shown figure 9. Note  t ha t  we use a rule called (= )  which means  t h a t  we use an 
equa l i ty  be tween  morph i sms .  Indeed  we have i i  o m = i o r i  o Cl, r2 = i o r i  o c2, 

' i '  raoc '  l o s = i ' o r l o c i , a n d r a o %  = o r i o c 2 .  Th is  rule a ppe a r s  here  ma in ly  
to clar i fy the  proofs.  I t  is not  used as such by  the  sys t em which works wi th  an  
in te rna l  r ep resen ta t ion  of morph i sms  as a set of pairs ,  and  not  wi th  a symbol ic  
no ta t ion .  
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5 Representation of Imported Modules 

When a module is instantiated and imported,  there is no creation of a new 
module. For instance when we write 

imports T_V = VECTOR[t,index,il,in,s] 

T_V2 = VECTOR[t,index,il,in,s] 

T_V and T_V2 represent the same module, and in particular, T_V.vector  and 
T_V2.vector  refer to the same type. 

This implies tha t  instantiations can be done in various orders, as shown 
figure 10: the names INT_MAT1 and INT_MAT2 refer to the same module. We thus 
have an equality of modules which is stronger than equality of names, in the sense 
that  two modules with different names may be equal. The  equality is of course 
extended to types and operators.  This allows to make multiple enrichments: 
we may for instance make an enrichment of VECTOR by import ing two different 
enrichments ENRICH_VECTORI and ENRICH_VECTOR2. The common part of both 

modules (i.e. the module VECTOR) will be shared correctly. 

module ENRICH_VECTOR requires ANY+DISCRETE[t,ind,il,in,s] 
imports INTEGER 

T_V = VECTOR[t,ind,il,in,s] 
T_MAT = VECTOR[T_V.vector,ind,il,in,s] 
INT_V = VECTOR[integer,ind,il,in,s] 
INT_MATI = T_MAT[integer,ind,il,in,s] 
INT_MAT2 = VECTOR[INT_g.vector,ind,il,in,s] 

Fig. 10. Example of instantiations 

To achieve this, modules are encoded with two pieces of information: first the 
origin module (i.e. the module we want to import) ,  and secondly the morphism 
from the required proper ty  of the origin module to the current module. Tha t  way, 
named  intermediary modules used for clarification are never stored in the system. 
Similarly, types and operators are encoded with three pieces of information: their 
name, the module they come from and the morphism from the required proper ty  
of the origin module to the current *nodule. For instance, addition on integers 
is coded as + = (% INTEGER, {}>, where {} is of course the initial morphism 
gi _.~ > I .  Let now m be the morphism 

m = {elem ~+ integer, index ~+ ind, first ~+ il, last ~+ in, next ~+ s}: 

INT_V.vector ---- <vector, VECTOR, m> 

INT_MAT1. store ---- INT_MAT2. store = 

< store, VECTOR, {elem ~+ < vector, VECTOR, m >, 

index ~+ ind~ first ~+ il, last ~ in, next ~+ s } > 
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6 Compilation of Modules 

The representation of imported modules allows to perform fast code generation 
for operators of generic modules. The point is to share the code of generic op- 
erators with all their instantiations. So, code generation is modular and avoids 
multiple copies of the common parts. Notice that  copying the code of generic 
modules can be an option for run-time optimization, as for on-line generation of 
the code of procedure bodies. In this section, we give insights on principles of 
code generation without too many details about the generated code. 

The execution abstract machine for generic operators is constituted of the 
usual components of such machines, i.e. return-address stack ( r - s t ) ,  parameters 
and memory stack (m-st) and evaluation stack (v-st). It can also deal with 
exception recovery mechanism and handling contexts. The technique presented 
here is independent from these features. 

Compiling generic operators requires the introduction of a new stack to per- 
form generic parameter  bindings. At run-time, only generic parameters with 
dynamic behaviour have to be stored in this stack, which is called generic pa- 
rameter stack (or g - s t ) .  For example, we assume that types have only a static 
scope and do not need to be represented in the g-stack. The dynamic part  of a 
property P is noted dyn(P). In the framework presented in the paper, dyn(P) 
is the list of operators of P.  So, for a generic module P '  ~ M the g-stack is 
intended to represent the morphism which binds formal operators of dyn(P) 
to effective functions. The morphism i restricted to the operators of dyn(P) is 
noted dyn(i). Its cardinality is written #(dyn(P)). 

The compilation procedure compile is presented for an expression in a generic 
module P ~ M. It takes an expression and produces the corresponding code for 
a machine with a state ( v - s t  ,m-s t ,  r - s t ,  g-st>. Operations on stacks and other 
macro-commands for the abstract machine are defined figure 11. At run-time, 
the result of the evaluation of an expression is always at the top of the evalu- 
ation stack: v - s t .  Moreover, the elements at the top of g - s t  are the addresses 
of the effective functions bound to the formal operators of P.  The convention 
adopted here is that  identifiers of the compiling procedure are in italic type style 
whereas generated macrocode is in type-written type style. The procedure gen 
generate a macro-instruction for the abstract machine. All generating procedure 
can be used as functions. In this case, the value returned is the address of (or a 
reference to) the beginning of the generated code. In this text,  address variables 
are "logical" variables, because they can be used before having been assigned to. 
If this happens, these variables are flagged by "~" (for "before"). 

compile ( f ( e i , . . . ,  en)) ---- 
compde (el); 
gen ("m-st. push(v-st  . r top) "); 

compile (en); 
gen ("m- s t .  push (v- s t .  r top) "); 
compile_op (f , 0); 
gen ("m-st. pop (n) "); 

- -  code for evaluating ei 
- -  the value of ei will be kept in m-st 

- -  code for evaluating e~ 
- -  the value of e, will be at the top of m-st 
- -  code for the call of f 
- -  code to remove the arguments of f 



753 

For a stack object s t  the following operations are available in the abstract machine: 
s t .push(x)  push x at the top of s t  
s t .  top return the value of the top of s t  
s t .  pop remove the top element of s t  
s t .pop(n)  remove n elements at the top of s t  
s t  . r top  return t o p ( s t )  and also perform pop(s t )  
s t . e lem(n)  return the element of s t  at offset n from the top. 

s t . e lem(0)  is the same as s t . t op .  
The following macro instructions are used in the paper: 
c a l l ( f )  push the address of the next statement onto r - s t  

and jump to the address of the beginning of code of f.  
f c a l l ( •  push the address of the next statement onto r - s t  and jmnp 

to the address of g - s t .  e lem(i) .  Notice that i is a constant. 
r e t u rn  perform r - s t . r t o p  and jump to this address. 
jump_to(a) go to the given address a. 

Fig. 11. Operations of the abstract machine 

For example, if f is a function with n parameters  the code generation corre- 
sponding to the use of the variable xi in the body of f is: 

compde (x~) -- gen ( "v - s t  .push(m-st .  elem(n -- i) )"); 

Now, let us consider the procedure compile_op ( f ,  k) .  k is an integer giving the 
depth in the g-stack where the binding morphism of the current module P r  M 
is. For the call above, the depth is clearly 0. Three cases have to be  considered. 
1. f is declared in M and is not a formal operator  of the required property:  

compile_op ( f , k) ---- gen ( "ca l l  ( f )" ) ;  

2. f is declared in P ~ M and is a formal operator,  at  rank  j in the list of 
operators.  The address of the effective operator  is in the g-stack: 

compite_op ( f ,  k) = gen ( " f c a l l  ( # ( d y n ( e ) )  - j ) " ) ;  

3. f is declared in the module 1~ ' ~1 > A41, imported in M: ImportAM (A41 { ~ M) .  

compite_op ( f  , k) = 
install_generic_context ( dyn(  i o ri), k); 
gen ("call  (f) "); 
g e n ( " g - s t . p o p ( # ( d y n ( P l ) ) ) " ) ;  - -  restore the generic context 

The installation of the generic context consists in pushing onto the g-stack the 
addresses of pieces of code performing calls to each effective parameter .  So, the 
first step is to develop the installation for each operator:  

install_generic_context ({ot ~ f l , . . . ,  ol ~ ft}, k) = 
compile_va,'({ol ~ •}, k); 
. . .  

eom;il~_pa,-( {o, ~ f, }, k); 

Now, for each binding, two cases occur: either the target  operator  f j  is an effec- 
tive operator  (in the module M)  and then, we have to generate the call to f j  as 
a thunk and to push the address of this thunk on the g-stack, or the target  is a 
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formal operator in M,  say o~ and then, at run-time, the address of the effective 
operator bound to o~ will be already in the g-stack at a given offset from the top. 
In the first case, the depth of the morphism of the current required property P 
must be increased by the cardinality of the binding morphism of P1. These two 
cases are presented below: 
1. The target .fj is effective: 

co,~pile_pa~( { o~ ~ /~ }, k) = 
t en  ("jump_to ( hnk_address ~ ) "); 
thank_address := compile_op ( f j ,  k + #(dyn(P1))); 
gen ("return"); 
link_address := gen ("g-st.push(thunk_address) "); 

2. The target o~ is formal in M. The address to be fetched is at # ( d y n ( P ) )  - i 
from the top of g - s t  of the evaluation context of M. This top is at depth k, 
and has been modified by the installation of the generic context of the new call. 
So, the right address depends on the values of k and j ,  and is computed by the 
function fetch: 

compile_par({oj ~-~ o: },k) = 
g e n ( " g - s t . p u s h ( g - s t . e l e m (  f e t c h ( # ( d y n ( P ) )  - i , k , j )  ))");  

In this paper, we do not develop the proof of correctness of code generation. 
That  can be done by showing that for each ground expression e, the semantics 
of the evaluation of e is equivalent to the result of evaluation of the compiled 
code of e with the abstract machine presented here. 

The main characteristics of this code generation is that  installation of a 
generic context (parameters in the g-stack) is done only for context changes and 
not for each call of generic operators as in higher-order functional programming. 
For example, all the local calls inside a generic module (including recursive calls) 
have no overhead with respect to non generic calls. In the same way, optimization 
is possible if there exist several consecutive calls with the same effective generic 
context, or for calls of operators of imported modules if they have the same list 
of formal operators as the current module. Last point, this implementation has 
been carried out successfully for the LPG language. The compilation technique 
presented here can be applied to languages with generic units if the effective 
generic context of any module M1 imported into a module M2 can be related to 
the generic context of M2 (by the morphism i o r l ) .  

7 C o n c l u s i o n  

We propose a model inference system to check the validity of instantiation of 
generic modules. This system is based upon constraints relating whole units. We 
think these relationships are suitable for modules, whereas other notions such as 
subtyping or type hierarchies are more adapted to single types. We have shown 
that  the rules of the system are sound with respect to the algebraic semantics 
of the language. The LPG language allows to instantiate modules either with 
formal or actual parameters, or both, thus provides partial instantiation at the 
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level of modules. I t  is possible to define multiple enrichments with consistent 
sharing of submodules, in spite of renaming possibilities, thanks to a canonical 
form for types and operators  of impor ted  modules. From a practical point of 
view, all instances of a generic module share the same code~ which is interesting 
for prototyping,  specially for highly generic programs with a lot of code reuse. 
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