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A b s t r a c t .  In this paper we present a concurrency measure that is especially 
adapted to distributed programs that exhibit regular run-time behaviours, 
including many programs that are obtained by automatic parallelization of 
sequential code. This measure is based on the antichain lattice of the partial 
order that models the distributed execution under consideration. We show the 
conditions under which the measure is computable on an infinite execution 
that is the repetition of a finite pattern. There, the measure can be computed 
by considering only a bounded number of patterns, the bound being at most 
the number of processors. 

1 I n t r o d u c t i o n  

The t rend towards the use of d is t r ibuted memory  parallel  machines is very evi- 
dent. However, their p rogramming  environments have to be significantly improved,  
especially in the field we are mainly  interested in: semi-au tomated  dis t r ibut ion of 
sequential  code for scientific computing.  Indeed, programmers  need sophist icated 
performance evaluat ion tools. However, there is no well-accepted "complexity" cri- 
terion for d is t r ibuted  programs,  for the behaviours of asynchronous message-passing 
programs are not  yet sufficiently understood.  I t  is also very difficult to design tools 
tha t  can give relevant performance information from stat ic  analysis of d is t r ibuted 
code. 

A research axis is to s tudy runs of a d is t r ibuted program instead of the pro- 
g ram itself. Especially, it  needs to define concurrency measures,  i.e. measures tha t  
can help reveal the synchronizat ion structure of a computa t ion ,  as opposed to the 
t rad i t iona l  ones (message count, for instance) which only give quant i ta t ive  informa- 
tion about  the computat ion.  For this it  is now usual to take a dis t r ibuted execution 
as a par t ia l ly  ordered set of events tha t  are causally related by process sequentiM- 
ity and interprocess communicat ion [14]. As far as we know, the first concurrency 
measure tha t  takes account of causali ty was proposed by Charron-Bost  [5], followed 
by [9, 11, 16]. 

It is shown in [11] tha t  either these measures are too inaccurate  or their  com- 
pu ta t iona l  complexi ty  makes them impract icable .  It is also impor tan t  to observe 
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that  these measures only deal with finite runs. Although executions of reactive pro- 
grams are usually infinite. Further, executions of distributed programs for scientific 
applications, even finite, are usually very long. Nevertheless, [5] and [11] give some 
encouraging results. The measure in [5] is shown to behave well with respect to a 
particular kind of concatenation operator on computations. On the other hand, the 
work in [11] shows that  there is some hope of obtaining practical concurrency mea- 
sures for particular classes of executions (for instance, [11] considers executions that  
can be modeled as so-called interval orders). 

We address several closely related problems. First, is it possible to define a measure 
that  gives significant values even in the case of infinite executions? And if such a 
measure exists, does there exist a class of infinite computations for which the measure 
can be computed? Naturally, if such computat ions do exist, they must exhibit some 
kind of regularity tha t  the measure must  take into account. Moreover, as an infinite 
execution can be seen as a limit of a sequence of finite ones, the computat ion of the 
measure should not depend on the size of the order that  models an execution: it 
must only depend on the size of a bounded subset of this order. 

In this paper we give a first positive answer to these problems. We define a concur- 
rency measure and a class of executions that  exhibit a particular kind of regularity: 
an execution in this class can be modeled as either an infinite or a finite repetition 
of a finite elementary order we call a basic paltern. If this pattern is well connected, 
we establish for any regular execution (even infinite) that  our measure is bounded 
and can be computed merely from a bounded number of repetitions of this basic 
pattern. Such an execution is said to be well-synchronized. Finally, we show that  
this property is of interest for semi-automated distribution of sequential programs. 

Paper Organization. We first describe the formal framework used throughout the 
paper and present a model of an execution of a distributed program as a labeled 
poset. 

We then define our concurrency measure # on a distributed execution. It is 
expressed in terms of the antichain lattice of the associated labeled poset. Measure 
/, associates a value with each event in the execution. An event with a small value 
denotes a strong synchronization, that  is, an execution bottleneck. 

We then formally define regular executions and well-synchronization. For a reg- 
ular well-synchronized execution, we show that  # is bounded, reflects regularity and 
can be computed on at most  2 N -  1 repetitions of the basic pattern (where N is the 
number of processes). This enables the definition of a measure #~o on the events of 
the basic pattern. In the case of very long or infinite executions, the computat ion of 
this measure suffices to determine # on almost the whole execution. We also show 
that  the antichain lattice of the infinite repetition of the pattern is regular enough 
so that  # ~  can be computed on at most N repetitions of this pattern. 

We then compare tt with other measures from the literature. 
Finally, we show that  our measure is especially relevant for automatically dis- 

tributed programs. 
An extended version of this paper, with more detailed proofs, is avMlable as a 

technical report [3]. 
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2 F r a m e w o r k  

2.1 Def in i t ions  and  N o t a t i o n s  

For an introduction to poset theory see for instance [6]. 
A set E associated with a partial order relation _--< is called a partially ordered 

set (poser for short) and is denoted by E = (E, __). Let x, y E E:  we say that  x and 
y are comparable in s when either x _ y or y _ x, otherwise x and y are said to 
be incomparable, denoted by x]ly (as usual, x --< y A x # y is denoted by x -< y). A 
chain (resp. an antichain) in E is a subset A of E such that  every pair of distinct 
elements of A are comparable (resp. incomparable). Letting A C E,  max(A) = {e E 
A I V f  E A,e 74 f}  is the set of maximal elements in A. The width of E is the 
max imum number of elements in an antichain in $. The covering relation of _ is 
denoted by --<, i.e. e--< f ( f  covers e) r (e -< f and /~g, e -< g -< f) .  For each 
element e of E,  we define I e = { f  e E I f ~ e} (the set of predecessors of e), and 
for each subset F of E, ~F  = UleF(~f)" 

The Hasse diagram of a poset E is the directed graph whose vertices are the 
elements of E and the arcs are the elements of --4 (usually, the direction of the arcs 
is not represented by arrows but must be read bottom-up).  

We define a labeled poset {9 as a tuple (E,-4, L, ~r) consisting of a non-empty 
poset (E, __) of finite width and with no infinitely decreasing chain, a non-empty set 
L of labels and a labeling function 7r : E ---* L. 

The set of antichains of {9 is denoted by .4({9). This set is known to be a 
distributive lattice when equipped with the partial order _ defined as follows: 
VA, B E .4({9), A E B ~ S A G  i B .  Moreover it is easy to show that:  

L e m m a l .  Let 6) be a labeled poser. Then VA, B E ,4({9), 
B coversA ~ A E B  a n d ] l B \ J ~ A [ = l  

Then we can define 6 ( 0 )  = (A(O), F(O)) where F(O) C .,4({9) x E x A(O) is 
the set of edges (A, e, B) such that  B covers A and (~B) \ (~A) = {e}. We call this 
graph the labeled Hasse diagram of (A(O), G)- 

2.2 D i s c r e t e  M o d e l  o f  a D i s t r ibuted  C o m p u t a t i o n  

Let us consider a computat ion of a distributed program, that  is, a parallel run of a 
family (Pi)ie{1 .... ~v} of N sequential processes that  communicate by asynchronously 
exchanging messages. Let P denote the set {1 , . . . ,  N}. 

We define a discrete model of this computation as a labeled poset 6) = (E, _ ,  P, :r) 
that  we will call a distributed order in the sequel. The elements of E are significant 
events tha t  occur during the computation. The partial order _ indicates how these 
events are causally related (causality is based on process sequentiality and interpro- 
eess communication).  The labeling function :r : E ) P associates with each event 
the identifier of the process it occurs on. 

Process Sequentialily. ~r-l({i}) denotes the set of events that  occur on any given 
process Pi. Since P~ runs sequentially, any two events of ~r-1 ({i}) are causally related, 
that  is, ~r-l({i}) is modeled as a chain. Thus, the family (~r-l({i})),ep is a N- 
chain decomposition of the labeled poset {9, the width of which is therefore no more 
than N.  
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Coucurrency. As we intend to measure concurrency throughout a computation, we 
are interested to know how far processes can simultaneously proceed at any given 
point in it. In the context of our discrete model O of a computation, that means 
we are interested in all the sets of events that are causally unconnected, i.e. the 
antichains of 8 .  

Thus, the distributive lattice A(@) of antichains of • well describes the dy- 
namics of concurrency throughout the computation. Moreover, as the behaviours 
(rr-~({i}))iap of the processes constitute a N-chain decomposition of O, this lattice 
can be given a graphical representation (see Fig. 1), for its Hasse diagram can be 
embedded into a N-dimensional grid with one dimension per process. 

1 

g 

k 

e 

a c 

P~ Pa 

P 3 ~ 1  

Fig. 1. Hasse diagram of a distributed execution O on 3 processors and its graph G(O) 

The left part  of Fig. 1 shows ~he Hasse diagram of a computation O of a dis- 
tributed program consisting of three processes P1, P~ and P3- Its middle part  il~ 
lustrates A(O) by showing the labeled directed graph G(O) (each direction in the 
graph corresponds to a processor, as shown in the right part). In this graph, a path 
from the bottom to the top represents a linear extension of 0 .  
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3 A C o n c u r r e n c y  Measure  on the  Ant i c ha in  Latt ice  

3.1 D e f i n i t i o n  

The intuition underlying our measure is that  the degree of concurrency of an event 
e is related to "what can happen simultaneously with e". The first idea is to count 
the number of processors ready to work, i.e. those that are not blocked waiting for 
e. However this criterion is not accurate enough: for example, it does not enable 
us to distinguish between events e and h although e is clearly more concurrent 
than h (e is completely independent on the run of processors P1 and P2, whereas 
h blocks the execution of events i, j, k, therefore the other processors). This idea 
can be refined by computing the number of antichains containing e, i.e. the number 
of configurations where the processor that performs e works in parallel with other 
processors (this is a refinement of a global indicator proposed by Charron-Bost  [5]). 

D e f i n i t i o n 2 .  Let O be a distributed order (E, _ ,  P, rr). For each event e of E:  

1. Co(e) = { f  E E ] f I] e} is the set of events that  are concurrent with e. 
2. Ao(e) = {A E .4(0) ] e E A} is the set of antichains tha t  contain e. 

The concurrency measure #o  : E --- ,  bl U {w} is defined as follows: 
E, #o(e) = IA (e)l 

A large value of**e(e) (we write p(e) when no confusion is possible) means that  
many things may happen between the first and the last place where e can occur, 
that  is, e has a great "latency" before actually occurring, and therefore is "very 
concurrent". In contrast, a little value means that  this latency is very short: e is in 
fact a point of strong synchronization, a "bottleneck". 

In the execution of Fig. 1, events g and h for instance have respectively h, e,j, k 
and g, e as concurrent events; #(h) = IAo(h)l = I{{h}, {h, e}, {h,g}, {h, e, g}}] = 4 
and #(g) = J{{g}, {g, e}, {g, h}, {g, e, h}, {g,j}, {g, e,j}, {g, k}}l = 7. The following 
table gives the values for all events of the execution: 

3 1 b  c e h k 
3 31 d 

In Figure 1, we can see on the lattice that,  for instance, events d and f strongly 
synchronize the execution: nothing happens on processor P1 simultaneously, and 
only e can occur on P3. In contrast, e does not depend on the computat ion on 
processors P1 and P2 and therefore is very concurrent because there are several 
possible configurations where it can be executed. 

3.2 C o m p u t a t i o n  

In the previous section, we define the measure of an event e in terms of the set of 
antichains that  contain it. To compute this measure, we need to count the edges 
labeled by e in the labeled Hasse diagram ~ ( 0 )  of the lattice of the execution: 

P r o p o s i t i o n 3 .  Let 0 be a disimbuled order and e E F,. Then 
#o(e) = I{B E A ( o )  I 3 A  E A(O), (A, e, B) E F(O)}] 
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Pro@ From L e m m a l ,  clearly VA, B �9 A(O),Ve �9 E, (A,e,B) �9 I"(0) iff A = 
m a x ( ( I B ) \ { e } ) . W h e n A e ( e ) = { B e A ( O ) [ ~ A � 9 1 4 9  [~ 

This is computationatly equivalent to the problem of counting the antichains of 
an order, which is known to be #P-complete.  

This leads us to look for executions for which the number of antiehains to be 
counted does not depend on the length of the execution. 

4 R e g u l a r  a n d  W e l l - s y n c h r o n i z e d  E x e c u t i o n s  

The aim of this section is to study a particular class of regular executions: executions 
which are finite or infinite repetitions of an elementary one (for instance a loop- 
body). We will show that for a subclass of these executions, # is computable even in 
the infinite case by only taking into account at most N (the number of processes) 
repetitions of a basic "pattern". 

4.1 R e g u l a r  E x e c u t i o n s  

D e f i n i t i o n 4  R e g u l a r  d i s t r i b u t e d  o rde r .  Let p E N + U{w} and O = (E, <, P, ~r) 
be a finite distributed order. Let Ep = Uiet0,p[ T,(E) where (~i(E))iel0,p [ is a se- 
quence of mutually disjoint isomorphic copies of E. The distributed order Op = 
{Ep, _<p, P, ~p) is defined up to order-isomorphism by: 

- v i  E [0,p[, ~ p o ~ ,  = 
- ___p is the least order relation on Ep x Ep such that: 

�9 v i  �9 [0,p[, v e , f  �9 E, ~ ( e )  <p ~ ( f )  ~ e < f 
�9 Vi, j E [0,p[, r e , / � 9  E, (~(e) = ~r(f)) A (i < j)  ~ ~i(e) <_p ~j ( f )  

We say that a distributed order r is regular if there exists p �9 N+ u {w} and a 
finite distributed order O such that  (P is order isomorphic to Op. 

When in the sequel we consider a regular distributed order Op, <p and ~rp are 
denoted by < and ~r for the sake of clarity. To speak about events of Op more 
conveniently, we identify ~0(E) with E and we use ~ : Ep ---* Ep defined as follows: 
Ve �9 E, Vi �9 [ 0 , p -  1[, A(~i(e)) = ~,+l(e). This allows us to use the non-negative 
powers of ,\ instead of ~i because Ve �9 E, Vi �9 [0,p[, ~i(e) = .k~(e) (see Fig 2.(1) 
for a very simple example) and, as ~ is clearly injective, its negative powers can also 
be used. Moreover, A has the following property: 

L e m m a h .  Let Op be a regular distributed order. Then Ve, f �9 E, Vi, j ~ [1,p[, 
.~-~(e) ~_ ~:-~(f) ~:~ ~(e) ~_ :r 

In other words, A preserves the order relation -4 : it is an order isomorphism from 
[.Jle[0,p-l[ A'(E) onto [.Jie[1 p[)~i(E) �9 On the Hasse diagram of Op, A is represented 
as a "one pattern upward shift . Therefore the Hasse diagram of Op is invarmnt by 
pattern-wise translations. 

Proof. Let e , f  �9 E and i , j  �9 [1,p[ such that  ),~-l(e) _ ~j- l ( f ) .  Then there exists 
a finite path ~i-l(e)  = e0--~ el--~ . . . - - 4  eh = )J-~(f). From Def. 4, we clearly 
have Vk e [0, h -  1], .~(ek)---/A(ek+l), hence the result. [] 
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A2(a~ "~A2(b) 

~ ( d ~ , , ~  / A ( e )  
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0) 

Fig. 2. Notations for regular executions 
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4.2 We l l - synch ron i zed  Execu t ions  

For a given event e, the number of events that are incomparable with e in an infinite 
execution can be a priori infinite, and so p(e) = w. It is however interesting to see 
if there exists infinite regular executions for which all events have finite measures. 

We will show (Lemma 7) that this property is related to the communication 
scheme of the basic pattern. We first introduce the notion of communication graph 
of a distributed order. 

Def in i t i on6 .  We call communication graph of a distributed order O the quotient 
of its Hasse diagram by the equivalence relation induced by ~r -1, i.e. the directed 
graph Q(O) = (V, C) where: 

- v = ~ ( z )  
- c = ((~,f l)  e v x v J 3e e ~ - 1 ( { ~ } ) , :  e ~ - l ( ( f l ) ) ,  e ~  f )  

A distributed order O whose associated communication graph is strongly connected 
is said to be well-synchronized. The diameter of Q(O) is then denoted by ko - 1. 

Note that ko E [1, N], N being the number of processes. 

L e m m a  7. Lel 0 be a finite dzslmbuled order. The concurrency measure Po~ of any 
event in Ow = (E~o, ~_~, P, 7rw) is f imie if  and only i f  O is well-synchronized. 
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Proof. 3e E E ~ , p e ~ ( e )  = ~ r 3 e  e E ~ ,  ICe~(e ) l  = ~ r ( P  is f inite) 3e  E 
E~,~ E rr(E,~), ICe,(e)nTr-l({~}) I = w ~ (Ow has no infinitely decreasing 
chain) 3e  E E ~ , ~  E r r (E~) , (Vf  E r r - l ({~}) , e  /~ f )  ~ ( L e m m a 5 )  3 ~ , f l  E 
r r ( E ~ ) , V f  E r r - l ({~}) , e  E ~r-~({fl}),e 2~ f )  r (Def. 4) Q(O) is not strongly 
connected. 0 

4.3 B o u n d e d n e s s  a n d  R e g u l a r i t y  o f  t h e  M e a s u r e  

A property stronger than Lemma  7 can be immediately  shown: for a well-synchroni- 
zed regular execution, the measure of the events is not only finite but  also bounded 
and regular. 

L e m m a S .  Let Op be a regular well-synchronized distributed order. 

min(p- l , i+ke-1)  

1. v i e  [o,H, Ve E .~'(E), C~,(~) C_ U ,~;(E) 
j=max(O,i-ke+ l ) 

2. g i  E [ko - 1 , p -  ke[, Ve E Ai(E), Ce,( ,k(e))  = ,~(Co,(e)) 

Proof. 1. Let i E [0 ,p[ ,e  E A'(E), j E [i + ko,p[, and f E AJ(E). From Def. 6, 
since the diameter  of Q(O) is ke  - 1: 3e '  E A'+l(E),~r(e') = rr(e) and 3 f '  E 
k*+ke- l (E) ,  rr(f ' )  = ~r(f) such that  e' _ f ' .  From Def. 4, e _ e' and f '  _ f ,  
hence e and f are comparable.  Similarly, V j, 0 < j < i - k e ,  V f E AJ(E), f ~ e. 

2. Routine application of Lemmas  8(1) and 5. [] 

The  measure clearly is bounded: Ve E E,  p(e) _< I-4(O2ke-1)l. By L e m m a h ,  it 
is also regular: Vi, j E [ke - 1 , p -  ke  + 1[, Ve E E: pe,(i~i(e)) = #e,(,~J(e)).  

Moreover, # can be computed on .4(O2ke-1) (even in the case of infinite exe- 
cutions), thus taking at most  2N - 1 pat terns into account (N being the number  
of processes). For infinite or very long regular well-synchronized executions whose 
basic pat terns have reasonable sizes, # can be realistically computed.  

We have implemented the computat ion of # in our distributed environment [12] 
based on the Estelle specification language. This environment provides a mechanism 
of vectorial clocks [15], that  are traced "on line". These traces are used as input 
for our algori thm of construction of the antichain lattice of an order [7, 13]. When 
given as input  a linear extension of 02ke-t, this algori thm has a t ime complexity of 
o(I.4(0=~,_~)1 + Ir(O2k~-~)l + N x I02~_~12). 

The  fact tha t  # reflects regularity makes useful the definition of a measure itoo 
on the basic pattern:  

D e f i n i t i o n 9 .  Let O be a finite, well-synchronized distributed order, we write: 
Ve e E, . ~ ( e )  = ~(~'~-~(~))  

As clearly, Ve E E, #oo(e) " a  f ,~k~-lge~ = ,~ ake-l~ ~ H, #oo can also be computed on 
.4(0=~o_1). 

We also have a stronger result on #co: it can be computed on a subgraph of the 
labeled Hasse diagram G(Oko) of A(Oke) ,  that  is, by only taking account of at most  
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N repetitions of the basic pattern 4. This result does not significantly improve the 
complexity of the computation of/too (which becomes in N instead of 2N - 1) but 
enlights the regular structure of the antichain lattice. We briefly present the way to 
obtain this result, without any proofs nor algorithms (see [3] for details). 

4.4 C o m p u t a t i o n  of  ~too 

Let O~ be a regular well-synchronized distributed order. 

Regulamty. We show in [3] that the labeled Hasse diagram G(O~) of its antichain 
lattice -4(0~) is regular. 

A(Oke ) 

Fig. 3. Hasse diagram of .A(• 

A(o~) 

First, we define a partition (-4i)ir of A((gw) where .40 denotes the set {A E 
A(O~) I A ~ max(E)} and for any i E ~+, A, : {A e .4(ew) I A{-'(max(E)) _ 
AAli(max(E)) ~ A} (see Fig. 3). Similarly, we define a partition (P~)ie~l of P(O~): 
for any i E ~, T', denotes the set {(A, e, B) E/ ' (O~)IA E A{}. Finally, we denote by 
6o the subgraph of 6 ( ~ )  whose set of vertices is A0 u {B E A1 t B r max(E) # 0} 
and whose set of edges is F0. 

L e m m a l 0 .  For anyi  E ~, 

1. There exists is a one-to-one mapping Ai of Ao onto Ai. 
2. There exists a one-lo-one mapping ~li of Fo onto Fi such that V(A,e,B) E 

Fo, .4i(A, e, B) = (Ai(A),)~i(e), Ai(B)). 

4 Clearly, /too cannot be computed on g(Op) where 0 < p < ke. 
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Clearly, the set of vertices of {7o is included in Uie[0,ke[Ai(E). Hence C0 is a 
subgraph of C((9~s). Then Lemma 10 shows that  all the information about  C((-9~) 
is contained into the subgraph C0 of C(6)ke). Consequently, we can compute #o~ by 
only taking C0 into account. 

Computation. In [3] we show how to compute #o~ on G0: 

P r o p o s i t i o n 1 1 .  Ve E E, 

~too(e) = [{ (A, f ,B)  E Fo l 3i E ~ , f  = ),i(e)}[ 

This proposition gives us a new algorithm for the computat ion of # ~ .  It relies 
on the computat ion of the subgraph Go of C(0ke)  instead of the computat ion of 
C(~92~e-1) (see subsection 4.3). Its time complexity is the same as for the computa- 
tion of C((gke), that  is O(]A((gke)l + ]F(tgke)] + N x ]~gkel 2) [7, 13] where ke _< N 
(recall N is the number of processes). 

5 C o m p a r i s o n  w i t h  O t h e r  M e a s u r e s  

In this section, we present some recently proposed concurrency measures. We show 
that  ours is comparable with each of them, especially if we study the behaviour in 
case of infinite regular executions. 

At first, we present two "global" measures that  give a single value to quantify 
a whole execution. In our context (see section 6), we are not interested in such an 
approach for it does not enable the detection of bottlenecks (although it can be 
suitable for other distributed programming problems). However, note that  a "local" 
measure (that associates a value with each event of an execution) can be derived 
from a global one. The following measures are local ones. They are computed directly 
on the order of an execution, not on the antichain lattice; the advantage is a better 
complexity (polynomial in the number of events), but  the drawback is that  they are 
less accurate, and not suited to infinite well-synchronized regular executions. 

C h a r r o n - B o s t  [5] As far as we know, this is the first a t tempt  to take into account, 
for a concurrency measure, the causal structure of an execution. In our notation, 
this measure is: 

re(O) = 1 "~ (0 )1 -  IEI  - 1 
c(e) - I E I -  

where c(~)  is the number of antichains in a totally concurrent execution (i.e. any 
two events with distinct labels are incomparable) with as many  processes and as 
many events per process as in (9, that  is to say e(tg) = 1-Ii=l,g(llr-l({i})l + 1). In 
fact, # is quite similar to m: the idea is to count the number of antichains in an 
execution. The difference is that  # is a global measure and that  it is normalized: 
it ranges from 0 in the worst case (IE[ + 1 is the number  of antichains of a totally 
sequential execution) to 1 in the best (a totally concurrent execution). But this 
normalization is unsuited to the infinite case: e(6)v) = l~i=l ,g(p[zr-1  ({i})[ + 1) = 

p:V l-ii=l,g(l~r-l({i})[ + l /p) ,  hence for a well-synchronized execution: 
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m ( e , )  : (p - ke + 1) IAot + \ .4ol  - p l E I  - 1 

H a b i b  e t  a l .  [11] They propose a "worst-case-measure" of the  concurrency of an 
execution: the min imal  size of the max imal  (for inclusion) ant ichains  of i ts asso- 
c ia ted poset.  I t  can be seen as the number  of processors tha t  can proceed during 
the worst bot t leneck of the execution. 
This  measure  could be made  local by comput ing for each event e the min imal  
size of the  maximM antichains that  contain e. As this measure  depends on the 
ant ichains  of a poset,  i t  is obvious from our f ramework and results tha t  such a 
derived measure  presents the same regulari ty proper t ies  as ours. The  difference 
with our measure is tha t  we consider all the ant ichains  which contain an event, 
whereas they only consider the maximal  antichains.  

F i d g e  [9] Fidge proposes a local measure, tha t  he extends to a global  one. The  
measure /3  of an event e in an execution O is defined as follows: 

(Fidge proposes two closely related measures,  whether a -- 1 or a = 1/Y). h(e) 
is the "height" of e, i.e. the length of the longest chain ending by e. If we consider 
a well-synchronized regular execution tg~, we can easily prove tha t  fl converges: 

Ve, lira Z(AV(e)) - l e t -  h(E) 
fEI 

We obta in  a finite and computable  measure.  But it  does not  preserve regular i ty  
and for infinite executions, the measure is identical  for a lmost  all events. 

R a y n a l  e t  a l .  [16] This measure is a variant  of Fidge 's  one: 

~ ( e ) =  l i e l - l - h ( e )  
%1. e) - ~ - l~(e) 

where v(~ e) is defined as the "volume" of the causal  pas t  of e, i.e. v(~e) = 

~=l(h(ei) + 1) with e,~(e) = e and for all i r ~-(e), ei is the m a x i m u m  of the 
predecessors of e in ~r- l({i}) .  For well-synchronized executions, a converges as 
well: 

l im c~(AV(e)) - IEI- h(E) 
v(Z) - h(E) 

We have computed  these measures on a kernel of the Jacobi  a lgor i thm,  au toma t -  
ically d is t r ibuted  on five processors. The results are presented in Fig. 4. 

The  values for # must  be read on the right vertical  axis, and  the values for the 
three other  measures (a ,  /?, m) on the left axis: f rom 0 to 1 because these measures 
are normal ized.  Therefore, for comparison sake, the exact  values are not  to be taken 
into account,  but  only the variat ions of the graph.  Char ron-Bos t ' s  measure  m is also 
presented on this graph,  but  the plots are in fact  the values m(Ov) , t9 being the 
pa t t e rn  observed on this execution. 

This  d i ag ram clearly shows tha t  our measure remains  relevant  when t ime flows, 
whereas the  others converge to a single value. 
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Fig. 4. Measures for the Jacobi algorithm. 

6 U s e  in  A u t o m a t e d  D i s t r i b u t i o n  o f  S e q u e n t i a l  P r o g r a m s  

6.1 M o t i v a t i o n  

Much research is being done on efficient sequential code distribution techniques 
(see for instance [17]). Our work originates with the practical problem of evaluating 
automatically distributed programs. 

To automatically parallelize a sequential program for a distributed memory par- 
allel computer, compiling directives must be given. For a data-driven distribution 
technique, the key directive is to specify a data distribution, that is, to indicate how 
data structures are to be decomposed and mapped onto the network of processes. 

A programmer needs tools that help him to select a good distribution of the data 
structures of a source program. That  is, he must be able to evaluate quantitatively 
and qualitatively the executions of the distributed code that can be generated given 
a data decomposition. For instance, he needs to determine the fragments of the 
source code for which a data decomposition is unsuitable. For this, a tool that only 
measures the average degree of concurrency of a distributed execution is clearly 
inadequate. 

To be efficient enough the tools to be designed should be able to produce relevant 
outcomes without having" to entirely run a generated parallel program. In other 
words, tools are needed that can collect as much relevant information as possible by 
efficient static analyses [8] of a source code and of an associated data decomposition. 

Semi-automatic distribution is used in application fields (scientific computing) whe- 
re source codes are generally composed of loops operating on arrays [10]. In fact, 
available compilers are inefficient when a source program is not regular. 
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Applying a distribution technique does not affect syntactic regularity. First, gen- 
erated codes are SPMD (Single Program Multiple Data) [4]: the control structure of 
each generated process is a copy of that of the source program. Second, data distri- 
bution rules are regular as well: arrays, for instance, are decomposed into blocks of 
contiguous rows or blocks of contiguous columns. 

6.2 D e t e c t i o n  of  R e g u l a r  We l l - s ynch ron i zed  E x e c u t i o n s  

We deal with programs that  are mainly composed of loops operating on arrays. Data 
distribution is expressed by a distribution function that associates with each array 
element the processor on which it is located, called its owner ([1]). 

From an intuitive poifit of view, it is clear that the loops of a parallelized program 
may lead to regular executions, i.e. the finite repetition of the same distributed order. 
The idea is to consider as the "basic pattern" the distributed order corresponding 
to the execution of one step of the loop. Then, an execution is actually regular (in 
the sense of section 4) if each step of the loop produces this pattern. 

There is repetition of a pattern from one step of the a loop to another if the same 
events are observed on each processor, as well as the same comparabilities between 
events. To check this, we have to look at each array reference. For all values of the 
loop index, this reference must correspond to array elements that are owned by the 
same processor. Two possibilities arise: the index is not syntactically used in the 
reference, (for instance the external loop of the Jacobi relaxation algorithm), or it 
is syntactically used but not semantically (its value has no incidence on the result 
of the determination of the owners). 

Checking this is not statically possible in the general case. However, in practice, 
the distribution function and the expressions in array references are often affine. 
Therefore compile-time checking is possible in some cases. 

Considering a regular execution, it is easy to detect if it is well-synchronized or 
not: it suffices to execute one step of the loop, build the communication graph, and 
check its connexity. 

We have not made an exhaustive study of benchmark programs, but we have found 
programs whose runtime behaviours are regular and well-synchronized. For example, 
Jacobi-like programs (walking n times through a matrix, updating each time the 
values by a function of the neighboring values) satisfy this property whatever the 
data distribution is, and many linear algebra programs also satisfy it but only for 
particular data distributions. 

7 C o n c l u s i o n  

The contribution we have presented in this paper originates with the practical prob- 
lem of evaluating the synchronizations of a distributed program running on a network 
of processors. We are faced with such a problem in the field of automatic paralleliza- 
tion of sequential programs for distributed memory computers (high performance 
computing). 
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In this field the generated programs are weakly deterministic [2] and are often 
control static ones, for which studying one particular execution of a program gives in- 
formation on the exact quantity of parallelism extracted by the compiler/parallelizer. 
Another salient feature of the run-time behaviours of these programs is their regu- 
larity. 

Consecutively, we have been interested in a concurrency measure that would 
take regularity into account. We have defined a measure that associates a value with 
each event of an execution. In the ease of a regular and well-synchronized execution, 
this value remains bounded even if the execution is infinite. This is not the case 
with other measures in the literature, that ultimately associate the same value with 
all events that occur, although some of them could be extended to take the well- 
synchronization into account as we have done for that of Charron-Bost. Our measure 
is therefore relevant whatever the length of the execution is and can be computed 
from the basic pattern of the execution by taking at most N repetitions of this 
pattern into account, where N is the number of processors. 

To obtain this result, we used partial order theory. A distributed execution is 
modeled as the causality partial order between events. The degree of synchronization 
is captured by counting the number of antichains that contain a given event. This 
theory has proved useful, providing us with an adequate framework to describe the 
regularity of an execution. 

The computation of our measure has been integrated in a parallelization envi- 
ronment developed in our research team Ill. Its exploitation is at the planning stage. 
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