
Measuring Concurrency of Regular Distributed
Computations

Cyrille Bureau 1, Benoit Cai l laud 2, Claude Ja rd 1
Ren~ Thoraval $

E-mail : {name}@irisa.fr

1 IRISA, Campus de Beaulieu, 35042 Rennes cedex, France
2 LFCS, JCMB, King's Buildings, The University of Edinburgh,

Edinburgh, EH9 3JZ, UK
3 Universitfi de Nantes, Section lnformatique, 2 rue de la Houssini~re

44072 Nantes cedex 03, France

A b s t r a c t . In this paper we present a concurrency measure that is especially
adapted to distributed programs that exhibit regular run-time behaviours,
including many programs that are obtained by automatic parallelization of
sequential code. This measure is based on the antichain lattice of the partial
order that models the distributed execution under consideration. We show the
conditions under which the measure is computable on an infinite execution
that is the repetition of a finite pattern. There, the measure can be computed
by considering only a bounded number of patterns, the bound being at most
the number of processors.

1 I n t r o d u c t i o n

The t rend towards the use of d is t r ibuted memory parallel machines is very evi-
dent. However, their p rogramming environments have to be significantly improved,
especially in the field we are mainly interested in: semi-au tomated dis t r ibut ion of
sequential code for scientific computing. Indeed, programmers need sophist icated
performance evaluat ion tools. However, there is no well-accepted "complexity" cri-
terion for d is t r ibuted programs, for the behaviours of asynchronous message-passing
programs are not yet sufficiently understood. I t is also very difficult to design tools
tha t can give relevant performance information from stat ic analysis of d is t r ibuted
code.

A research axis is to s tudy runs of a d is t r ibuted program instead of the pro-
g ram itself. Especially, it needs to define concurrency measures, i.e. measures tha t
can help reveal the synchronizat ion structure of a computa t ion , as opposed to the
t rad i t iona l ones (message count, for instance) which only give quant i ta t ive informa-
tion about the computat ion. For this it is now usual to take a dis t r ibuted execution
as a par t ia l ly ordered set of events tha t are causally related by process sequentiM-
ity and interprocess communicat ion [14]. As far as we know, the first concurrency
measure tha t takes account of causali ty was proposed by Charron-Bost [5], followed
by [9, 11, 16].

It is shown in [11] tha t either these measures are too inaccurate or their com-
pu ta t iona l complexi ty makes them impract icable . It is also impor tan t to observe

712

that these measures only deal with finite runs. Although executions of reactive pro-
grams are usually infinite. Further, executions of distributed programs for scientific
applications, even finite, are usually very long. Nevertheless, [5] and [11] give some
encouraging results. The measure in [5] is shown to behave well with respect to a
particular kind of concatenation operator on computations. On the other hand, the
work in [11] shows that there is some hope of obtaining practical concurrency mea-
sures for particular classes of executions (for instance, [11] considers executions that
can be modeled as so-called interval orders).

We address several closely related problems. First, is it possible to define a measure
that gives significant values even in the case of infinite executions? And if such a
measure exists, does there exist a class of infinite computations for which the measure
can be computed? Naturally, if such computat ions do exist, they must exhibit some
kind of regularity tha t the measure must take into account. Moreover, as an infinite
execution can be seen as a limit of a sequence of finite ones, the computat ion of the
measure should not depend on the size of the order that models an execution: it
must only depend on the size of a bounded subset of this order.

In this paper we give a first positive answer to these problems. We define a concur-
rency measure and a class of executions that exhibit a particular kind of regularity:
an execution in this class can be modeled as either an infinite or a finite repetition
of a finite elementary order we call a basic paltern. If this pattern is well connected,
we establish for any regular execution (even infinite) that our measure is bounded
and can be computed merely from a bounded number of repetitions of this basic
pattern. Such an execution is said to be well-synchronized. Finally, we show that
this property is of interest for semi-automated distribution of sequential programs.

Paper Organization. We first describe the formal framework used throughout the
paper and present a model of an execution of a distributed program as a labeled
poset.

We then define our concurrency measure # on a distributed execution. It is
expressed in terms of the antichain lattice of the associated labeled poset. Measure
/, associates a value with each event in the execution. An event with a small value
denotes a strong synchronization, that is, an execution bottleneck.

We then formally define regular executions and well-synchronization. For a reg-
ular well-synchronized execution, we show that # is bounded, reflects regularity and
can be computed on at most 2 N - 1 repetitions of the basic pattern (where N is the
number of processes). This enables the definition of a measure #~o on the events of
the basic pattern. In the case of very long or infinite executions, the computat ion of
this measure suffices to determine # on almost the whole execution. We also show
that the antichain lattice of the infinite repetition of the pattern is regular enough
so that # ~ can be computed on at most N repetitions of this pattern.

We then compare tt with other measures from the literature.
Finally, we show that our measure is especially relevant for automatically dis-

tributed programs.
An extended version of this paper, with more detailed proofs, is avMlable as a

technical report [3].

713

2 F r a m e w o r k

2.1 Def in i t ions and N o t a t i o n s

For an introduction to poset theory see for instance [6].
A set E associated with a partial order relation _--< is called a partially ordered

set (poser for short) and is denoted by E = (E, __). Let x, y E E: we say that x and
y are comparable in s when either x _ y or y _ x, otherwise x and y are said to
be incomparable, denoted by x]ly (as usual, x --< y A x # y is denoted by x -< y). A
chain (resp. an antichain) in E is a subset A of E such that every pair of distinct
elements of A are comparable (resp. incomparable). Letting A C E, max(A) = {e E
A I V f E A,e 74 f} is the set of maximal elements in A. The width of E is the
max imum number of elements in an antichain in $. The covering relation of _ is
denoted by --<, i.e. e--< f (f covers e) r (e -< f and /~g, e -< g -< f) . For each
element e of E, we define I e = { f e E I f ~ e} (the set of predecessors of e), and
for each subset F of E, ~F = UleF(~f)"

The Hasse diagram of a poset E is the directed graph whose vertices are the
elements of E and the arcs are the elements of --4 (usually, the direction of the arcs
is not represented by arrows but must be read bottom-up).

We define a labeled poset {9 as a tuple (E,-4, L, ~r) consisting of a non-empty
poset (E, __) of finite width and with no infinitely decreasing chain, a non-empty set
L of labels and a labeling function 7r : E ---* L.

The set of antichains of {9 is denoted by .4({9). This set is known to be a
distributive lattice when equipped with the partial order _ defined as follows:
VA, B E .4({9), A E B ~ S A G i B . Moreover it is easy to show that:

L e m m a l . Let 6) be a labeled poser. Then VA, B E ,4({9),
B coversA ~ A E B a n d] l B \ J ~ A [= l

Then we can define 6 (0) = (A(O), F(O)) where F(O) C .,4({9) x E x A(O) is
the set of edges (A, e, B) such that B covers A and (~B) \ (~A) = {e}. We call this
graph the labeled Hasse diagram of (A(O), G)-

2.2 D i s c r e t e M o d e l o f a D i s t r ibuted C o m p u t a t i o n

Let us consider a computat ion of a distributed program, that is, a parallel run of a
family (Pi)ie{1 ~v} of N sequential processes that communicate by asynchronously
exchanging messages. Let P denote the set {1 , . . . , N}.

We define a discrete model of this computation as a labeled poset 6) = (E, _ , P, :r)
that we will call a distributed order in the sequel. The elements of E are significant
events tha t occur during the computation. The partial order _ indicates how these
events are causally related (causality is based on process sequentiality and interpro-
eess communication). The labeling function :r : E) P associates with each event
the identifier of the process it occurs on.

Process Sequentialily. ~r-l({i}) denotes the set of events that occur on any given
process Pi. Since P~ runs sequentially, any two events of ~r-1 ({i}) are causally related,
that is, ~r-l({i}) is modeled as a chain. Thus, the family (~r-l({i})),ep is a N-
chain decomposition of the labeled poset {9, the width of which is therefore no more
than N.

714

Coucurrency. As we intend to measure concurrency throughout a computation, we
are interested to know how far processes can simultaneously proceed at any given
point in it. In the context of our discrete model O of a computation, that means
we are interested in all the sets of events that are causally unconnected, i.e. the
antichains of 8 .

Thus, the distributive lattice A(@) of antichains of • well describes the dy-
namics of concurrency throughout the computation. Moreover, as the behaviours
(rr-~({i}))iap of the processes constitute a N-chain decomposition of O, this lattice
can be given a graphical representation (see Fig. 1), for its Hasse diagram can be
embedded into a N-dimensional grid with one dimension per process.

1

g

k

e

a c

P~ Pa

P 3 ~ 1

Fig. 1. Hasse diagram of a distributed execution O on 3 processors and its graph G(O)

The left part of Fig. 1 shows ~he Hasse diagram of a computation O of a dis-
tributed program consisting of three processes P1, P~ and P3- Its middle part il~
lustrates A(O) by showing the labeled directed graph G(O) (each direction in the
graph corresponds to a processor, as shown in the right part). In this graph, a path
from the bottom to the top represents a linear extension of 0 .

715

3 A C o n c u r r e n c y Measure on the Ant i c ha in Latt ice

3.1 D e f i n i t i o n

The intuition underlying our measure is that the degree of concurrency of an event
e is related to "what can happen simultaneously with e". The first idea is to count
the number of processors ready to work, i.e. those that are not blocked waiting for
e. However this criterion is not accurate enough: for example, it does not enable
us to distinguish between events e and h although e is clearly more concurrent
than h (e is completely independent on the run of processors P1 and P2, whereas
h blocks the execution of events i, j, k, therefore the other processors). This idea
can be refined by computing the number of antichains containing e, i.e. the number
of configurations where the processor that performs e works in parallel with other
processors (this is a refinement of a global indicator proposed by Charron-Bost [5]).

D e f i n i t i o n 2 . Let O be a distributed order (E, _ , P, rr). For each event e of E:

1. Co(e) = { f E E] f I] e} is the set of events that are concurrent with e.
2. Ao(e) = {A E .4(0)] e E A} is the set of antichains tha t contain e.

The concurrency measure #o : E --- , bl U {w} is defined as follows:
E, #o(e) = IA (e)l

A large value of**e(e) (we write p(e) when no confusion is possible) means that
many things may happen between the first and the last place where e can occur,
that is, e has a great "latency" before actually occurring, and therefore is "very
concurrent". In contrast, a little value means that this latency is very short: e is in
fact a point of strong synchronization, a "bottleneck".

In the execution of Fig. 1, events g and h for instance have respectively h, e,j, k
and g, e as concurrent events; #(h) = IAo(h)l = I{{h}, {h, e}, {h,g}, {h, e, g}}] = 4
and #(g) = J{{g}, {g, e}, {g, h}, {g, e, h}, {g,j}, {g, e,j}, {g, k}}l = 7. The following
table gives the values for all events of the execution:

3 1 b c e h k
3 31 d

In Figure 1, we can see on the lattice that, for instance, events d and f strongly
synchronize the execution: nothing happens on processor P1 simultaneously, and
only e can occur on P3. In contrast, e does not depend on the computat ion on
processors P1 and P2 and therefore is very concurrent because there are several
possible configurations where it can be executed.

3.2 C o m p u t a t i o n

In the previous section, we define the measure of an event e in terms of the set of
antichains that contain it. To compute this measure, we need to count the edges
labeled by e in the labeled Hasse diagram ~ (0) of the lattice of the execution:

P r o p o s i t i o n 3 . Let 0 be a disimbuled order and e E F,. Then
#o(e) = I{B E A (o) I 3 A E A(O), (A, e, B) E F(O)}]

716

Pro@ From L e m m a l , clearly VA, B �9 A(O),Ve �9 E, (A,e,B) �9 I"(0) iff A =
m a x ((I B) \ { e }) . W h e n A e (e) = { B e A (O) [~ A � 9 1 4 9 [~

This is computationatly equivalent to the problem of counting the antichains of
an order, which is known to be #P-complete.

This leads us to look for executions for which the number of antiehains to be
counted does not depend on the length of the execution.

4 R e g u l a r a n d W e l l - s y n c h r o n i z e d E x e c u t i o n s

The aim of this section is to study a particular class of regular executions: executions
which are finite or infinite repetitions of an elementary one (for instance a loop-
body). We will show that for a subclass of these executions, # is computable even in
the infinite case by only taking into account at most N (the number of processes)
repetitions of a basic "pattern".

4.1 R e g u l a r E x e c u t i o n s

D e f i n i t i o n 4 R e g u l a r d i s t r i b u t e d o rde r . Let p E N + U{w} and O = (E, <, P, ~r)
be a finite distributed order. Let Ep = Uiet0,p[T,(E) where (~i(E))iel0,p [is a se-
quence of mutually disjoint isomorphic copies of E. The distributed order Op =
{Ep, _<p, P, ~p) is defined up to order-isomorphism by:

- v i E [0,p[, ~ p o ~ , =
- ___p is the least order relation on Ep x Ep such that:

�9 v i �9 [0,p[, v e , f �9 E, ~ (e) <p ~ (f) ~ e < f
�9 Vi, j E [0,p[, r e , / � 9 E, (~(e) = ~r(f)) A (i < j) ~ ~i(e) <_p ~j (f)

We say that a distributed order r is regular if there exists p �9 N+ u {w} and a
finite distributed order O such that (P is order isomorphic to Op.

When in the sequel we consider a regular distributed order Op, <p and ~rp are
denoted by < and ~r for the sake of clarity. To speak about events of Op more
conveniently, we identify ~0(E) with E and we use ~ : Ep ---* Ep defined as follows:
Ve �9 E, Vi �9 [0 , p - 1[, A(~i(e)) = ~,+l(e). This allows us to use the non-negative
powers of ,\ instead of ~i because Ve �9 E, Vi �9 [0,p[, ~i(e) = .k~(e) (see Fig 2.(1)
for a very simple example) and, as ~ is clearly injective, its negative powers can also
be used. Moreover, A has the following property:

L e m m a h . Let Op be a regular distributed order. Then Ve, f �9 E, Vi, j ~ [1,p[,
.~-~(e) ~_ ~:-~(f) ~:~ ~(e) ~_ :r

In other words, A preserves the order relation -4 : it is an order isomorphism from
[.Jle[0,p-l[A'(E) onto [.Jie[1 p[)~i(E) �9 On the Hasse diagram of Op, A is represented
as a "one pattern upward shift . Therefore the Hasse diagram of Op is invarmnt by
pattern-wise translations.

Proof. Let e , f �9 E and i , j �9 [1,p[such that),~-l(e) _ ~j- l (f) . Then there exists
a finite path ~i-l(e) = e0--~ el--~ . . . - - 4 eh =)J-~(f). From Def. 4, we clearly
have Vk e [0, h - 1], .~(ek)---/A(ek+l), hence the result. []

717

A2(a~ "~A2(b)

~ (d ~ , , ~ / A (e)

T
: i

C

a b
0)

Fig. 2. Notations for regular executions

,~ 4~ o~
~ ? "Xa(a~

,~2(a
/

{A(a), e ~ ~ / \

X(a) dN,,/~
{a} --"

r (2)
0

\

~ - m~x(E)
7 { a , c}

4.2 We l l - synch ron i zed Execu t ions

For a given event e, the number of events that are incomparable with e in an infinite
execution can be a priori infinite, and so p(e) = w. It is however interesting to see
if there exists infinite regular executions for which all events have finite measures.

We will show (Lemma 7) that this property is related to the communication
scheme of the basic pattern. We first introduce the notion of communication graph
of a distributed order.

Def in i t i on6 . We call communication graph of a distributed order O the quotient
of its Hasse diagram by the equivalence relation induced by ~r -1, i.e. the directed
graph Q(O) = (V, C) where:

- v = ~ (z)
- c = ((~,f l) e v x v J 3e e ~ - 1 ({ ~ }) , : e ~ - l ((f l)) , e ~ f)

A distributed order O whose associated communication graph is strongly connected
is said to be well-synchronized. The diameter of Q(O) is then denoted by ko - 1.

Note that ko E [1, N], N being the number of processes.

L e m m a 7. Lel 0 be a finite dzslmbuled order. The concurrency measure Po~ of any
event in Ow = (E~o, ~_~, P, 7rw) is f imie if and only i f O is well-synchronized.

718

Proof. 3e E E ~ , p e ~ (e) = ~ r 3 e e E ~ , ICe~(e) l = ~ r (P is f inite) 3e E
E~,~ E rr(E,~), ICe,(e)nTr-l({~}) I = w ~ (Ow has no infinitely decreasing
chain) 3e E E ~ , ~ E r r (E~) , (Vf E r r - l ({~}) , e /~ f) ~ (L e m m a 5) 3 ~ , f l E
r r (E ~) , V f E r r - l ({~}) , e E ~r-~({fl}),e 2~ f) r (Def. 4) Q(O) is not strongly
connected. 0

4.3 B o u n d e d n e s s a n d R e g u l a r i t y o f t h e M e a s u r e

A property stronger than Lemma 7 can be immediately shown: for a well-synchroni-
zed regular execution, the measure of the events is not only finite but also bounded
and regular.

L e m m a S . Let Op be a regular well-synchronized distributed order.

min(p- l , i+ke-1)

1. v i e [o,H, Ve E .~'(E), C~,(~) C_ U ,~;(E)
j=max(O,i-ke+ l)

2. g i E [ko - 1 , p - ke[, Ve E Ai(E), Ce,(,k(e)) = ,~(Co,(e))

Proof. 1. Let i E [0 ,p[,e E A'(E), j E [i + ko,p[, and f E AJ(E). From Def. 6,
since the diameter of Q(O) is ke - 1: 3e ' E A'+l(E),~r(e') = rr(e) and 3 f ' E
k*+ke- l (E) , rr(f ') = ~r(f) such that e' _ f ' . From Def. 4, e _ e' and f ' _ f ,
hence e and f are comparable. Similarly, V j, 0 < j < i - k e , V f E AJ(E), f ~ e.

2. Routine application of Lemmas 8(1) and 5. []

The measure clearly is bounded: Ve E E, p(e) _< I-4(O2ke-1)l. By L e m m a h , it
is also regular: Vi, j E [ke - 1 , p - ke + 1[, Ve E E: pe,(i~i(e)) = #e,(,~J(e)).

Moreover, # can be computed on .4(O2ke-1) (even in the case of infinite exe-
cutions), thus taking at most 2N - 1 pat terns into account (N being the number
of processes). For infinite or very long regular well-synchronized executions whose
basic pat terns have reasonable sizes, # can be realistically computed.

We have implemented the computat ion of # in our distributed environment [12]
based on the Estelle specification language. This environment provides a mechanism
of vectorial clocks [15], that are traced "on line". These traces are used as input
for our algori thm of construction of the antichain lattice of an order [7, 13]. When
given as input a linear extension of 02ke-t, this algori thm has a t ime complexity of
o(I.4(0=~,_~)1 + Ir(O2k~-~)l + N x I02~_~12).

The fact tha t # reflects regularity makes useful the definition of a measure itoo
on the basic pattern:

D e f i n i t i o n 9 . Let O be a finite, well-synchronized distributed order, we write:
Ve e E, . ~ (e) = ~(~'~-~(~))

As clearly, Ve E E, #oo(e) " a f ,~k~-lge~ = ,~ ake-l~ ~ H, #oo can also be computed on
.4(0=~o_1).

We also have a stronger result on #co: it can be computed on a subgraph of the
labeled Hasse diagram G(Oko) of A(Oke) , that is, by only taking account of at most

719

N repetitions of the basic pattern 4. This result does not significantly improve the
complexity of the computation of/too (which becomes in N instead of 2N - 1) but
enlights the regular structure of the antichain lattice. We briefly present the way to
obtain this result, without any proofs nor algorithms (see [3] for details).

4.4 C o m p u t a t i o n of ~too

Let O~ be a regular well-synchronized distributed order.

Regulamty. We show in [3] that the labeled Hasse diagram G(O~) of its antichain
lattice -4(0~) is regular.

A(Oke)

Fig. 3. Hasse diagram of .A(•

A(o~)

First, we define a partition (-4i)ir of A((gw) where .40 denotes the set {A E
A(O~) I A ~ max(E)} and for any i E ~+, A, : {A e .4(ew) I A{-'(max(E)) _
AAli(max(E)) ~ A} (see Fig. 3). Similarly, we define a partition (P~)ie~l of P(O~):
for any i E ~, T', denotes the set {(A, e, B) E/ ' (O~)IA E A{}. Finally, we denote by
6o the subgraph of 6 (~) whose set of vertices is A0 u {B E A1 t B r max(E) # 0}
and whose set of edges is F0.

L e m m a l 0 . For anyi E ~,

1. There exists is a one-to-one mapping Ai of Ao onto Ai.
2. There exists a one-lo-one mapping ~li of Fo onto Fi such that V(A,e,B) E

Fo, .4i(A, e, B) = (Ai(A),)~i(e), Ai(B)).

4 Clearly, /too cannot be computed on g(Op) where 0 < p < ke.

720

Clearly, the set of vertices of {7o is included in Uie[0,ke[Ai(E). Hence C0 is a
subgraph of C((9~s). Then Lemma 10 shows that all the information about C((-9~)
is contained into the subgraph C0 of C(6)ke). Consequently, we can compute #o~ by
only taking C0 into account.

Computation. In [3] we show how to compute #o~ on G0:

P r o p o s i t i o n 1 1 . Ve E E,

~too(e) = [{ (A, f ,B) E Fo l 3i E ~ , f =),i(e)}[

This proposition gives us a new algorithm for the computat ion of # ~ . It relies
on the computat ion of the subgraph Go of C(0ke) instead of the computat ion of
C(~92~e-1) (see subsection 4.3). Its time complexity is the same as for the computa-
tion of C((gke), that is O(]A((gke)l +]F(tgke)] + N x]~gkel 2) [7, 13] where ke _< N
(recall N is the number of processes).

5 C o m p a r i s o n w i t h O t h e r M e a s u r e s

In this section, we present some recently proposed concurrency measures. We show
that ours is comparable with each of them, especially if we study the behaviour in
case of infinite regular executions.

At first, we present two "global" measures that give a single value to quantify
a whole execution. In our context (see section 6), we are not interested in such an
approach for it does not enable the detection of bottlenecks (although it can be
suitable for other distributed programming problems). However, note that a "local"
measure (that associates a value with each event of an execution) can be derived
from a global one. The following measures are local ones. They are computed directly
on the order of an execution, not on the antichain lattice; the advantage is a better
complexity (polynomial in the number of events), but the drawback is that they are
less accurate, and not suited to infinite well-synchronized regular executions.

C h a r r o n - B o s t [5] As far as we know, this is the first a t tempt to take into account,
for a concurrency measure, the causal structure of an execution. In our notation,
this measure is:

re(O) = 1 "~ (0)1 - IEI - 1
c(e) - I E I -

where c(~) is the number of antichains in a totally concurrent execution (i.e. any
two events with distinct labels are incomparable) with as many processes and as
many events per process as in (9, that is to say e(tg) = 1-Ii=l,g(llr-l({i})l + 1). In
fact, # is quite similar to m: the idea is to count the number of antichains in an
execution. The difference is that # is a global measure and that it is normalized:
it ranges from 0 in the worst case (IE[+ 1 is the number of antichains of a totally
sequential execution) to 1 in the best (a totally concurrent execution). But this
normalization is unsuited to the infinite case: e(6)v) = l~i=l ,g(p[zr-1 ({i})[+ 1) =

p:V l-ii=l,g(l~r-l({i})[+ l /p) , hence for a well-synchronized execution:

721

m (e ,) : (p - ke + 1) IAot + \ .4ol - p l E I - 1

H a b i b e t a l . [11] They propose a "worst-case-measure" of the concurrency of an
execution: the min imal size of the max imal (for inclusion) ant ichains of i ts asso-
c ia ted poset. I t can be seen as the number of processors tha t can proceed during
the worst bot t leneck of the execution.
This measure could be made local by comput ing for each event e the min imal
size of the maximM antichains that contain e. As this measure depends on the
ant ichains of a poset, i t is obvious from our f ramework and results tha t such a
derived measure presents the same regulari ty proper t ies as ours. The difference
with our measure is tha t we consider all the ant ichains which contain an event,
whereas they only consider the maximal antichains.

F i d g e [9] Fidge proposes a local measure, tha t he extends to a global one. The
measure /3 of an event e in an execution O is defined as follows:

(Fidge proposes two closely related measures, whether a -- 1 or a = 1/Y). h(e)
is the "height" of e, i.e. the length of the longest chain ending by e. If we consider
a well-synchronized regular execution tg~, we can easily prove tha t fl converges:

Ve, lira Z(AV(e)) - l e t - h(E)
fEI

We obta in a finite and computable measure. But it does not preserve regular i ty
and for infinite executions, the measure is identical for a lmost all events.

R a y n a l e t a l . [16] This measure is a variant of Fidge 's one:

~ (e) = l i e l - l - h (e)
%1. e) - ~ - l~(e)

where v(~ e) is defined as the "volume" of the causal pas t of e, i.e. v(~e) =

~=l(h(ei) + 1) with e,~(e) = e and for all i r ~-(e), ei is the m a x i m u m of the
predecessors of e in ~r- l({i}) . For well-synchronized executions, a converges as
well:

l im c~(AV(e)) - IEI- h(E)
v(Z) - h(E)

We have computed these measures on a kernel of the Jacobi a lgor i thm, au toma t -
ically d is t r ibuted on five processors. The results are presented in Fig. 4.

The values for # must be read on the right vertical axis, and the values for the
three other measures (a , /?, m) on the left axis: f rom 0 to 1 because these measures
are normal ized. Therefore, for comparison sake, the exact values are not to be taken
into account, but only the variat ions of the graph. Char ron-Bos t ' s measure m is also
presented on this graph, but the plots are in fact the values m(Ov) , t9 being the
pa t t e rn observed on this execution.

This d i ag ram clearly shows tha t our measure remains relevant when t ime flows,
whereas the others converge to a single value.

722

0.5

0.4

0.3

0.2

0.1

Values for rn, c~, fl Values for #

0

" 1 6

I

8

0 10 20 30 40 50 60 70 80 90 100
Events

Fig. 4. Measures for the Jacobi algorithm.

6 U s e in A u t o m a t e d D i s t r i b u t i o n o f S e q u e n t i a l P r o g r a m s

6.1 M o t i v a t i o n

Much research is being done on efficient sequential code distribution techniques
(see for instance [17]). Our work originates with the practical problem of evaluating
automatically distributed programs.

To automatically parallelize a sequential program for a distributed memory par-
allel computer, compiling directives must be given. For a data-driven distribution
technique, the key directive is to specify a data distribution, that is, to indicate how
data structures are to be decomposed and mapped onto the network of processes.

A programmer needs tools that help him to select a good distribution of the data
structures of a source program. That is, he must be able to evaluate quantitatively
and qualitatively the executions of the distributed code that can be generated given
a data decomposition. For instance, he needs to determine the fragments of the
source code for which a data decomposition is unsuitable. For this, a tool that only
measures the average degree of concurrency of a distributed execution is clearly
inadequate.

To be efficient enough the tools to be designed should be able to produce relevant
outcomes without having" to entirely run a generated parallel program. In other
words, tools are needed that can collect as much relevant information as possible by
efficient static analyses [8] of a source code and of an associated data decomposition.

Semi-automatic distribution is used in application fields (scientific computing) whe-
re source codes are generally composed of loops operating on arrays [10]. In fact,
available compilers are inefficient when a source program is not regular.

723

Applying a distribution technique does not affect syntactic regularity. First, gen-
erated codes are SPMD (Single Program Multiple Data) [4]: the control structure of
each generated process is a copy of that of the source program. Second, data distri-
bution rules are regular as well: arrays, for instance, are decomposed into blocks of
contiguous rows or blocks of contiguous columns.

6.2 D e t e c t i o n of R e g u l a r We l l - s ynch ron i zed E x e c u t i o n s

We deal with programs that are mainly composed of loops operating on arrays. Data
distribution is expressed by a distribution function that associates with each array
element the processor on which it is located, called its owner ([1]).

From an intuitive poifit of view, it is clear that the loops of a parallelized program
may lead to regular executions, i.e. the finite repetition of the same distributed order.
The idea is to consider as the "basic pattern" the distributed order corresponding
to the execution of one step of the loop. Then, an execution is actually regular (in
the sense of section 4) if each step of the loop produces this pattern.

There is repetition of a pattern from one step of the a loop to another if the same
events are observed on each processor, as well as the same comparabilities between
events. To check this, we have to look at each array reference. For all values of the
loop index, this reference must correspond to array elements that are owned by the
same processor. Two possibilities arise: the index is not syntactically used in the
reference, (for instance the external loop of the Jacobi relaxation algorithm), or it
is syntactically used but not semantically (its value has no incidence on the result
of the determination of the owners).

Checking this is not statically possible in the general case. However, in practice,
the distribution function and the expressions in array references are often affine.
Therefore compile-time checking is possible in some cases.

Considering a regular execution, it is easy to detect if it is well-synchronized or
not: it suffices to execute one step of the loop, build the communication graph, and
check its connexity.

We have not made an exhaustive study of benchmark programs, but we have found
programs whose runtime behaviours are regular and well-synchronized. For example,
Jacobi-like programs (walking n times through a matrix, updating each time the
values by a function of the neighboring values) satisfy this property whatever the
data distribution is, and many linear algebra programs also satisfy it but only for
particular data distributions.

7 C o n c l u s i o n

The contribution we have presented in this paper originates with the practical prob-
lem of evaluating the synchronizations of a distributed program running on a network
of processors. We are faced with such a problem in the field of automatic paralleliza-
tion of sequential programs for distributed memory computers (high performance
computing).

724

In this field the generated programs are weakly deterministic [2] and are often
control static ones, for which studying one particular execution of a program gives in-
formation on the exact quantity of parallelism extracted by the compiler/parallelizer.
Another salient feature of the run-time behaviours of these programs is their regu-
larity.

Consecutively, we have been interested in a concurrency measure that would
take regularity into account. We have defined a measure that associates a value with
each event of an execution. In the ease of a regular and well-synchronized execution,
this value remains bounded even if the execution is infinite. This is not the case
with other measures in the literature, that ultimately associate the same value with
all events that occur, although some of them could be extended to take the well-
synchronization into account as we have done for that of Charron-Bost. Our measure
is therefore relevant whatever the length of the execution is and can be computed
from the basic pattern of the execution by taking at most N repetitions of this
pattern into account, where N is the number of processors.

To obtain this result, we used partial order theory. A distributed execution is
modeled as the causality partial order between events. The degree of synchronization
is captured by counting the number of antichains that contain a given event. This
theory has proved useful, providing us with an adequate framework to describe the
regularity of an execution.

The computation of our measure has been integrated in a parallelization envi-
ronment developed in our research team Ill. Its exploitation is at the planning stage.

A c k n o w l e d g m e n t s

This work was partially supported by the project Trace of the French Ministate de
l'Enseignement Sup6rieur et de la Recherche.

R e f e r e n c e s

1. F. Andrg, O. Charon, and J-L. Pazat. Compiling Sequential Programs for Dis-
tributed Memory Parallel Computers with Pandore II. In Jack J. Dongarra and
Bernard Tourancheau, editors, Environments and Tools for Parallel Scientific Com-
puting, pages 293-308, Elsevier Science Publishers B.V., 1993.

2. C. Bareau, B. Caillaud, C. Jard, and R. Thoraval. Correctness of automated distribu-
tion of sequential programs. In A. Bode, M. Reeve, and G. Wolf, editors, PARLE'93,
pages 517-528, LNCS 694, Springer Verlag, June 1993.

3. C. Bareau, B. Caillaud, C. Jard, and R. Thoraval. Measuring Concurrency of Regular
Distributed Computations. Research Report 882, Irisa, Rennes, France, October 1994.

4. D. Callahan and K. Kennedy. Compiling programs for distributed-memory multipro-
cessors. Journal of Supercomputing, 2:151-169, 1988.

5. B. Charron-Bost. Combinatorics and Geometry of Consistent Cuts : Application to
Concurrency Theory. In Bernard and Raynal, editors, int. Workshop on Parallel and
Distributed Algorithms, pages 45-56, Springer Verlag, Nice, France, 1989.

6. B.A. Davey and Priestley H.A. Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

725

7. C. Diehl, C. Jard, and J.X. Rampon. Reachability analysis on distributed executions.
In JP. Jouannaud MC. Gaudel, editor, Proc. TAPSOFT,93 LNCS 668, pages 629-643,
Springer-Verlag, Orsay, Paris, April 1993.

8. T. Fahringer, R. Blasko, and H.P. Zima. Automatic Performance Prediction to Support
ParaJlefization of Fortran Programs for Massively Parallel Systems. In Proc. oJ the '92
International Conference on Supercomputing, pages 347-356, ACM press, July 1992.

9. C.J. Fidge. A simple run-time concurrency measure. In Proceedings of the 3 ~ Aus-
tralian Transputer and OCCAM User Group Con]erence, pages 92-101, 1990.

10. G.H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins University
Press, second edition,]990.

11. M. Habib, M. Morvan, and J.X. Rampon. Remarks on some concurrency measures. In
Graph-Theoretic Concepts in Computer Science, pages 221-238, LNCS 484, june 1990.

12. C. Jard and J.-M. J~z~quel. ECHIDNA, an Estelle-compiler to prototype protocols on
distributed computers. Concurrency Practice and Experience, 4(5):377-397, 1992.

13. C. Jard, G.V. Jourdan, and J.X. Rampon. Some On-Lines Computations o.f the Ideal
Lattice o] Posets. Research Report 773, IRISA, December 1993.

14. L. Lamport. Time, clocks and the ordering of events in a distributed system. Commu-
nications o] the ACM, 21(7):558-565, July 1978.

t5. F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quin-
ton, Raynal, and Robert, editors, Proc. Int. Workshop on Parallel and Distmbuted
Algorithms Bonus, France, Oct. I988, North Holland, 1989.

16. M. Raynal, M. Mizuno, and M.-L. Neilsen. A synchronization and concurrency mea-
sure for distributed computations. In 12 th IEEE Int. Con]. on Distributed Computing
Systems, pages 657-664, Yokokama, June 1992.

17. H. Sips. 4 th Int. Workshop on Compilers for Parallel Computers. Sips, H. Editor.
Delft, 13-16 december. Delft University of Technology, 1993.

