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Abs t r ac t .  Encapsulation constructs with import/export declarations is 
the structuring facility offered in most commercial Prolog systems. How- 
ever, real-life applications have shown to require a finer information ex- 
change between encapsulated pieces of code. In this paper, a refinement 
of import/export declarations for modules of logic programs is presented. 
This offers a stricter form of communication between the modules and 
a larger variety of visibility states of their predicates, the standard ap- 
proaches being special cases of it. The semantics of this module system 
has been examined and model-theoretic, fixpoint and operational ones 
are given and have been proved to be equivalent. Instead of using other 
logics, all these semantics extend the ones of Horn clause logic using 
concepts commonly used in it. In addition, the module system has been 
naturally transformed to Horn clause logic exploiting the distinction of 
the predicates within a module according to the interface declarations 
of this module. A form of equivalence with the other semantics of the 
system is given. In addition, the employed transformation has provided 
us with a basis for a preprocessor based implementation of the module 
system. 

1 Introduct ion 

The declarative style of logic programming [14] via its implementat ion as Pro- 
log [8, 22] facilitates the software development phase and has become a favorite 
platform for a large variety of advanced applications (artificial intelligence ap- 
plications, expert systems, scheduling applications etc.). Thus, a variety of Pro- 
log implementat ions incorporated also an ecapsulation mechanism. At the same 
time, much work is being carried out in providing logic programming with a 
structuring mechanism with formal foundations which fits elegantly in the un- 
derlying theory, since oI/e of the main advantages of logic programming is its 
clear semantics. As stated in [7], two main lines of research exist towards this 
direction: program composition and linguistic extensions. The former has been 
inspired from the work in [20] where an algebra for logic programs is introduced. 
Logic programs are the elements of this algebra and a variety of operators per- 
forms program composition. Various researchers [15, 11, 5, 1] have worked in this 
area. The module support  with impor t / expor t  interfaces, which is also the case 
of commercial  Prolog systems, is a special case of this approach and provides 
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a fine-grained program composition. On the other hand, linguistic extensions, 
first appearing in [16], extend the syntax of Horn clauses by allowing implica- 
tions as goals. This approach offers a rich expressive power, but its application 
areas are still under investigation. In the area of linguistic extensions, the work 
of contextual logic programming [17] is an eminent one. The work in [16] uses 
intuitionistic logic to formulate the introduced.ideas. Other logics are also used 
for a module concept in logic programming in a variety of works. 

The module system presented and examined in this paper is the result of 
the effort to make a structuring tool for large applications which require en- 
capsulation and complicated interconnections. It provides privacy, abstraction 
and name clashes avoidance. The presented system relies on the area of mod- 
ule support  with impgr t /expor t  declarations and it can be said to extend the 
functionality in predicate visibility of [10]. The encapsulation affects predicates 
only. Although coming out from practical needs, our module system has been 
given a model-theoretic, a flxpoint as well as an operational semantics, all proved 
to be equivalent. The semantics has been concentrated on modelling the envi- 
ronment of a module with respect to other modules that  form the surrounding 
system. Instead of relying on other logics, all these semantics extend the stan- 
dard semantics of Horn clause programs [23] naturally and smoothly to capture 
the introduced extension. In the employed formalism, modules are a kind of 
first order theories which differ from classical ones in that  the encapsulation and 
the interfaces qualify the predicates. Commonly used and widely understood 
concepts such as Iterbrand interpretations and models as well as the immedi- 
ate consequence operator have been found to be sufficient to form the means 
of the semantics of this module system. Nevertheless, a transformation of the 
module system to Horn clause logic has been also defined and a sort of equiv- 
alence with the other semantics of the system has been proved. A preprocessor 
implementation of the module system is based on this transformation [13]. The 
preprocessor extends the standard Prolog functionality so that to take the mod- 
ule system into account. Modular Prolog programs are mapped to flat Prolog 
code by the preprocessor which is coded in Prolog itself. 

In this paper, firstly, the module system is briefly presented. Its model- 
theoretic, fixpoint and operational semantics follow. The transformation of the 
module system to Horn clause logic comes next. In all cases, the equivalence 
relation is stated. Proofs of all theorems can be found in [12]. Finally, related 
work is included and comments on the presented module system are made. 

2 T h e  M o d u l e  S y s t e m  

In this section, firstly, the module system is briefly presented from the Prolog 
programmer 's  point of view. Secondly, the system's formal fl'amework is intro- 
duced. 

A module encapsulates a set of Prolog procedures that form its body and 
exchanges information with other modules via interface declaratwns. As home 
module of an interface declaration, we consider the module where this declaration 
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appears. A module header of the form :-module(ModuleName), where Module 
Name is a constant, introduces a module with name ModuleName and denotes 
that  the interface declarations as well as the Prolog code that  follow until the 
end-of-file mark  or another module header form the module. 

The interface declarations carry out the following. A module is allowed to 
declare via its interface all or some of its predicates global to the system, i.e. vis- 
ible everywhere, "its predicates" referring to the ones defined in this module. In 
addition, it can declare them exported to specified modules or to all the modules 
of the system. Furthermore,  a module may  import predicates, at the extensional 
level, from specific modules. In this case, to achieve usability, the other mod- 
ule must  export  the predicates to the home module of the impor t  declaration. 
Moreover, a module may merge procedure results from other modules, specific 
or not, with its own ones. Again an export declaration in the other module must  
export  the procedure to the home module of the merge declaration. The order 
of the merged results is not ensured and depends on the order of the module 
loading. When a merge declaration within a module refers to a predicate, the 
module is not allowed to declare this predicate exported or global. No more than 
one module should declare the same predicate global. In case a predicate exists 
in an export  declaration it is not allowed to appear  in a global one in the home 
module of the export  declaration. If more than one merge or impor t  declarations 
within a module refer to the same predicate, the declaration that  appears last 
is considered. The preceding ones are ignored. The interface declarations are 
processed at compile t ime and cannot change at run time. 

No space outside the modules exists. The concept of worlds is effectively 
supported. Tha t  is to say, the top level loop executes within the environment of 
a module and all predicates visible to this module are visible and usable in the 
top level loop. 

In order to determine which procedure definition is addressed when a pred- 
icate appears  within a module, visibility slales are introduced and define the 
effect of the interface declarations. 

D e f i n i t i o n  1. A predicate can fall into one and only one of the following visi- 
bility stales within a module: 

m e r g e d  iff a merge declaration exists in this module and refers to this predicate 
loca l  iff the above does not hold and there is a definition for this predicate in 

this module 
i m p o r t e d  iff none of the above holds and there is an impor t  declaration in this 

module that  refers to this predicate 
p o s s i b l y _ g l o b a l  iff none of the above holds 

In the formalism of the module system presented in this paper, pure logic 
programming and definite program clauses are assumed. The terminology used 
in [14] is adopted. Modules are considered as a kind of first order theories, namely 
module First Order Theomes (m-FOTs). Each module is a m-FOT.  A m - F O T  
differs from a Horn clause theory in that:  
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1. It includes a constant identifying the m-FOT which corresponds to the name 
of the module. 

2. Predicates in a m-FOT do not belong to a flat set. The set of predicate 
symbols is substituted by a 4-tuple P = (M,L, I, GO). Each of the M, 
L, I, GO correspond to the merged, local, imported and possibly_globM 
predicates. L is further refined to L = (H,E, GI), i.e. hidden, exported 
and declared global predicates. A hidden predicate in a module is a local 
predicate which is neither exported nor declared global in this module. All 
M, H, E, GI, I and GO sets contain predicates distinct from each other. 
As expected, M, E and I combine the predicates with the modules that the 
interface declarations relate them to. To illustrate this, consider the case of 
the merged predicates within a module m. M is a finite set of (rams, rap) 
pairs and (mpr) elements where rams is a finite set of constants other than 
m and rap, mpr are predicates. An (rams, rap) pair in M denotes that  mp 
is a predicate merged from the modules in rams, though (mpr) denotes that  
the predicate mpr is merged from all the modules. As, in the following, a set 
of modules will be considered, the module name will be used to identify the 
predicate sets among the various modules, i.e. E(m) represents the exported 
predicates of the module m. 

3. As far as the program clauses of the m-FOTs are concerned, only predicates 
from M or L should appear in their heads. 

A (V, F)  pair where V is a finite or denumerably infinite set of variables and 
F a finite set of function symbols is assumed to be global to all the m-FOTs. 
The module system affects predicates only. The m-FOTs are, then, reduced to a 
triple (m, P, Progr) where m is the constant which identifies the m-FOT and P 
is as previously described. Progr is a finite set of program clauses which forms 
the module's program and corresponds to the module's body. 

Consider 

Merged(m) = {PI(P) E M(m)} U {pl(ms,p) E M(m)} 
Local(m) = H(m)  U {Pl(P) E E(m)} U {Pl(m', p) E E(m)} U GI(m)  
Imported(m) = {pl(m', p) E I(m)} 
PaZobal(m) = GO(m) 
Using(m) = Merged(m) U Local(m) U Imported(m) U PGlobal(m) 

Moreover, 

M(m,m')  = {pl(ms,p)E M(m) and m ' E  ms} U {PI(P) E M(m)} 
I(m,m') = {pl(m',p) E I(m)} 
E(m,  m')  = {Pl(m',p) E E(m)} U {pi(p) E E(m)} 

3 M o d e l - T h e o r e t i c  S e m a n t i c s  

In this section, a model-theoretic semantics of the module system is given. This 
is based on Herbrand interpretations and provides a minimal model as model 
intersections. 
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�9 The work in this paper is concentrated on the semantics of a module sur- 
rounded by a set of modules. The reason is that every formula is associated with 
a module, as there is no space outside the modules. Thus, in this section, we try 
to model what holds with respect to this module which, certainly, depends on 
what holds to other modules. 

D e f i n i t i o n 2 .  Consider a m-FOT (m, P, Progr). Then, a set 

SW(m)  = {(ml, Pi, Progri)l 1 < i < n, n e N, (mi, Pi, Progr,) a m-gOT, 
m, ~s m, GI(mi) ~s GI(m) and 
Vj such that 1 < j <_ n , j  r i:  mi ~k mj ,GI(mi)  # GI(mj)}  

where N is the set of natural numbers, is called a surrounding world of m and 
m is surrounded by SW(m)  (sym: m srd SW(m))  

From now on, the triple representing a m-FOT and the constant identifying it 
will be used interchangeably. 

The concepts of tterbrand Universe (U) and Herbrand Base of the language 
for a m-FOT, as well as the one of interpretations are left unchanged. Her- 
brand interpretations are considered. Nevertheless, a Herbrand Base is referred 
as m-Herbrand Base (m-B), because predicates are module dependent and, for a 
m - g o T  m, it is built over the predicates in Using(m). What  changes, however, 
is the concept of truth value of an atomic formula. As all formulae and programs 
in the module system are addressed with respect to a module, they will be re- 
ferred to as m-formulae and m-programs, respectively. Moreover, consider that 
for a m-atomic formula A = p(t~, . . . ,  tn), it is pred(A) = p. Then, if a m-atomic 
formula of a module involves a local predicate, it is the module's responsibility 
to assign the truth value to it. This is partially the case for merged predicates. 
Otherwise, it is a matter  of interface declarations and of other module informa- 
tion. For instance, if the predicate of a m-atomic formula A of a module m is 
possibly_global, i.e. pred(A) C GO(m), then this formula will be true if there ex- 
ists another module m ~ in the surrounding world which declares pred(A) global, 
i.e. pred(A) E GI(m'), and A is true within m'.  Informally speaking, truthity of 
a ground m-atomic formula of a ,nodule is again identical to membership to an 
interpretation. However, which module's interpretation is considered depends on 
the visibility state of the formula's predicate within this module. 

D e f i n l t l o n 3 .  Consider a m - g O T  mo srd SW(mo) = { m l , . . . ,  ran}, n e N, an 
interpretation I0 of m0 and Is = {Iill < i < n, Ii : interpretation of  mi C 
SW(mo)}.  Then, a ground m-atomic formula )i of m0 is true in znterpretation 
Io surrounded by Is of SW(mo) (sym: true ,n Io srd Is) iff 

1. pred(A) Z  ged(mo) and 
either A C I0 or 

e SW(mo)  : pred(A) M(mo, n E(m , m0) and A e where 
I~ C Is is the interpretation of ms. 

2. pred(A) C Local(too) and A C [0. 
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3. pred(A) E Imported(mo) and 
9mi E SW(mo) : pred(A) E I(mo, mi) N E(mi, mo) and A C I, where 
Ii E Is is the interpretation of mi. 

4. pred(A) E PGlobal(mo) and 3m, �9 SW(mo) : pred(A) �9 GI(mi) and 
A �9 Ii where Ii �9 Is is the interpretation of m/. 

Assuming this definition, the definition of the truth value of m-atomic  for- 
mulae and m-clauses is kept the same as it is for first order a tomic formulae 
and Horn clauses. Considering the null formula A, it can be said that  it is true 
everywhere. 

As mentioned before, the approach is concentrated on examining what holds 
in a module with respect to what holds in some other modules. Thus, it is nat- 
ural and useful to restrict these other modules to the information relevant to 
this central module only. In other words, considering a mo srd SW(mo),  the 
surrounding world SW(mo) is restricted to SW'(mo) by restricting each mod- 
ule mi in SW(mo).  Each module in the surrounding world is restricted to these 
interface declarations and code only that  are used either directly by m0 or in- 
directly by some other module restriction. If, after the reduction, a module is 
empty,  it is not included in SWl(mo) at all. In terms of the formalism previ- 
ously presented, for each (m/, (M, (H, E, GI), I, GO), Progr) �9 SW(mo),  if its 
restriction is not empty, it is denoted a s  (mi  , ( M', ( H', E', G I'), I', GO'), Progr') 
where E/, GI ~ and Progr ~ contain only the "useful" information for m0 and the 
other module restrictions. H ~, M t, I ~ and GO ~ contain predicates that  appear  in 
Progrq The construction of SW~(mo) can be carried out in a systematic  way. 

The restriction of the surrounding world is followed in the concept of models. 
A model for a module m0 surrounded by SW(rno) should model m0 taking into 
account all requested information from SW(mo).  In addition, SW'(mo) should 
be modelled as well. A model in our framework consists of an interpretation of 
the central module which is considered with respect to a set of interpretations, 
one for each module of the surrounding world. 

Considering a central module surrounded by a set of modules contrasts to 
other approaches [17, 6, 2] where a set of units is considered as a world and 
effort is made to model such a world. In these approaches, all units are treated 
uniformly thus the formalism becomes more compact.  However, our intention is 
to model the environment of one module. Thus, if we tried to model this central 
module and its surrounding world uniformly as a set of modules, we wouldn' t  be 
complete. The reason is that  some candidate models would have been rejected 
because they don ' t  model the whole information, although some of it is irrelevant 
to the central module. Thus, considering the concept of the surrounding world 
and restricting it have been found necessary. 

D e f i n i t i o n 4 .  Consider a m - F O T  mo srd SW(mo) = { m l , . . . , m n ) , n  �9 N, an 
interpretat ion M0 of rn0 and Ms = {Mill  < i < n, Mi : interpretation o f  mi E 
SW(mo)) .  Then, Mo srd Ms is a model for mo srd SW(mo) (sym, also: Mo 
model for mo srd Ms of SW(mo))  if[ all the following hold: 

1. Every m-clause of the m-program of m0 is true in Mo srd Ms.  
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2. Vm~ E SW'(mo) and V m-atomic formula A of m~ such that pred(A) E 
Accord_set(mo,mi), the following holds: if A E Mi E Ms and Mi is the 
interpretation of mi then A E Mo where: 

and 

Accord_set(too, mi) = (M(mo, mi) N E'(m,, mo))U 
(1(too, m,) n E'(mi, mo))U 
(GO(too) M GI'(m,)) 

E'(mi, m0) = {pl(m0,p)E E ' (mi)}  tO {pl(p) E E ' (m i ) ]  

Informally speaking, the accordance set of m0 to mi represents the predicates 
that  m0 asks from mi and mi offers to m0. 

3. Items 1 and 2 hold Vmi E SW'(mo), considering the m, srd (SW'(mo) - 
{mi}) tO {rn0} and the M{ srd (Ms - {Mi}) tO {M0} where Mz E Ms is the 
interpretation of m i .  

P r o p o s i t i o n 5 .  Let Mo srd Ms be a model f or too srd SW(mo) and A a ground 
m-atomic formula of too. Then, A true in Mo srd Ms ~ A  C Mo. 

D e f i n i t i o n 6 .  Let m0 srd SW(m0) and F either a m-atomic formula of mo 
or a m-clause of m0. Then, F is a logical consequence of mo srd SW(mo) iff 
VM0 srd Ms model for mo srd SW(rno), F is true in Mo srd Ms. 

D e f i n i t i o n 7 .  Let Mo srd Ms, M0' srd Ms' be models for rn0 srd SW(mo) = 
{ m l , . . . , m n } , n  E N. Then Mo srd Ms <_ Mo' srd Ms' iffM0 C_ Mo' andVisuch 
that  1 < i < n: M{ C_ M' ,  where Mi E Ms, M'  E Ms '  are the interpretations 
of rni E SW(mo). Thus, a partial order is defined on the set of models of a 
mo srd SW(mo) .  

P r o p o s i t i o n 8 .  The m-Herbraud base is a model for a m-FOT surrounded by 
the m-Herbrand bases of the surrounding world. Thus, the set of models for a 
m-FOT surrounded by other m-FOTs is nonempty. 

T h e o r e m 9 .  Let M10 srd Mls ,  /1420 srd M2s be models for mo srd S W ( r n o ) =  
{ m l , . . . , r n n } , n  E N. Then -Ago = M 1 0 M M 2 o  is a model for rno srd Ms of 
SW(rno), where Ms = {Ml i  M M2z]l < i < n, Ml~ E M l s ,  M2, E M2s and 
Mli ,  M2i the interpretations of mi E SW(rno)}. 

P r o p o s i t i o n l 0 .  Let rno srd SW(rn0) = { r n t , . . . ,  rn~}, n E N. Let 
Models = {M0 srd Msl~J o srd Ms is a model for mo srd SW(m0)}.  Then, 
MMIN srd MMINS where 

MMIN = N{M01M0 srd Ms E Models} and 
MMINS = {M~ll < i < n, 

Mi = ('l{MsiIMsi E Ms, Mo srd Ms E Models and 
Msi is the interpretation of mi E SW(m0)}} 

is the minimal model for rno srd SW(mo) (w~th respect to the defined partial 
order). 
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4 Fixpoint Semantics 

In this section, a fixpoint semantics of the module system is given in terms of a 
continuous transformation associated with a module surrounded by a surround- 
ing world. The transformation's  least fixpoint involves the minimal model of the 
system into consideration. The employed transformation can be considered as 
an extension of the immediate consequence operator introduced in [23]. 

D e f i n i t i o n l l .  Let mo srd S W ( m o )  = { m l , . . . , m , ~ } , n  E N. 
Let m - B ( m i )  denote the m-Herbrand base of the m-FOT mi, 0 < i < n. 
Let Lat = {(Io,Is)IIo c_ m - B ( m o ) , I s  ={I i I  1 < i < n, Ii C_ m - B ( m i ) } } .  
Then, consider a transformation T : Lat --* Lat such that T : (I0, Is) ~-* (Io', Is ')  
where: 

Io' = {AIA E m-B(mo) ,  3C ground instance o f  a clause in Progr(mo)  : 
C = A : - A 1 , . . . , A k  and A 1 , . . . , A t  true in Io srd ls,  k >_ 0}U 
{AIA E I~, 1 <_ j < n ,pred(A)  E Accord_set(too, mj )}  

It = {AIA E m-B(mi ) ,  3C ground instance o f  a clause in Progr ' (mz)  : 
C =- A : - A 1 , . . . , A t  and A 1 , . . . , A t  true in I, srd ( I s -  {Ii}) U {I0},k > 0} 
U 
{AIA E 1~, 0 <_ j <_ n , j  5s i ,pred(A)  E Accord_se t (mi ,mj ) ,mi  E S W ' ( m o ) }  

or 
I '  = x~, i f  .~ ~ sw'(mo) 
and Is '  = {I~11 < i < n} 

Lat is a complete lattice with partial order _< such that  (I0, Is) <_ (Io', Is ' )  
iff I0 C_ I0' and Vi such that  1 < i < n: Ii C_ I[, where h E Is, I~ E Is  ~ are 
interpretations of mi C S W ( m o ) .  In other words, the order defined for models 
is extended to interpretations. If X C_ Lat, then 

lub(X)  = (U(tod~)cxIo, {Uni[1 < i < n and Uni = U(Io,ls)fX and 1, Elsl~}) 

glb(X) = (flU0,t~)exI0 , {Inti[1 < i < n and Intz = Cl(Io,Is)E x and I, EIslz}) 

T h e o r e m  12. Let rno srd S W ( m o )  and T as previously defined. T zs continuous. 

T h e o r e m  13. Conszder mo srd S W ( m o )  = { m l , . . . , m s } , n  E N. 
Then, Io srd Is  zs a model for mo srd S W ( m o )  ~ T((Io,  Is))  < (I0, Is)  

C o r o l l a r y  14. Let mo srd S W ( m o )  and MMI g srd MMINS zlS minimal model. 
Then, l f p (T )  < (MMIN, MMINS). 

T h e o r e m  15. Consider mo srd S W ( m o )  = { m l , . . . , m n } , n  E N. 
Then, T((I0,  Is))  = (Io, Is)  ~ Ia srd Is  is a model for mo srd S W ( m o ) .  

C o r o l l a r y  16. Let mo srd S W ( m o )  and MMIN srd MMINS zls mimmal  model. 
Then, (MMIN, MMINS) ~ l fp (T) .  

C o r o l l a r y  17 E q u i v a l e n c e .  Let mo srd S W ( m o )  and MMI N srd MMINS its 
mimmal  model. 
Then, (MMIN, MMINS) : l f p (T )  = T T w. 
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5 O p e r a t i o n a l  S e m a n t ~ i c s  

In this section the operational behaviour of the module system is presented. More 
precisely, the concept of derivability of a m-formula from a module surrounded 
by a surrounding world is expressed in terms of a set of inference rules, adopting 
a frequently used framework. The notation m6 srd SW(mo) F F[0] is used to 
denote that  there is a derivation of F from mo srcl SW(mo) with substitution 
0, where F is a m-formula of mo such as the null formula, a m-atomic formula 
or conjunction of these. The inference rules are of the form: 

Assumption 

Conclusion 

Such a rule states that Conclusion holds whenever Assumption holds. In the 
following, s denotes the identity substitution and 0, cr are substitutions. More- 
over, A is a m-atomic formula of m0 and Gs is a conjunction of those. The result 
of applying 0 to A is written A0. 

N u l l  F o r m u l a  

C o n j u n c t i o n  

mo SW(mo) n[d 

mo srd SW(mo) F A[0] A mo srd SW(mo) F- GsO[~] 

mo srd SW(m0) F (A, Gs)[Or 

m - A t o m i c  F o r m u l a ( I )  

3A0:-B0 E Progr(mo) A 0 = mgu(A, Ao) A mo srd SW(mo) t- B00 M 

mo srd SW(mo) I-- A[0a] 

m - A t o m i c  F o r m u l a ( I I )  

3m, C SW'(mo) : pred(A) E Accord_set(mo, mi)A 
mi srd (SW'(mo) - {ml}) U {m0} P A[0] 

mo srd SW(m0)  F A[0] 

Actually, it is only the last rule that  corresponds to the extension introduced 
by the module system and expresses the change in the proof environment that  
is carried out when an "external" predicate appears in a In-atomic formula. 

With respect to the model-theoretic semantics previously presented, the fol- 
lowing relations hold. 
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T h e o r e m  18. Consider mo srd SW(mo)  and A a ground m-formula of too. 
Then, mo srd SW(mo)  ~- A ~ A  is true zn Mo srd Ms, VM0 srd Ms  model for 
mo srd SW(mo) .  

T h e o r e m l 9 .  Consider mo srd SW(mo)  and A a ground m-formula of too. 
Then, A ,s true in MMIN srd MMINS ~ m o  srd SW(mo)  ~- A, where 
MMIN srd MMINS zS the minimal model of too srd SW(mo) .  

C o r o l l a r y 2 0  E q u i v a l e n c e .  Consider mo srd SW(mo)  and A a ground m- 
atomic formula of too. Then, A is a logzcal consequence of mo srd SW(mo)  
r srd SW(mo)  ~- A. 

6 T r a n s f o r m a t i o n  t o  H o r n  C l a u s e  L o g i c  

The previously presented module system can be easily transformed to Horn 
clause logic. Each module may be mapped onto a flat Horn clause program. 
Thus, a module surrounded by a surrounding world is mapped onto a Horn 
clause theory that is the union of the images of the modules of the system. Each 
m-clause in a module's body is mapped onto a Horn clause. Every m-atomic 
formula of the m-clause is substituted by an atomic formula according to the 
visibility state of the predicate of the m-atomic formula within this module. The 
interface declarations of a module are mapped onto Horn clauses that provide a 
link between the inter-module atomic formulae. 

The mapping of the m-atomic formulae is defined as follows. 

D e f i n i t i o n  21. 

map: M - F O T s  x M-atomic-formulae --~ atomic-formulae 

where M - F O T s  is the set of m-FOTs, M-atomic-formulae is the set of m- 
atomic formulae, atomic-formulae is the set of first order atomic formulae and 
map is defined in the following way: 

map(ran, Atom) = m(mn, Atom), i f  pred(Ato,~) E Merged(ran) 
map(ran, Atom) = l(mn, Atom), i f  pred(Atom) E Local(ran) 
map(ran, Atom) = e(mn, otherm, Atom), i f  pred(Atom) �9 Imported(ran) 
map(ran, Atom) = g(Atom), i f  pred(Atom) �9 PGlobal(mn) 

where mn is a m-FOT, Atom a m-atomic formula of mn and otherm is a m-FOT 
such that  pred(Atom) E I(mn,  otherm). 

The mapping is extended to m-clauses and m-programs by considering the 
image of each m-atomic formula in the m-clause and the image of each m-clause 
in the m-program. 

As previously mentioned, the interface declarations provide a set of clauses 
which derive as follows. 
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D e f i n i t i o n  22. Consider a m-FOT (mn, P, Progr) and (Is', F)  a pair of variables 
and function symbols global to the whole system. Interface_clauses(ran) is a set 
of clauses such that: 

1. V(em, prd) E E(mn),  3 an interface clause which is: 

e(em, An,  Atom) : - l(mn, Atom) 

where Atom = prd(tl , . . . , t ,~),  n is the arity ofprd and t l , . . . , t , ~  E V. 
2. V(prd) E E(mn),  3 an interface clause which is: 

e(em, An,  Atom) : - l(mn, Atom) 

where Atom as above and em E V. 
3. V(mms,prd)  E M(mn)  and Vmm E rams, 3 an interface clause which is: 

m(mn, Atom) : - e(mn, Am,  Atom) 

where Atom as above. 
4. g(prd) E M(mn) ,  3 an interface clause which is: 

m(mn, Atom) : - e(mn, Am,  Atom) 

where Atom as above and mm E V. 
5. Vprd E GI(mn),  3 an interface clause which is: 

g ( A t o m )  : - A t o m )  

where Atom as above. 

Then, considering the above definitions, the mapping is also extended to 
m-FOTs in the following way. 

D e f i n i t i o n  23. Assuming (V, F)  a pair of variables and function symbols global 
to the system, each m-FOT (An, P, Progr) is mapped onto a Horn clause theory 
with function symbols F I = F U Using(An),  variables V and program Progr ~ = 
map(An,  Progr)U Interfaee_clauses(mn). The set of predicate symbols is P '  = 
{m, l ,e ,g}  where m,l are 2-ary predicate symbols, e a 3-ary predicate symbol 
and g is a unary predicate symbol. 

To comment on the mapping, it can be said that it exploits and reflects 
the distinction of the predicates among the various modules as well as within 
a module according to the interface declarations of this module. Moreover, it 
achieves parameterization with respect to the modules of the surrounding world 
by transforming a module body independently from any other module's trans- 
formation. In addition, it treats interfaces separately from any code. Techniques 
employed in other work, where structuring extensions have been introduced to 
logic programming and have been mapped onto flat code [1, 17, 18, 19, 21, 9], 
are not sufficient or relevant to our case. A straightforward predicate renaming 
can be deduced from the substitution of the m-atomic formulae performed by 
the mapping. 
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It is interesting to see the relation of the mapping with the other seman- 
tics of the module system. More precisely, the relation with the model-thoretic 
semantics has been investigated. 

Consider mo srd SW(mo) where m0 is (m0, (M, (H, E, GI), I, GO), Progr). 
Then, reduce its E and GI sets to their elements which contain predicates used 
by SW'(mo) and add the remaining elements to H.  At the same time, for both 
the modified m0 as well as all modules in SW~(mo), eliminate the concept of "all" 
modules from the interfaces by explicitly enumerating the modules in SW~(mo)U 
{m0} (minus the home module of the interface). Then, consider P1RESTR to 
be the program of map(mo) O (Omesw,(,~o)map(m)) where mo srd SW'(mo) is 
modified as previously described. From PlnEsTn derive PRESTn by substituting 
each pair of clauses: 

m(lnM, Atom) : - e(InM, FromM, Atom) 

and 

by the clause 

e(InM, FromM, Atom) : - l(FromM, Atom) 

m(InM, Atom) : - l(FromM, Atom) 

where InM, FromM are module names and Atom an atomic formula. If a merge 
interface clause cannot be paired, it is not included in PnESTR. 

Considering mo srd SW(mo) and PnESTR derived as previously described, 
the following theorems have been proved. 

T h e o r e m  24. Let mo srd SW(mo ) and Atom a m-atomic formula of mo. Then, 
Atom logzeal consequence of too srd SW(mo) r Atom)) logzcal con- 
sequence of PRESTR. 

T h e o r e m 2 5 .  Let PnESTn as previously defined and MOD a Herbrand model 
for PRESTR. Conszder 

MODREsTR(mi) = {AtomlAtom E MOD, 3Atom' a m-atomic formula 
of m~ such that map(m,, Atom')= Atom}, 

Vmi SW'(mo) u {m0}. 
Consider also 

MODm(mi) -- {Atom'lAtom' is a m-atomze formula of m, such that 
map(ml, Atom') E MODnEsTn(m,)}, Vmi C SW'(mo)U {m0} 

MODm(m~) = O, Ym~ E SW(mo)  - SW'(mo) 

Thus, map(mi, MODm(mi)) = MODREsTn(m,), V,ni e SW'(mo) U {,no}. 
Then, MODm(mo) zs a model formo srd MODms of SW(mo) where MODms = 
{MODm(mi)lm, E SW(mo)}. 

T h e o r e m  26 M i n i m a l  M o d e l  C h a r a c t e r i z a t i o n  in  T e r m s  o f  t h e  M a p p i n g .  

Consider MMIN, the m~mmal model of PREsTR. Then, MMINm(mo) srd MMINmS 
is the mmzmal model for mo srd SW(mo). 
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7 R e l a t e d  W o r k  a n d  D i s c u s s i o n  

There is also other work related to impor t /expor t  program composition. The 
work of [20] should be mentioned where an algebra, for building logic programs 
out of pieces is introduced. The elementary terms of the algebra are breeze 
blocks and building bricks. The building bricks are logic programs. The breeze 
blocks (include/exclude/rename) correspond to impor t /expor t  lists of conven- 
tional module systems. Breeze blocks are considered as functions on predicate 
symbols. Building bricks are given a meaning as a monotone map from interpre- 
tations to interpretations. In [1], the introduced union, intersection and encapsu- 
lation operations are used to define two operators as powerful as impor t /expor t  
relations at the extensional level. Logic modules with impor t /expor t  interfaces 
are studied in [11] within the framework of the abstract semantics they intro- 
duce. A logic module is a quadruple (P, Ira, Ex, Int). Ira, Ex and Int are dis- 
joint sets of the imported, exported and internal predicates, respectively. P is 
a logic program with no clause having head with a predicate in Ira. However, 
in their approach the intensional view is adopted, i.e. program clauses are im- 
ported/exported.  

In [4] composition of logic programs is modelled by the composition of the 
admissible Herbrand models of the programs. Admissibility of a model is consid- 
ered under an admissible set of hypotheses where each of them occurs in the body 
of a clause of the program. A hypothesis is an element of the Herbrand base of 
the program. Then, a Herbrand model is the admissible Herbrand model under 
these hypotheses if and only if it is the minimal model of the union of the pro- 
gram and these hypotheses. Admissible models are claimed to model even logic 
modules with impor t /expor t  declarations and modules with import declarations 
have been studied in [3]. The concept of the surrounding world of our approach 
can be parameterized in terms of the concept of the hypotheses. Nevertheless, 
the conditions for admissibility of hypotheses must change to meet the enhanced 
requirements of the visibility states. At the same time, the admissible model 's 
definition can be compared with the model concept presented in Sect. 3. How- 
ever, only one admissible model is considered under some hypotheses, though 
more than one models are considered for a m-FOT surrounded by a surrounding 
world. Actually, the approach presented in [4] seems very interesting and it is 
in our near future work to try to abstract (parameterize) the semantics of our 
module system either by adopting and adjusting this approach or by developing 
a new one inspired from that  work. 

To comment on our module system, the following can be said. It can sup- 
port complicated intercdnnections among a set of modules which is something 
that  is needed in various application areas. In addition, higher encapsulation 
structures can be built on top of the existing module system according to the 
requirements of the specific application. Moreover, the module system can of- 
fer the encapsulation required in various advanced application areas, such as 
multi-agent systems, as well as in sophisticated platforms, such as task oriented 
languages. Another advantage is that information may be distributed since the 
module system may collect it to form a single block. Furthermore, incremental 
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module loading and unloading makes the system useful for the debugging phase. 
The system, although inspired from practical needs, has formal semantics which 
smoothly and naturally extends the ones of Horn clause logic. More precisely, 
standard model-theory [23] based on Herbrand interpretations and models as 
well as the immediate consequence operator have been suitably adjusted. What  
is more is that,  no migration to other logics is required. In addition, the op- 
erational semantics extends the SLD-resolution by a simple rule that  performs 
environment change, when required. A single module w.ith no interfaces is a spe- 
cial case of the approach (SW(mo) = 0). Moreover, the approach taken is such 
that  if a larger variety of interface declarations is needed, it can be extended 
by increasing the number of visibility states. The semantics can be easily ad- 
justed to model the new system. Standard impor t /expor t  declarations can be 
considered a special case of the approach. Visibility states are the pivot in the 
transformation of modular programs into flat code, implemented as a prepro- 
cessor. The preprocessor is written in Prolog, thus an integrated system can be 
derived. A form of equivalence with the other semantics of the system has been 
also provided for the transformation. The semantics given to the system can 
also model the world of the top level loop execution when various modules are 
loaded to the system. This is formalized as a central module surrounded by a 
surrounding world. The central module provides the environment of the top level 
loop execution and the surrounding world corresponds to the set of the loaded 
modules. 

8 C o n c l u s i o n s  

In this paper, a module system for logic programming was presented. This mod- 
ule system provides a finer program composition than impor t /expor t  declara- 
tions and has been found useful to be a structuring tool in various application 
areas. This work showed that  such a module system, although coming out from 
practice, has clear model-theoretic, fixpoint and operational semantics extending 
the ones of Horn clause logic using simple, well-known and widely understood 
concepts. In all the approaches we consider a central module surrounded by a 
surrounding world of other modules. In addition, modular logic programs are 
mapped to flat ones and this mapping provides a basis for a preprocessor im- 
plementation of the module system which meets the requirement of independent 
transformation. Equivalence relations have been proved for all the approaches of 
the semantics of the module system. 
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