
A Refinement of Import /Export Declarations
in Modular Logic Programming and its

Semantics

Isambo Karali and Constantin Halatsis

Department of Informatics, University of Athens

Abs t r ac t . Encapsulation constructs with import/export declarations is
the structuring facility offered in most commercial Prolog systems. How-
ever, real-life applications have shown to require a finer information ex-
change between encapsulated pieces of code. In this paper, a refinement
of import/export declarations for modules of logic programs is presented.
This offers a stricter form of communication between the modules and
a larger variety of visibility states of their predicates, the standard ap-
proaches being special cases of it. The semantics of this module system
has been examined and model-theoretic, fixpoint and operational ones
are given and have been proved to be equivalent. Instead of using other
logics, all these semantics extend the ones of Horn clause logic using
concepts commonly used in it. In addition, the module system has been
naturally transformed to Horn clause logic exploiting the distinction of
the predicates within a module according to the interface declarations
of this module. A form of equivalence with the other semantics of the
system is given. In addition, the employed transformation has provided
us with a basis for a preprocessor based implementation of the module
system.

1 Introduct ion

The declarative style of logic programming [14] via its implementat ion as Pro-
log [8, 22] facilitates the software development phase and has become a favorite
platform for a large variety of advanced applications (artificial intelligence ap-
plications, expert systems, scheduling applications etc.). Thus, a variety of Pro-
log implementat ions incorporated also an ecapsulation mechanism. At the same
time, much work is being carried out in providing logic programming with a
structuring mechanism with formal foundations which fits elegantly in the un-
derlying theory, since oI/e of the main advantages of logic programming is its
clear semantics. As stated in [7], two main lines of research exist towards this
direction: program composition and linguistic extensions. The former has been
inspired from the work in [20] where an algebra for logic programs is introduced.
Logic programs are the elements of this algebra and a variety of operators per-
forms program composition. Various researchers [15, 11, 5, 1] have worked in this
area. The module support with impor t / expor t interfaces, which is also the case
of commercial Prolog systems, is a special case of this approach and provides

487

a fine-grained program composition. On the other hand, linguistic extensions,
first appearing in [16], extend the syntax of Horn clauses by allowing implica-
tions as goals. This approach offers a rich expressive power, but its application
areas are still under investigation. In the area of linguistic extensions, the work
of contextual logic programming [17] is an eminent one. The work in [16] uses
intuitionistic logic to formulate the introduced.ideas. Other logics are also used
for a module concept in logic programming in a variety of works.

The module system presented and examined in this paper is the result of
the effort to make a structuring tool for large applications which require en-
capsulation and complicated interconnections. It provides privacy, abstraction
and name clashes avoidance. The presented system relies on the area of mod-
ule support with impgr t /expor t declarations and it can be said to extend the
functionality in predicate visibility of [10]. The encapsulation affects predicates
only. Although coming out from practical needs, our module system has been
given a model-theoretic, a flxpoint as well as an operational semantics, all proved
to be equivalent. The semantics has been concentrated on modelling the envi-
ronment of a module with respect to other modules that form the surrounding
system. Instead of relying on other logics, all these semantics extend the stan-
dard semantics of Horn clause programs [23] naturally and smoothly to capture
the introduced extension. In the employed formalism, modules are a kind of
first order theories which differ from classical ones in that the encapsulation and
the interfaces qualify the predicates. Commonly used and widely understood
concepts such as Iterbrand interpretations and models as well as the immedi-
ate consequence operator have been found to be sufficient to form the means
of the semantics of this module system. Nevertheless, a transformation of the
module system to Horn clause logic has been also defined and a sort of equiv-
alence with the other semantics of the system has been proved. A preprocessor
implementation of the module system is based on this transformation [13]. The
preprocessor extends the standard Prolog functionality so that to take the mod-
ule system into account. Modular Prolog programs are mapped to flat Prolog
code by the preprocessor which is coded in Prolog itself.

In this paper, firstly, the module system is briefly presented. Its model-
theoretic, fixpoint and operational semantics follow. The transformation of the
module system to Horn clause logic comes next. In all cases, the equivalence
relation is stated. Proofs of all theorems can be found in [12]. Finally, related
work is included and comments on the presented module system are made.

2 T h e M o d u l e S y s t e m

In this section, firstly, the module system is briefly presented from the Prolog
programmer 's point of view. Secondly, the system's formal fl'amework is intro-
duced.

A module encapsulates a set of Prolog procedures that form its body and
exchanges information with other modules via interface declaratwns. As home
module of an interface declaration, we consider the module where this declaration

488

appears. A module header of the form :-module(ModuleName), where Module
Name is a constant, introduces a module with name ModuleName and denotes
that the interface declarations as well as the Prolog code that follow until the
end-of-file mark or another module header form the module.

The interface declarations carry out the following. A module is allowed to
declare via its interface all or some of its predicates global to the system, i.e. vis-
ible everywhere, "its predicates" referring to the ones defined in this module. In
addition, it can declare them exported to specified modules or to all the modules
of the system. Furthermore, a module may import predicates, at the extensional
level, from specific modules. In this case, to achieve usability, the other mod-
ule must export the predicates to the home module of the impor t declaration.
Moreover, a module may merge procedure results from other modules, specific
or not, with its own ones. Again an export declaration in the other module must
export the procedure to the home module of the merge declaration. The order
of the merged results is not ensured and depends on the order of the module
loading. When a merge declaration within a module refers to a predicate, the
module is not allowed to declare this predicate exported or global. No more than
one module should declare the same predicate global. In case a predicate exists
in an export declaration it is not allowed to appear in a global one in the home
module of the export declaration. If more than one merge or impor t declarations
within a module refer to the same predicate, the declaration that appears last
is considered. The preceding ones are ignored. The interface declarations are
processed at compile t ime and cannot change at run time.

No space outside the modules exists. The concept of worlds is effectively
supported. Tha t is to say, the top level loop executes within the environment of
a module and all predicates visible to this module are visible and usable in the
top level loop.

In order to determine which procedure definition is addressed when a pred-
icate appears within a module, visibility slales are introduced and define the
effect of the interface declarations.

D e f i n i t i o n 1. A predicate can fall into one and only one of the following visi-
bility stales within a module:

m e r g e d iff a merge declaration exists in this module and refers to this predicate
loca l iff the above does not hold and there is a definition for this predicate in

this module
i m p o r t e d iff none of the above holds and there is an impor t declaration in this

module that refers to this predicate
p o s s i b l y _ g l o b a l iff none of the above holds

In the formalism of the module system presented in this paper, pure logic
programming and definite program clauses are assumed. The terminology used
in [14] is adopted. Modules are considered as a kind of first order theories, namely
module First Order Theomes (m-FOTs). Each module is a m-FOT. A m - F O T
differs from a Horn clause theory in that:

489

1. It includes a constant identifying the m-FOT which corresponds to the name
of the module.

2. Predicates in a m-FOT do not belong to a flat set. The set of predicate
symbols is substituted by a 4-tuple P = (M,L, I, GO). Each of the M,
L, I, GO correspond to the merged, local, imported and possibly_globM
predicates. L is further refined to L = (H,E, GI), i.e. hidden, exported
and declared global predicates. A hidden predicate in a module is a local
predicate which is neither exported nor declared global in this module. All
M, H, E, GI, I and GO sets contain predicates distinct from each other.
As expected, M, E and I combine the predicates with the modules that the
interface declarations relate them to. To illustrate this, consider the case of
the merged predicates within a module m. M is a finite set of (rams, rap)
pairs and (mpr) elements where rams is a finite set of constants other than
m and rap, mpr are predicates. An (rams, rap) pair in M denotes that mp
is a predicate merged from the modules in rams, though (mpr) denotes that
the predicate mpr is merged from all the modules. As, in the following, a set
of modules will be considered, the module name will be used to identify the
predicate sets among the various modules, i.e. E(m) represents the exported
predicates of the module m.

3. As far as the program clauses of the m-FOTs are concerned, only predicates
from M or L should appear in their heads.

A (V, F) pair where V is a finite or denumerably infinite set of variables and
F a finite set of function symbols is assumed to be global to all the m-FOTs.
The module system affects predicates only. The m-FOTs are, then, reduced to a
triple (m, P, Progr) where m is the constant which identifies the m-FOT and P
is as previously described. Progr is a finite set of program clauses which forms
the module's program and corresponds to the module's body.

Consider

Merged(m) = {PI(P) E M(m)} U {pl(ms,p) E M(m)}
Local(m) = H(m) U {Pl(P) E E(m)} U {Pl(m', p) E E(m)} U GI(m)
Imported(m) = {pl(m', p) E I(m)}
PaZobal(m) = GO(m)
Using(m) = Merged(m) U Local(m) U Imported(m) U PGlobal(m)

Moreover,

M(m,m') = {pl(ms,p)E M(m) and m ' E ms} U {PI(P) E M(m)}
I(m,m') = {pl(m',p) E I(m)}
E(m, m') = {Pl(m',p) E E(m)} U {pi(p) E E(m)}

3 M o d e l - T h e o r e t i c S e m a n t i c s

In this section, a model-theoretic semantics of the module system is given. This
is based on Herbrand interpretations and provides a minimal model as model
intersections.

490

�9 The work in this paper is concentrated on the semantics of a module sur-
rounded by a set of modules. The reason is that every formula is associated with
a module, as there is no space outside the modules. Thus, in this section, we try
to model what holds with respect to this module which, certainly, depends on
what holds to other modules.

D e f i n i t i o n 2 . Consider a m-FOT (m, P, Progr). Then, a set

SW(m) = {(ml, Pi, Progri)l 1 < i < n, n e N, (mi, Pi, Progr,) a m-gOT,
m, ~s m, GI(mi) ~s GI(m) and
Vj such that 1 < j <_ n , j r i: mi ~k mj ,GI(mi) # GI(mj)}

where N is the set of natural numbers, is called a surrounding world of m and
m is surrounded by SW(m) (sym: m srd SW(m))

From now on, the triple representing a m-FOT and the constant identifying it
will be used interchangeably.

The concepts of tterbrand Universe (U) and Herbrand Base of the language
for a m-FOT, as well as the one of interpretations are left unchanged. Her-
brand interpretations are considered. Nevertheless, a Herbrand Base is referred
as m-Herbrand Base (m-B), because predicates are module dependent and, for a
m - g o T m, it is built over the predicates in Using(m). What changes, however,
is the concept of truth value of an atomic formula. As all formulae and programs
in the module system are addressed with respect to a module, they will be re-
ferred to as m-formulae and m-programs, respectively. Moreover, consider that
for a m-atomic formula A = p(t~, . . . , tn), it is pred(A) = p. Then, if a m-atomic
formula of a module involves a local predicate, it is the module's responsibility
to assign the truth value to it. This is partially the case for merged predicates.
Otherwise, it is a matter of interface declarations and of other module informa-
tion. For instance, if the predicate of a m-atomic formula A of a module m is
possibly_global, i.e. pred(A) C GO(m), then this formula will be true if there ex-
ists another module m ~ in the surrounding world which declares pred(A) global,
i.e. pred(A) E GI(m'), and A is true within m'. Informally speaking, truthity of
a ground m-atomic formula of a ,nodule is again identical to membership to an
interpretation. However, which module's interpretation is considered depends on
the visibility state of the formula's predicate within this module.

D e f i n l t l o n 3 . Consider a m - g O T mo srd SW(mo) = { m l , . . . , ran}, n e N, an
interpretation I0 of m0 and Is = {Iill < i < n, Ii : interpretation of mi C
SW(mo)}. Then, a ground m-atomic formula)i of m0 is true in znterpretation
Io surrounded by Is of SW(mo) (sym: true ,n Io srd Is) iff

1. pred(A) Z ged(mo) and
either A C I0 or

e SW(mo) : pred(A) M(mo, n E(m , m0) and A e where
I~ C Is is the interpretation of ms.

2. pred(A) C Local(too) and A C [0.

491

3. pred(A) E Imported(mo) and
9mi E SW(mo) : pred(A) E I(mo, mi) N E(mi, mo) and A C I, where
Ii E Is is the interpretation of mi.

4. pred(A) E PGlobal(mo) and 3m, �9 SW(mo) : pred(A) �9 GI(mi) and
A �9 Ii where Ii �9 Is is the interpretation of m/.

Assuming this definition, the definition of the truth value of m-atomic for-
mulae and m-clauses is kept the same as it is for first order a tomic formulae
and Horn clauses. Considering the null formula A, it can be said that it is true
everywhere.

As mentioned before, the approach is concentrated on examining what holds
in a module with respect to what holds in some other modules. Thus, it is nat-
ural and useful to restrict these other modules to the information relevant to
this central module only. In other words, considering a mo srd SW(mo), the
surrounding world SW(mo) is restricted to SW'(mo) by restricting each mod-
ule mi in SW(mo). Each module in the surrounding world is restricted to these
interface declarations and code only that are used either directly by m0 or in-
directly by some other module restriction. If, after the reduction, a module is
empty, it is not included in SWl(mo) at all. In terms of the formalism previ-
ously presented, for each (m/, (M, (H, E, GI), I, GO), Progr) �9 SW(mo), if its
restriction is not empty, it is denoted a s (mi , (M', (H', E', G I'), I', GO'), Progr')
where E/, GI ~ and Progr ~ contain only the "useful" information for m0 and the
other module restrictions. H ~, M t, I ~ and GO ~ contain predicates that appear in
Progrq The construction of SW~(mo) can be carried out in a systematic way.

The restriction of the surrounding world is followed in the concept of models.
A model for a module m0 surrounded by SW(rno) should model m0 taking into
account all requested information from SW(mo). In addition, SW'(mo) should
be modelled as well. A model in our framework consists of an interpretation of
the central module which is considered with respect to a set of interpretations,
one for each module of the surrounding world.

Considering a central module surrounded by a set of modules contrasts to
other approaches [17, 6, 2] where a set of units is considered as a world and
effort is made to model such a world. In these approaches, all units are treated
uniformly thus the formalism becomes more compact. However, our intention is
to model the environment of one module. Thus, if we tried to model this central
module and its surrounding world uniformly as a set of modules, we wouldn' t be
complete. The reason is that some candidate models would have been rejected
because they don ' t model the whole information, although some of it is irrelevant
to the central module. Thus, considering the concept of the surrounding world
and restricting it have been found necessary.

D e f i n i t i o n 4 . Consider a m - F O T mo srd SW(mo) = { m l , . . . , m n) , n �9 N, an
interpretat ion M0 of rn0 and Ms = {Mill < i < n, Mi : interpretation o f mi E
SW(mo)) . Then, Mo srd Ms is a model for mo srd SW(mo) (sym, also: Mo
model for mo srd Ms of SW(mo)) if[all the following hold:

1. Every m-clause of the m-program of m0 is true in Mo srd Ms.

492

2. Vm~ E SW'(mo) and V m-atomic formula A of m~ such that pred(A) E
Accord_set(mo,mi), the following holds: if A E Mi E Ms and Mi is the
interpretation of mi then A E Mo where:

and

Accord_set(too, mi) = (M(mo, mi) N E'(m,, mo))U
(1(too, m,) n E'(mi, mo))U
(GO(too) M GI'(m,))

E'(mi, m0) = {pl(m0,p)E E ' (mi)} tO {pl(p) E E ' (m i)]

Informally speaking, the accordance set of m0 to mi represents the predicates
that m0 asks from mi and mi offers to m0.

3. Items 1 and 2 hold Vmi E SW'(mo), considering the m, srd (SW'(mo) -
{mi}) tO {rn0} and the M{ srd (Ms - {Mi}) tO {M0} where Mz E Ms is the
interpretation of m i .

P r o p o s i t i o n 5 . Let Mo srd Ms be a model f or too srd SW(mo) and A a ground
m-atomic formula of too. Then, A true in Mo srd Ms ~ A C Mo.

D e f i n i t i o n 6 . Let m0 srd SW(m0) and F either a m-atomic formula of mo
or a m-clause of m0. Then, F is a logical consequence of mo srd SW(mo) iff
VM0 srd Ms model for mo srd SW(rno), F is true in Mo srd Ms.

D e f i n i t i o n 7 . Let Mo srd Ms, M0' srd Ms' be models for rn0 srd SW(mo) =
{ m l , . . . , m n } , n E N. Then Mo srd Ms <_ Mo' srd Ms' iffM0 C_ Mo' andVisuch
that 1 < i < n: M{ C_ M' , where Mi E Ms, M' E Ms ' are the interpretations
of rni E SW(mo). Thus, a partial order is defined on the set of models of a
mo srd SW(mo) .

P r o p o s i t i o n 8 . The m-Herbraud base is a model for a m-FOT surrounded by
the m-Herbrand bases of the surrounding world. Thus, the set of models for a
m-FOT surrounded by other m-FOTs is nonempty.

T h e o r e m 9 . Let M10 srd Mls , /1420 srd M2s be models for mo srd S W (r n o) =
{ m l , . . . , r n n } , n E N. Then -Ago = M 1 0 M M 2 o is a model for rno srd Ms of
SW(rno), where Ms = {Ml i M M2z]l < i < n, Ml~ E M l s , M2, E M2s and
Mli , M2i the interpretations of mi E SW(rno)}.

P r o p o s i t i o n l 0 . Let rno srd SW(rn0) = { r n t , . . . , rn~}, n E N. Let
Models = {M0 srd Msl~J o srd Ms is a model for mo srd SW(m0)}. Then,
MMIN srd MMINS where

MMIN = N{M01M0 srd Ms E Models} and
MMINS = {M~ll < i < n,

Mi = ('l{MsiIMsi E Ms, Mo srd Ms E Models and
Msi is the interpretation of mi E SW(m0)}}

is the minimal model for rno srd SW(mo) (w~th respect to the defined partial
order).

493

4 Fixpoint Semantics

In this section, a fixpoint semantics of the module system is given in terms of a
continuous transformation associated with a module surrounded by a surround-
ing world. The transformation's least fixpoint involves the minimal model of the
system into consideration. The employed transformation can be considered as
an extension of the immediate consequence operator introduced in [23].

D e f i n i t i o n l l . Let mo srd S W (m o) = { m l , . . . , m , ~ } , n E N.
Let m - B (m i) denote the m-Herbrand base of the m-FOT mi, 0 < i < n.
Let Lat = {(Io,Is)IIo c_ m - B (m o) , I s ={I i I 1 < i < n, Ii C_ m - B (m i) } } .
Then, consider a transformation T : Lat --* Lat such that T : (I0, Is) ~-* (Io', Is ')
where:

Io' = {AIA E m-B(mo) , 3C ground instance o f a clause in Progr(mo) :
C = A : - A 1 , . . . , A k and A 1 , . . . , A t true in Io srd ls, k >_ 0}U
{AIA E I~, 1 <_ j < n ,pred(A) E Accord_set(too, mj)}

It = {AIA E m-B(mi) , 3C ground instance o f a clause in Progr ' (mz) :
C =- A : - A 1 , . . . , A t and A 1 , . . . , A t true in I, srd (I s - {Ii}) U {I0},k > 0}
U
{AIA E 1~, 0 <_ j <_ n , j 5s i ,pred(A) E Accord_se t (mi ,mj) ,mi E S W ' (m o) }

or
I ' = x~, i f .~ ~ sw'(mo)
and Is ' = {I~11 < i < n}

Lat is a complete lattice with partial order _< such that (I0, Is) <_ (Io', Is ')
iff I0 C_ I0' and Vi such that 1 < i < n: Ii C_ I[, where h E Is, I~ E Is ~ are
interpretations of mi C S W (m o) . In other words, the order defined for models
is extended to interpretations. If X C_ Lat, then

lub(X) = (U(tod~)cxIo, {Uni[1 < i < n and Uni = U(Io,ls)fX and 1, Elsl~})

glb(X) = (flU0,t~)exI0 , {Inti[1 < i < n and Intz = Cl(Io,Is)E x and I, EIslz})

T h e o r e m 12. Let rno srd S W (m o) and T as previously defined. T zs continuous.

T h e o r e m 13. Conszder mo srd S W (m o) = { m l , . . . , m s } , n E N.
Then, Io srd Is zs a model for mo srd S W (m o) ~ T((Io, Is)) < (I0, Is)

C o r o l l a r y 14. Let mo srd S W (m o) and MMI g srd MMINS zlS minimal model.
Then, l f p (T) < (MMIN, MMINS).

T h e o r e m 15. Consider mo srd S W (m o) = { m l , . . . , m n } , n E N.
Then, T((I0, Is)) = (Io, Is) ~ Ia srd Is is a model for mo srd S W (m o) .

C o r o l l a r y 16. Let mo srd S W (m o) and MMIN srd MMINS zls mimmal model.
Then, (MMIN, MMINS) ~ l fp (T) .

C o r o l l a r y 17 E q u i v a l e n c e . Let mo srd S W (m o) and MMI N srd MMINS its
mimmal model.
Then, (MMIN, MMINS) : l f p (T) = T T w.

494

5 O p e r a t i o n a l S e m a n t ~ i c s

In this section the operational behaviour of the module system is presented. More
precisely, the concept of derivability of a m-formula from a module surrounded
by a surrounding world is expressed in terms of a set of inference rules, adopting
a frequently used framework. The notation m6 srd SW(mo) F F[0] is used to
denote that there is a derivation of F from mo srcl SW(mo) with substitution
0, where F is a m-formula of mo such as the null formula, a m-atomic formula
or conjunction of these. The inference rules are of the form:

Assumption

Conclusion

Such a rule states that Conclusion holds whenever Assumption holds. In the
following, s denotes the identity substitution and 0, cr are substitutions. More-
over, A is a m-atomic formula of m0 and Gs is a conjunction of those. The result
of applying 0 to A is written A0.

N u l l F o r m u l a

C o n j u n c t i o n

mo SW(mo) n[d

mo srd SW(mo) F A[0] A mo srd SW(mo) F- GsO[~]

mo srd SW(m0) F (A, Gs)[Or

m - A t o m i c F o r m u l a (I)

3A0:-B0 E Progr(mo) A 0 = mgu(A, Ao) A mo srd SW(mo) t- B00 M

mo srd SW(mo) I-- A[0a]

m - A t o m i c F o r m u l a (I I)

3m, C SW'(mo) : pred(A) E Accord_set(mo, mi)A
mi srd (SW'(mo) - {ml}) U {m0} P A[0]

mo srd SW(m0) F A[0]

Actually, it is only the last rule that corresponds to the extension introduced
by the module system and expresses the change in the proof environment that
is carried out when an "external" predicate appears in a In-atomic formula.

With respect to the model-theoretic semantics previously presented, the fol-
lowing relations hold.

495

T h e o r e m 18. Consider mo srd SW(mo) and A a ground m-formula of too.
Then, mo srd SW(mo) ~- A ~ A is true zn Mo srd Ms, VM0 srd Ms model for
mo srd SW(mo) .

T h e o r e m l 9 . Consider mo srd SW(mo) and A a ground m-formula of too.
Then, A ,s true in MMIN srd MMINS ~ m o srd SW(mo) ~- A, where
MMIN srd MMINS zS the minimal model of too srd SW(mo) .

C o r o l l a r y 2 0 E q u i v a l e n c e . Consider mo srd SW(mo) and A a ground m-
atomic formula of too. Then, A is a logzcal consequence of mo srd SW(mo)
r srd SW(mo) ~- A.

6 T r a n s f o r m a t i o n t o H o r n C l a u s e L o g i c

The previously presented module system can be easily transformed to Horn
clause logic. Each module may be mapped onto a flat Horn clause program.
Thus, a module surrounded by a surrounding world is mapped onto a Horn
clause theory that is the union of the images of the modules of the system. Each
m-clause in a module's body is mapped onto a Horn clause. Every m-atomic
formula of the m-clause is substituted by an atomic formula according to the
visibility state of the predicate of the m-atomic formula within this module. The
interface declarations of a module are mapped onto Horn clauses that provide a
link between the inter-module atomic formulae.

The mapping of the m-atomic formulae is defined as follows.

D e f i n i t i o n 21.

map: M - F O T s x M-atomic-formulae --~ atomic-formulae

where M - F O T s is the set of m-FOTs, M-atomic-formulae is the set of m-
atomic formulae, atomic-formulae is the set of first order atomic formulae and
map is defined in the following way:

map(ran, Atom) = m(mn, Atom), i f pred(Ato,~) E Merged(ran)
map(ran, Atom) = l(mn, Atom), i f pred(Atom) E Local(ran)
map(ran, Atom) = e(mn, otherm, Atom), i f pred(Atom) �9 Imported(ran)
map(ran, Atom) = g(Atom), i f pred(Atom) �9 PGlobal(mn)

where mn is a m-FOT, Atom a m-atomic formula of mn and otherm is a m-FOT
such that pred(Atom) E I(mn, otherm).

The mapping is extended to m-clauses and m-programs by considering the
image of each m-atomic formula in the m-clause and the image of each m-clause
in the m-program.

As previously mentioned, the interface declarations provide a set of clauses
which derive as follows.

496

D e f i n i t i o n 22. Consider a m-FOT (mn, P, Progr) and (Is', F) a pair of variables
and function symbols global to the whole system. Interface_clauses(ran) is a set
of clauses such that:

1. V(em, prd) E E(mn), 3 an interface clause which is:

e(em, An, Atom) : - l(mn, Atom)

where Atom = prd(tl , . . . , t ,~), n is the arity ofprd and t l , . . . , t , ~ E V.
2. V(prd) E E(mn), 3 an interface clause which is:

e(em, An, Atom) : - l(mn, Atom)

where Atom as above and em E V.
3. V(mms,prd) E M(mn) and Vmm E rams, 3 an interface clause which is:

m(mn, Atom) : - e(mn, Am, Atom)

where Atom as above.
4. g(prd) E M(mn) , 3 an interface clause which is:

m(mn, Atom) : - e(mn, Am, Atom)

where Atom as above and mm E V.
5. Vprd E GI(mn), 3 an interface clause which is:

g (A t o m) : - A t o m)

where Atom as above.

Then, considering the above definitions, the mapping is also extended to
m-FOTs in the following way.

D e f i n i t i o n 23. Assuming (V, F) a pair of variables and function symbols global
to the system, each m-FOT (An, P, Progr) is mapped onto a Horn clause theory
with function symbols F I = F U Using(An), variables V and program Progr ~ =
map(An, Progr)U Interfaee_clauses(mn). The set of predicate symbols is P ' =
{m, l ,e ,g} where m,l are 2-ary predicate symbols, e a 3-ary predicate symbol
and g is a unary predicate symbol.

To comment on the mapping, it can be said that it exploits and reflects
the distinction of the predicates among the various modules as well as within
a module according to the interface declarations of this module. Moreover, it
achieves parameterization with respect to the modules of the surrounding world
by transforming a module body independently from any other module's trans-
formation. In addition, it treats interfaces separately from any code. Techniques
employed in other work, where structuring extensions have been introduced to
logic programming and have been mapped onto flat code [1, 17, 18, 19, 21, 9],
are not sufficient or relevant to our case. A straightforward predicate renaming
can be deduced from the substitution of the m-atomic formulae performed by
the mapping.

497

It is interesting to see the relation of the mapping with the other seman-
tics of the module system. More precisely, the relation with the model-thoretic
semantics has been investigated.

Consider mo srd SW(mo) where m0 is (m0, (M, (H, E, GI), I, GO), Progr).
Then, reduce its E and GI sets to their elements which contain predicates used
by SW'(mo) and add the remaining elements to H. At the same time, for both
the modified m0 as well as all modules in SW~(mo), eliminate the concept of "all"
modules from the interfaces by explicitly enumerating the modules in SW~(mo)U
{m0} (minus the home module of the interface). Then, consider P1RESTR to
be the program of map(mo) O (Omesw,(,~o)map(m)) where mo srd SW'(mo) is
modified as previously described. From PlnEsTn derive PRESTn by substituting
each pair of clauses:

m(lnM, Atom) : - e(InM, FromM, Atom)

and

by the clause

e(InM, FromM, Atom) : - l(FromM, Atom)

m(InM, Atom) : - l(FromM, Atom)

where InM, FromM are module names and Atom an atomic formula. If a merge
interface clause cannot be paired, it is not included in PnESTR.

Considering mo srd SW(mo) and PnESTR derived as previously described,
the following theorems have been proved.

T h e o r e m 24. Let mo srd SW(mo) and Atom a m-atomic formula of mo. Then,
Atom logzeal consequence of too srd SW(mo) r Atom)) logzcal con-
sequence of PRESTR.

T h e o r e m 2 5 . Let PnESTn as previously defined and MOD a Herbrand model
for PRESTR. Conszder

MODREsTR(mi) = {AtomlAtom E MOD, 3Atom' a m-atomic formula
of m~ such that map(m,, Atom')= Atom},

Vmi SW'(mo) u {m0}.
Consider also

MODm(mi) -- {Atom'lAtom' is a m-atomze formula of m, such that
map(ml, Atom') E MODnEsTn(m,)}, Vmi C SW'(mo)U {m0}

MODm(m~) = O, Ym~ E SW(mo) - SW'(mo)

Thus, map(mi, MODm(mi)) = MODREsTn(m,), V,ni e SW'(mo) U {,no}.
Then, MODm(mo) zs a model formo srd MODms of SW(mo) where MODms =
{MODm(mi)lm, E SW(mo)}.

T h e o r e m 26 M i n i m a l M o d e l C h a r a c t e r i z a t i o n in T e r m s o f t h e M a p p i n g .

Consider MMIN, the m~mmal model of PREsTR. Then, MMINm(mo) srd MMINmS
is the mmzmal model for mo srd SW(mo).

498

7 R e l a t e d W o r k a n d D i s c u s s i o n

There is also other work related to impor t /expor t program composition. The
work of [20] should be mentioned where an algebra, for building logic programs
out of pieces is introduced. The elementary terms of the algebra are breeze
blocks and building bricks. The building bricks are logic programs. The breeze
blocks (include/exclude/rename) correspond to impor t /expor t lists of conven-
tional module systems. Breeze blocks are considered as functions on predicate
symbols. Building bricks are given a meaning as a monotone map from interpre-
tations to interpretations. In [1], the introduced union, intersection and encapsu-
lation operations are used to define two operators as powerful as impor t /expor t
relations at the extensional level. Logic modules with impor t /expor t interfaces
are studied in [11] within the framework of the abstract semantics they intro-
duce. A logic module is a quadruple (P, Ira, Ex, Int). Ira, Ex and Int are dis-
joint sets of the imported, exported and internal predicates, respectively. P is
a logic program with no clause having head with a predicate in Ira. However,
in their approach the intensional view is adopted, i.e. program clauses are im-
ported/exported.

In [4] composition of logic programs is modelled by the composition of the
admissible Herbrand models of the programs. Admissibility of a model is consid-
ered under an admissible set of hypotheses where each of them occurs in the body
of a clause of the program. A hypothesis is an element of the Herbrand base of
the program. Then, a Herbrand model is the admissible Herbrand model under
these hypotheses if and only if it is the minimal model of the union of the pro-
gram and these hypotheses. Admissible models are claimed to model even logic
modules with impor t /expor t declarations and modules with import declarations
have been studied in [3]. The concept of the surrounding world of our approach
can be parameterized in terms of the concept of the hypotheses. Nevertheless,
the conditions for admissibility of hypotheses must change to meet the enhanced
requirements of the visibility states. At the same time, the admissible model 's
definition can be compared with the model concept presented in Sect. 3. How-
ever, only one admissible model is considered under some hypotheses, though
more than one models are considered for a m-FOT surrounded by a surrounding
world. Actually, the approach presented in [4] seems very interesting and it is
in our near future work to try to abstract (parameterize) the semantics of our
module system either by adopting and adjusting this approach or by developing
a new one inspired from that work.

To comment on our module system, the following can be said. It can sup-
port complicated intercdnnections among a set of modules which is something
that is needed in various application areas. In addition, higher encapsulation
structures can be built on top of the existing module system according to the
requirements of the specific application. Moreover, the module system can of-
fer the encapsulation required in various advanced application areas, such as
multi-agent systems, as well as in sophisticated platforms, such as task oriented
languages. Another advantage is that information may be distributed since the
module system may collect it to form a single block. Furthermore, incremental

499

module loading and unloading makes the system useful for the debugging phase.
The system, although inspired from practical needs, has formal semantics which
smoothly and naturally extends the ones of Horn clause logic. More precisely,
standard model-theory [23] based on Herbrand interpretations and models as
well as the immediate consequence operator have been suitably adjusted. What
is more is that, no migration to other logics is required. In addition, the op-
erational semantics extends the SLD-resolution by a simple rule that performs
environment change, when required. A single module w.ith no interfaces is a spe-
cial case of the approach (SW(mo) = 0). Moreover, the approach taken is such
that if a larger variety of interface declarations is needed, it can be extended
by increasing the number of visibility states. The semantics can be easily ad-
justed to model the new system. Standard impor t /expor t declarations can be
considered a special case of the approach. Visibility states are the pivot in the
transformation of modular programs into flat code, implemented as a prepro-
cessor. The preprocessor is written in Prolog, thus an integrated system can be
derived. A form of equivalence with the other semantics of the system has been
also provided for the transformation. The semantics given to the system can
also model the world of the top level loop execution when various modules are
loaded to the system. This is formalized as a central module surrounded by a
surrounding world. The central module provides the environment of the top level
loop execution and the surrounding world corresponds to the set of the loaded
modules.

8 C o n c l u s i o n s

In this paper, a module system for logic programming was presented. This mod-
ule system provides a finer program composition than impor t /expor t declara-
tions and has been found useful to be a structuring tool in various application
areas. This work showed that such a module system, although coming out from
practice, has clear model-theoretic, fixpoint and operational semantics extending
the ones of Horn clause logic using simple, well-known and widely understood
concepts. In all the approaches we consider a central module surrounded by a
surrounding world of other modules. In addition, modular logic programs are
mapped to flat ones and this mapping provides a basis for a preprocessor im-
plementation of the module system which meets the requirement of independent
transformation. Equivalence relations have been proved for all the approaches of
the semantics of the module system.

R e f e r e n c e s

1. A. Brogi. Program Composition in Computational Logic. PhD thesis, Universit&
di Pisa, 1993.

2. A. Brogi, E. Lamma, and P. Mello. A general framework for structuring logic
programs. Technical Report 4/1, CNR Progetto Finalizzato Sistemi Informatici e
Calcolo Parallelo, 1990.

500

3. A. Brogi, E. Lamma, and P. Mello. Composing open logic programs. Journal of
Logic and Computation, 3(91-11:4):1-25, 1992.

4. A. Brogi, E. Lamma, and P. Mello. Compositional model-theoretic semantics for
logic programs. New Generation Computing, 11:1-21, 1992.

5. A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini. Composition operators for
logic theories. In J. W. Lloyd, editor, Proceedings of the Computat,onal Logic
Symposium, pages 117-134, November 1990.

6. M. Bugliesi. A declarative view of inheritance in logic programming. In Joint
International Conference and Symposium on Logic Programming, pages 112-127,
1992.

7. M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming. Journal
of Logic Programming , 19,20:443-502, 1994.

8. W. F. Clocksin and C. S. Mellish. Programming in Prolo 9. Springer-Verlag, second
edition, 1984.

9. R. Dietrich. A preprocessor based module system for Prolog. In TAPSOFT'89
International Joint Conference on Theory and Practice in Software Development,
volume 2, pages 126-139, 1989.

10. ECL'PS% User Manual, March 1993.
11. H. Gaifman and E. Shapiro. Fully abstract compositional semantics for logic pro-

grams. In 6th Conference on Principles of Prograrnrnm9 Languages, pages 134-142,
1989.

12. I. Karali and C. tlalatsis. The semantics of a module support for logic program-
ming. Technical report, Department of Informatics, University of Athens, 1993.

13. I. Karali, E. Pelecanos, and C. Halatsis. A versatile module system for Prolog
mapped to flat Prolog. In ACM Symposium on Applied Cornputmg, pages 578-
585, 1993.

14. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.
15. P. Mancarella and D. Pedreschi. An algebra for logic programs. In 5th Interna-

tional Conference in Logic Programming, pages 1006-1023, 1988.
16. D. Miller. A theory of modules for logic programming. In Proceedings of the 1986

Symposium on Logic Programming, pages 106-114, 1986.
17. L. Monteiro and A. Porto. Contextual logic programming. In 6th Tnternat,onal

Conference in Logic Programming, pages 284-299, 1989.
18. L. Monteiro and A. Porto. A transformational view of inheritance in logic pro-

gramming. In 7th International Conference in Logic Prograrnming, pages 481-494,
1990.

19. Y. Moscowitz and E. Shapiro. Lexical logic programs. In 8th International Sym-
posium in Logic P~vgramming, pages 349-363, 1991.

20. R. O'Keefe. Towards an algebra for constructing logic programs. In IEEE Sympo-
sium on Log*c Programming, pages 152-160, 1985.

21. D. T. Sannella and L. A. Wallen. A calculus for the construction of modular Prolog
programs. Journal of Logic Programming, 12(1):147-177, January 1992.

22. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.
23. M. Van Emden and A. Kowalski. The semantics of predicate logic as a program-

ming language. Journal of the Assoc,otion for Computing Machinery, 23:733-742,
1976.

