
On the expressive power of algebraic graph 
grammars with application conditions 

Annika Wagner 

Technical University of Berlin 
Computer Science Department 

Sekr. FR 6 - 1, Franklinstr. 28/29, D-10587 Berlin 
e-mail: aw@cs.tu-berlin de 

A b s t r a c t .  In this paper we introduce positive, negative and conditional application con- 
ditions for the single and the double pushout approach to graph transformation. To give 
the reader some intuition how the formalism can be used for specification we consider 
consistency and an interesting representation for specific conditions, namely (conditional) 
equations. Using a graph grammar notion without nonterminal graphs, i.e. each derivation 
step leads to a graph of the generated language, we prove a hierarchy: graph grammars over 
rules with positive application conditions are as powerful as the ones over rules without 
any extra application condition. Introducing negative application conditions makes the for- 
malism more powerful. Graph grammars over rules with conditional application conditions 
are on top of the hierarchy. 

1 I n t r o d u c t i o n  

Graph  t ransformat ions  are a good means for describing the development  of struc- 
tured s ta tes  in e lementary  steps. Although the generative power of most  of the known 
graph g r a m m a r  approaches is sufficient to generate any recursively enurnerable set 
of graphs,  add i t iona l  appl ica t ion  conditions are a necessary par t  of every non- t r iv ia l  
specification. Often they are expressed informally by assmning some kind of control 
mechanism or they are coded into the graphs using flags and addi t ional  labels.  Both 
possibi l i t ies  make it hard  to analyse the specification. In contrast  to tex tua l  appli-  
cat ion condit ions expressed in logical formulas (see e.g. [12], [13]) we propose a for- 
real ism where these addi t iona l  and more complex applicat ion condit ions are t rea ted  
formally a~d graphically. In order to show that  we can really express more with 
our new notion(s) ,  i.e. t ha t  we extended the expressive power of the graph g r a m m a r  
approach,  we consider specification aspects on one hand and the generat ive power 
one the other  hand.  The  main  result concerning specification is tha t  specific posi- 
tive (negative)  appl ica t ion  condit ions can be characterized by (non-)equat ions  while 
specific condi t ional  appl ica t ion  conditions correspond to condit ional  equations.  As 
s ta ted  above the generat ive power of the pure algebraic approach is sufficient for ev- 
ery recursively enumerable  set of graphs. Hence in order to achieve a new i l lustra t ive 
result we had to change the notion of a graph g r amma r  not to contain non- te rmina l  
graphs,  i.e. every der ivat ion step leads to a graph of the generated language.  This  
makes it near ly  impossible  to encode control s tructure into flags and labels of a 
graph.  Using the formal ism to formalize algori thms or to describe the opera t ional  
semantics  of complex systems hence leads to more abst ract  specifications. 
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The algebraic approach to graph transformation 1 i.e. the single and the double 
pushout approach ([11], [2]), provides a framework where because of its categorical 
nature a lot of different results (concerning parallelism and concurrency for example) 
have been achieved. The extensions presented in this paper are of the same nature. 
As presented in [6] additional algebraic application conditions are compatible with 
that theory. High-level replacement systems ([4], [.5]) are a categorical generalization 
of the algebraic approach to graph grammars. In this context the same notions are 
formulated not only for graphs but for objects of arbitrary categories. Because of 
their nature all notions introduced in this paper can easily transfered to high-level 
replacement systems. Furthermore application conditions can close the gap between 
the pure single pushout approach and the more restrictive double pushout approach, 
allowing specific "gluing conditions" for arbitrary subgraphs of the left hand side of 
productions. 

The paper is organized as follows: In section 2 we introduce all basic notions. Then 
we change over to the expressive power of the formalism. Section 3 is devoted to the 
specification aspects, while our notion of graph grammar and its generative power 
is presented in section 4. In the last section we conclude with a general discussion 
of the presented approach and possibilities for further development. 

The reader is assumed to be familar with basic notions of category theory and 
universal algebra (see e.g. [9] or [1]). 

2 B a s i c  n o t i o n s  a n d  d e f i n i t i o n s  

In this section we first recover some basic notions of the single and the double 
pushout approach to graph transformation. Then we introduce positive, negative 
and conditional application conditions for rules and define their applicability. 

Def in i t ion  l ( G r a p h ,  M o r p h i s m ) .  A graph G = (Gv, GE, sa , t  G) consists of a 
set of vertices Gv,  a set of edges GE and two mappings sa , t  a : GE -~ Gv which 
provide a source resp. target vertex for every edge. A graph morphism f : G --4 H 
is a pair of total mappings ( fv  : Gv --~ H v , f E  : GE --~ HE) which are compatible 
with the source and target assigmnents, i.e. f y ( sa(e ) )  = sH(fE(e))  for all e E GE 
(and analogously for the target mapping). A parfial graph morphism g from G to H 
is a total graph morphism from some subgraph G(g) of G to H. 

If we define composition of these morphisms by composition of the components 
and identities as pairs of component identities, the objects and (partial) morphisms 
w.r.t, definition 1 form a category denoted by GRA (GRA P ) in the following. If we 
want to state a property of a morphism we often do not divide between vertices and 
edges. Hence we write f (x )  for all objects x instead of f v (v )  for all vertices v and 
rE(e) for all edges e. 

Generally, the rewriting of a graph G via some rule r is done by first deleting 
some part DEL (from G) and then adding a new part A D D  finally resulting in 
a derived graph H. Often this shall only be done if G additionally contains some 

1 Note that although "algebraic" is frequently used as synonymous of "context-free" in 
language theory, in this paper we use it in a different sense. 
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context K which is essentially to be kept. We additionally allow that  the context 
is glued together. Thus rewriting means to replace some part  L = D E L  U KL by 
another one R = K n U A D D ,  where Kn is constructed from KL by gluing of vertices 
and edges. 

O: 

gluing 

Fig. 1. How graph transformation works 

Consequently a rule consists of two graphs L and R, called left and right hand 
side resp. (the square parts in figure 1), together with a partial graph morphism 
r : L --+ R which maps the context contained in the left hand side to the context of 
the right hand side of the rule. All vertices and edges for which r is not  defined are 
intended to be deleted. Applying a rule means to match the left hand side with a 
subgraph of the mother graph (here we allow that. different, items from L are mapped 
onto the same item in G), then to remove it and finally to add the right hand side. 
The result is the daughter graph H. 

Deleting is not always unproblematic.  For example if a vertex shall be deleted by 
the rule but the mother  graph G contains an edge pointing to that  vertex. Another 
kind of conflict may arise if parts which shall be deleted and parts which shall be 
preserved are identified in G. In general we have two possibilities to handle these 
problems. First we can forbid the application of the rule in such cases and second 
we can solve all conflicts destructively by deleting the conflicting items. ~[he first 
alternative is choosen in the 'classical' double-pushout approach, the second in the 
framework of single-pushout transformations. 

D e f i n i t i o n 2  ( S i m p l e  ru le ,  s i m p l e  d e r i v a t i o n ) .  A simple rule r : L --~ R is a 
partial morphism from it 's left hand side L to it 's right hand side R. A match for r 
in some object G is a total morphism m : L -+ G from the left hand side of the rule 
to g. A match m is called d-  injecfive if re(x) = n~(y) implies z = y or z,  y 6 n(r). 
It is called d-  complele if for each edge e 6 GE with sa(e), t6(e) 6 m y  (Lv  - L ( r ) v )  
we have e 6 mE(LE -- L(r)E). Given a simple rule r and a match m for r in a graph 

G the szmple &rect derivatzon from G with r at m, written G ~ H, is the pushout  
of r and m in G R A  P . If the match m is d-injective and d-complete we call a direct 
derivation classical. A sequence of direct derivations of the form Go ~ = ~  ... ~ : ~  Gk 
constitutes a derivafwn from Go to Gk by rl ,  ..., rk. Such a derivation is denoted by 
Go ~ G~. 

The following construction shows how the direct derivation of a graph can be 
achieved. 
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C o n s t r u c t i o n 3  ( P u s h o u t  in G R A  P ). If f : A -4 B and g : A -4 C is a pair 
of (partial) morphisms the pushout (D,f* : C -4 D,g" : B -4 D) of f and g in 
G R A  P can be constructed in three steps: 

1. Construction of the gluing graph: Let E be the largest subgraph of A ( f )  such 
that for all vertices and edges x E E and y E A :  f ( x )  = f ( y )  or g(x) = g(y) : :~  
y E E .  

2. Construction of the definedness areas B(g*) and C( f* )  of g* and f*: Delete all 
vertices and edges from C that have preimages in A but not in E and all edges 
whose source or target vertices are deleted. Symmetrically, treat B. 

3. Gluing of graphs B(g*) and C ( f ' )  along E: Now graph D is constructed by the 
disjoint union of B(g*) and C( f* )  where corresponding images of vertices and 
edges in E are identified with each other. 

The proof for the more general case of graph structures can be found in [11]. Some 
essential properties of the pushout diagram directly follow from the construction. 

L e m m a  4 ( P r o p e r t i e s  of  p u s h o u t s  in G R A  P ). Let (D, f* : C -4 D, g* : B -+ 
D) be the pushoul o f f  : A --+ B and g : A -4 C i~ G__~S. Then the followzng properties 
are fulfilled: 
1. ~ r c ( f * ) v  ~ v ~ g(A(g),~) 
2. f* (x )  = g*(v) ~ x c g(A) a ,d  v ~ I (A)  
3, f"  and g* are together suuectwe 

Proof. Property (1) is a direct, consequence of step (2) of construction 3. The second 
and the third property follow from step (3) of the construction, t::] 

The following technical lemma is used in later sections to show that the presented 
results can also be achieved if one is restricted to classical matches. 

Le lnma  5 ( E m b e d d i n g  of  der ivat ions) .  I f  G ~ H is a direct derivation wilh 
rule r : L -4 R it can be embedded into a bigger co~Hexl G', i.e. every inclusion 
i : G -4 G' induces a match i o m for the rule r. I f m  ~s classical and Ve E (G~E -- 

G '  G s i E ( o ~ ) )  : ~C'(c),~a'(e) E i(G) ~ s (e),tc'(e) C i ( G - m ( L ) )  ors (e),~C'(e) 
i ( , ~ ( L ( r ) ) )  ~he,, i o ,~, i~ el~ss,cal, too. 

Proof. i o m is obviously a match for r. We only prove that it is classical under the 
stated condition, i o m is d-inject.ive because i is injective and m is d-injective. Now 
suppose that sa ' (e  ') C i v ( m v ( L v  - L(r)y)) for e' E G~. With the above condition 
we get that e ~ E iE(GE).  Because m is assumed to be d-complete iota is d-complete, 
too. 

Remark (Classzcal demvatioT~s). Rules in the double-pushout framework look quite 
different frmn those in the single pushout framework (definition 2) but they can be 
transformed into each other. Then for each transformation in the double-pushout 
approach there exists a transformation as defined in 2 in the single-pushout approach 
using the same match and achieving the same result. Conversely a single-pushout 
derivation has an equivalent one in the double-pushout framework if and only if 
it is classical. Hence the double-pushout framework is a very elegant formulation 
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of graph t ransformat ion  with a special applicat2on condition: the gluing condit ion,  
which corresponds to d- inject ivi ty and d-completeness of the  ma tch  in the sigle- 
pushout  framework.  This  is formally proven in [11]. 

f 
A ~ B ci p 

g P.O. g ...... "'-. "'" - 

f* ~ ""~ "'"..k 
C ~" D "'~'G 

r 
~- R 

Fig .  2. Pushout diagram and satisfaction of conditional constraint 

Now we want  to consider more complex rules with appl ica t ion  condit ions.  The 
general  idea  is to have a left hand side not only consisting of one graph but  of 
several ones connected by morphisms.  Positive and negative appl ica t ion  condit ions 
have a l ready been investigated in [6] and [8]. Condi t ional  appl ica t ion  condit ions 
consist of a premise and a conclusion which both are more or less s imple posit ive 
appl ica t ion  conditions.  

D e f i n i t i o n 6  ( A p p l i c a t i o n  c o n d i t i o n ) .  Let r : L --+ R be a s imple rule. A s imple 
consiraiT~t s for r is to ta l  morphism s : L ~ X.  A condit ional  conslrai~2t for r 
(p : L -~ X,  (c~ : X --+ Y,')~=L.,~) is a pair  consisting of a s imple const ra in t  p and a 
(possibly empty )  family of to ta l  morphisnas ci. A posit ive (negat ive)  resp. condit ional  
application condition A ( r )  for r consists of a finite set of s imple resp. condit ional  
constraints .  

D e f i n i t i o n 7  ( S a t i s f a c t i o n  o f  c o n d i t i o n s ) .  A total  morphism rn : L --+ G p- 
sat is f ies  a simple constraint  s : L --+ X,  wri t ten m ~p s, if there exists a to ta l  
morph i sm n : X ~ G such tha t  n o s = m.  m n-satisf ies s if it  does not  p-satisfy 
s, i.e. m ~,~ s ~ m ~p  s. Furthermore,  we say tha t  m c-satisf ies a condi t ional  
const ra in t  cc = (p : L --+ X , ( c i  : X ~ :r~')i=l . , ) ,wr i t ten  m ~r  cc, if for all to ta l  
morph i sms  n : X --+ G with n o p = m there exists a to ta l  morph i sm o : Y~ --+ G 
with o o ci = n for at  least one i E {1..n}. m sahsf ies  a posit ive appl ica t ion  con- 
di t ion if it  p-satisfies at least one simple constraint  of the condit ion,  m satisf ies a 
negat ive (conditionM) appl icat ion condition if it  n-satisfies (c-satisfies) all negative 
(condi t ional)  constraints  the condition consists of. 

D e f i n i t i o n 8  ( C o n d i t i o n a l  r u l e ,  d e r i v a t i o n ) .  A p- (~-, c-) condi t ional  rule § is 
a pair  ( r  : L --+ R , A ( r ) )  consisting of a simple rule r and a posit ive (negative, 
condi t ional)  appl ica t ion  condit ion.  § is apphcable to a graph G if there exists a 
match  m : L -+ G for r tha t  satisfies A(r ) .  If § is appl icable to G via  m the direct 
condi t ional  derivat ion of G to H is the simple direct derivation. 

E x a m p l e  I ( G l u i n g  c o n d i t i o n ) .  For each rule 7" : L --4 /~ the gluing condit ion 
of matches  (d- inject ivi ty  and d-completeness) can be expressed using a condi t ional  
app l ica t ion  condit ion.  Because of a lack of space we do not show the general case, 
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o l  

o2 

p.o. 

o l  

i .......... ~"i'i  

! ................ ! 

! 

I 

I 

Fig. 3. Simulation of the ghfing condition 

but the very simple example in figure 3 demonstrates the idea. On the left hand 
side a single pushout derivation with a simple rule is shown where the match is 
not classical. On the right hand side the rule is equipped with three conditional 
application conditions. Hence it 's left hand side is blown up. The arrows crossed out 
indicate an empty conclusion. The first two conditions make sure that  the match is 
d-complete and the third one is dedicated to the d-injectivity of  the match. If the rule 
contains edges the application conditions for the d-completeness have a non-empty 
conclusion. 

3 S p e c i f i c a t i o n  a s p e c t s  

In this section we want to give the reader some intuition how application conditions 
can be used for specification. For this purpose we first show how different combi- 
nations of constraints can be put together in application conditions. Furthermore 
application conditions which contain surjective constraints only are characterized 
by (conditional) equations. 

3.1 C o m b i n a t i o n  o f  c o n s t r a i n t s  

In definition 7 we define the satisfaction of a positive application condition to be a 
disjunction of constraints while we use a conjunction in the case of negative resp. 
conditional application conditions. This is motivated by the fact that  the other com- 
binations of constraints can be achieved by gluing the different constraints together 
as it is demonstrated in the following. 

D e f i n i t i o n 9  ( C o m b i n a t i o n  o f  c o n s t r a i n t s ) .  If sl : L --4. X i  (ci = (Pi : L --+ 
X i ,  (cij : X i  --4 Y i j ) j = l  ~,)) for i :- 1, 2 are simple (conditional) constraints for a 
rule r : L --+ R, their combination is given by single simple (conditional) constraint 
s = 8 2 o sl (e = (p = P2 ~  : X ~ i j j i = l , . ; j = l . . k , ) j  s.t. (1) (1, (2) and (3)) in 
the left (right) diagram of figure 4 become(s) a pushout. 
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X l  

X ~ s ~ x ,  ~J sa nl 
m 

" G  
n 

112 

n ) ~  
Y~ 

n2j 

Fig. 4. Combination of constraints 

P r o p o s l t i o n l 0  ( C o m b i n a t i o n  o f  c o n s t r a i n t s ) .  Let s (c) be r combinat ion  of  
two simple (condit ional)  consirainis Sl a~d s2 resp. cl and c2 as defined above. Then 
fo r  all matches  m : L --+ G we have 

1. m ~v  sl A m ~v  s2 V=~ m ~v s, 

3. m #~ ct v m #~ c2 4==* m #~ e. 

Proof. 1. /2 . :  We show that  B n : X  ~ G w i t h n o s =  m ~ 3 n i : X i - - + G w i t h  
ni o si = m for i = 1, 2. Then the assertion follows from definition 7. Given n as 

* where YY/ : 7"$ O S ~--- 7l O * O 81 = n l  o 81 * a n d  n 2 : 1:~ o 81 ,  82 above we have nl = n o s 2 
(and similarily for s2). Given ?~1, n2 as above, the left hand side of the equivalence 
follows from the universal property of X. 

3. : Analogously to the above proof we get that  Sn : X --+ G with n o p = m 
3rli : Xi -+ G with ni op i  = ?n for i = 1,2. With the same arguments  for the 

pushouts (2) and (3) we get 9,~j : }~} -4 G with n~j o ci5 = n ~ ?ni j  : }~3 -+ G 
with nij  o cij = ni for i = 1, 2 and j = 1..k,. Then the proposition 10 3. follows from 
definition 7. rn 

3.2 S u r j e c t i v e  c o n s t r a i n t s  

In this section we show that  special application conditions, namely those which con- 
tain surjective constraints only, can be characterized using (conditional) equations. 
This seems to be useful, because the graphical representation of complex application 
conditions is rather hard to understand, but nice if one wants to achieve theoretical 
results. 

D e f i n i t i o n l l  ( ( C o n d i t i o n a l )  E q u a t i o n s ) .  An equation E for a graph G is a 
pair (a = b) such that  a and b are elements of the same domain of G. A condit ional  
equation C E  for G is a pair (P,  C) consisting of two finite sets of  equations P and C 
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called premise and conclusion respectively. A morphism f : G --+ H is a solution for 
a set of equations g for G if f (a )  = f(b)  for all (a = b) E g. f is a solution for  the 
cond,tzonal equation C E  for G if it is a. solution for all equations in the premise ;o 
and at least one equation in the conclusion C or if it is not a solution for any of the 
equations in 7 9. A solntwn for a set of conditional equatwns Cg is a solution for all 
conditional equations C E  E Cg. 

First we want to consider simple constraints and negative application conditions. 
Because of their definition the reader can easily transfer the result to positive appli- 
cation conditions. 

Proposition 12 ( E q u a t i o n a l  c o n s t r a i n t s ) .  Let c : L - +  X be a simple surjective 
constraint for  a rule r : L -+ R such that the congruence Eq(c) znduced by c is 
equal to the congruence generated by a set of equations C for  L. Then, given a match 
m : L --+ G, m p-satisfies (n-satisfies) c ( and only if m is (not) a solution for  g. 
We say th.at S represenls c. 

For the proof of this proposition we refer to [8]. 

C o r o l l a r y  13 ( N e g a t i v e  a p p l i c a t i o n  c o n d i t i o n ) .  G~ven an n-con&lional rule § = 
(r : L -+ R , A ( r ) )  and sets of equat,ons go such tidal each g~ represents a simple con- 
strainl e E A(r) .  Then. a match ,n : L --+ G for r satisfies A(r )  ~f and only zf m is 
nol a solutwn for any go. 

The proof directly follows from the definitions 7 resp. 11 and proposition 12. 
If negative application conditions correspond to non-equations it seems to be 

natura l  that  conditional ones correspond to con~litional equations. 

P r o p o s i t i o n  l 4  ( C o n d i t i o n a l  c o n s t r a i n t s ) .  Let c = (p : L --+ X ,c ,  : X -+ 
Y~)i---1 rt be a conditional constraint for a rule r : L --+ R w~th p being surjective and 
ci being total and surjective for i = 1..n such that the congruence Eq(p) (Eq(cl op) )  
induced by p (el o p) is equal to the congruence get, crated by a set of equations gp 
(So,or) for L. HE  denotes the cartes2an product of ge.op f o r t  = 1..n. F : HE --+ Set  
denoles the function assign~,g 1o each luple (E~, .., En) the set {El ,  .., E,~}. Now, 
given a match m : L --+ G, m c.satisfies c ~f and only ~f m is a solution for  the set 
of conditional equations CS = {(gv, F ( E ) ) [ E  E H S } .  We say that Cg. represents e. 

Proof. If 77, ~r c and there is n o m o r p h i s m n  : X  ~ G w i t h  h o p =  m then by 
proposition 12 m is not a solution for gp and hence m is a solution for Cg. Now 
assume that  there is a morphism n : X --+ G with n op  = m and m is a solution 
for gp. Then there exists o : Y~ -+ G with o o e, = n for at least one i E {1..n}. By 
proposition 12 m is a solution for s For each C E  E CS the conclusion contains 
one equation E E gc,op. Hence by definition 11 m is a solution for Cg. 

Now assume that  m is a solution for CS. Again we only consider the case that  
m is a solution for s For the other case we refer to proposition 12. m must  be a 
solution for all conclusions of conditional equations in CZ. This implies that  m is a 
solution for at least one s The existence of o : Y, --+ G with o o (ci o p) = m 
follows from proposition 12. rq 
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C o r o l l a r y  15 ( C o n d i t i o n a l  a p p l i c a t i o n  cond i t ion) .  Given a c-conditional rule 
= (r : L --+ R, A(r)) and sets of conditional co~strain~s Cg~ such that each CE~ 

represents a conditional conslrainl c E A(r). Then a match m : L --4 G for r satisfies 
A(r) if and only if m is a solution for (.Jc C8c. 

The proof directly follows from the definitions 11 resp. 7 and proposition 14. 

4 G e n e r a t i v e  P o w e r  

The notion of a grammar as it is used in formal language theory deals with terminal 
and nonterminal objects. In the literature this is carried over to graph grammars  
leading to terminal and nonterminal graphs. Using graph transformations for sys- 
tem specification it makes sense to forbid nonterminal graphs in order to make it 
impossible to encode control structure into flags and additional labels. With this 
background we define graph grammars and their generated language. 

Def in i t ion  16 ( G r a p h  g r a m m a r ) .  A graph gralnmar GG = (S ,~ )  consists of a 
starting graph S and a finite set of rules ~ .  The language L(GG) generated by the 
graph grammar GG is the set of all those graphs which can be derived from the 
starting graph S using rules of ~ .  

Note that  the notion of graph grammars and their generated language is para- 
metric over the notions of rules and derivations. We say GG = (S, 7~) is a graph 
grammar over simple resp. p- (n-, c-) conditional rules if 7~ contains simple resp. p- 
(n-, c-) conditional rules only. In this paper most of the results can be achieved for 
the single and the (classical) double pushout approach. Hence we denote the corre- 
sponding languages by LP(GG), Ls'(GG) and LC(GG) if no distinction is necessary 
whether the used matches are classical or not. Only if we want to indicate the match 
type we use additional subscripts c resp. /c (for classical resp. non-classical). L; s, 
s E g and s  are the classes of all graph languages generated by graph grammars 
over simple, p-, n- resp. c-conditional rules. 

.0" 

Starting graph Rule rl 1: inserting a vertex 

TII O11 

Rule r12: inserting an edge 

Fig. 5. Graph grammar GG1 

E x a m p l e  2 ( G r a p h  g r a n n n a r  ove r  n - cond i t i on a l  rules) .  The graph grammar  
GG1 consisting of the starting graph S1 and the rules r l l  and r12 as depicted in 
figure 5 generates the set of all finite graphs which have at most one edge between 
two vertices in each direction. We call this graph language L1 in the following. Rule 
r l l  adds a new vertex in any situation. The negative application condition of rule 
r12 makes sure that there is not already an edge from re(l) to m(2) if a new edge 
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with the same direction between these two vertices is inserted. Note that  all matches 
for the rules r l l  and r12 are classical due to the fact that  the rule morphisms are 
total. 

P r o p o s i t i o n l 7  (GG1 g e n e r a t e s  L1). The graph grammar GG1 from example 2 
generates all and only those graphs in which for each pair of vertices (vl ,  v2) there 
is at most one edge wilh source vertex vl and target vertex v2, i.e. LN(GG1) = L1. 

Proofidea. LN(GG1) C L1 can easily be shown by induction over the length of the 
derivation sequence and L1 C_ LN(GG1) analogously by induction, over the number 
of objects (vertices and edges) in a graph G E L1. 

- 0 "  

Starting graph 

Rule r21: inserting a vertex 

. . . .  i. I 

Rule r22: inserting an edge 

. . . . . . . . .  . . . . . . . . . . .  

Rule r23: inserting an edge 

Fig. 6. Graph grammar GG2 

E x a m p l e  3 ( G r a p h  g r a m m a r  o v e r  c - c o n d i t i o n a l  ru les ) .  The graph g rammar  
GG2 consisting of the starting graph $2 and the rules r21, 7'22 and r23 as depicted 
in figure 6 generates the set of all finite graphs which fulfill the following condition: 
If there are two edges with the same source vertex v and the same target vertex, 
there exists an edge from v to every vertex in the graph. We call this language L2 
in the following�9 

Rule r21 adds a new vertex if there is no vertex with more than one outgoing 
edge to the same target vertex. Note that  the edges in the application condition are 
identified. New edges are inserted by the rules r22 and r23 where r23 inserts an 
edge if the vertex becoming the source of this edge has an outgoing edge to every 
vertex in the graph. Rule 1"22 is applicable to vertices re(l)  and m(2) if there is no 
edge from re(l)  to m(2). Note that  there is a certain application order for the rules 
of GG2: If rule r23 has been applied once rule I'21 is not applicable any more. Note 
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tha t  all matches for the rules r21, r22 and r23 are classical due to the fact that  the 
rule morphisms are total. 

P r o p o s i t i o n l 8  (GG2 g e n e r a t e s  L2). The graph grammar GG2 from example 3 
generates all and only those graphs which have the following property: I f  there are 
two edges with the same source vertex v and the same larger vertex, there exists an 
edge from v to every vertex in the graph. 

Proof. We prove LC(GG2) = L2 showing L2 C_ LC(GG2) by induction over the 
number of objects (vertices and edges) of a graph. It is easy to show LC(GG2) C_ L2 
by induction over the length of the derivation sequence. 

The basis is given by the starting graph which is the only graph within L2 having 
no objects. For the induction step we divide three cases: if G E L2 contains at least 
two edges with the same source and target vertex, an application of rule r23 derives 
G from a graph with n objects. In the second case we consider graphs that  contain 
edges but none of them have the same source and target vertex. These graphs may 
have an application of rule r22 in their last derivation step. If we have a graph 
without any edge, rule r21 inserts a vertex to the graph with one vertex less. [] 

4.1  G e n e r a t i v e  p o w e r  o f  p o s i t i v e  a n d  n e g a t i v e  a p p l i c a t i o n  c o n d i t i o n s  

In this section we investigate which classes of graph languages can be generated 
with graph grammars  over rules with positive resp. negative application conditions. 
It turns out that  positive application conditions are just avoiding rule schemes, if 
one does not restrict the matches to be classical. In contrast rules with negative 
application conditions really extend the generative power of the graph gra.mmar 
notion. 

P r o p o s i t i o n 1 9  ( G e n e r a t i v e  p o w e r  o f  pos.  appl .  cond i t i ons ) .  For every graph 
grammar GG over rules with positwe applicaiwn co~ditions there exists a graph 
gra. mar a a '  over s,.,pl  rules s,,ch that L (aa) = 

Proofidea. Let § = (r : L -+ R, A(r)) be a p-conditional rule. Applying the simple 
rule r to every constraint e : L -+ X of A(r) leads to a set 7~ of simple rules r* where 
(R ~, r* : X --+ R ~, c* : R - ~ / ~ )  is the pushout of r and c. For every direct derivation 
of a graph G to H with the p-conditional rule § there exists a direct derivation of G 
to H with one rule r* ~ 7~ and vice versa. Note that  not every classical match for 
r which satisfies A(r) induces a classical match for r*. Induction over the length of 
the derivation sequence makes sure that  L~(GG) = L~(GG'). D 

A simular proof can be found in [6]. It is a bit more complicated because the 
notion of satisfaction of a positive application co~lditiou is different but the general 
idea of context enlargement is the same. 

In the following we want to show that  graph grammars over rules with negative 
application conditions are more powerful than graph grammars over simple rules. For 
this purpose we use the graph language L1 and the graph grammar  GG1 introduced 
in example 2 by showing that  L1 cannot be generated by any graph g rammar  over 
simple rules. The principle of the proof is to state a property of every graph g rammar  
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over s imple rules generating L1 and show tha t  a g r a mma r  with this proper ty  cannot  
generate  L1. 

L e m m a  20 ( P r o p e r t y  o f  L1). For any possible graph grammar (over simple rules) 

generating L1 there is no derivation sequence contaimng a single step G ~ H in 
which a new edge from an existi~g vertex vl to an existing vertex v2 is inserted. 

Proof. Assume such a derivation would exist. Because H E L1 G cannot  contain 
an edge from vl  to v2. But there exists an inclusion morphism i : G ~ G ~ where 
G ~ is the graph G extended by one edge fi'om vl to v2. G ~ belongs to the language 
L1 and hence has a derivation sequence from the s ta r t ing  graph,  i o m is a match  
for r in G ~ by lemma 5. If m is classical then i o m is classical, too, because vl ,  v2 
are preserved by the applicat ion of rule r. Applying  r to G ~ leads to a graph H / 
which has two edges with the same source and target  vertex. Because there cannot  
be such a derivation sequence for H ~ the outdegree of an exist ing vertex can only be 
increased by inserting a new vertex. [] 

P r o p o s l t i o n 2 1  (L1 ~ s  There exists ~o graph grammar over s,mple rules that 
generates the language L1, ~.e. L1 ~ s s. 

Pro@ Assume tha t  there is a graph g r ammar  (over s imple rules) generat ing L1. 
This  graph g rammar  must  certainly fulfill the condition of l e m m a  20. Let n be 
the m a x i m u m  outdegree of a vertex in the right hand side of a rule which has no 
pre image in the left hand side, i.e. it is inserted if the rule is applied,  m is the number  
of vertices of the s tar t ing graph. The graph N with m + n + 2 vertices which has 
exact ly  one edge from each vertex to any other vertex belongs to L1. Note tha t  the 
outdegree of each vertex is m + n + i and tha t  in order to derive N from the s ta r t ing  
graph at  least ~ + 2 vertices must be inserted. Wi th in  the der ivat ion sequence of N 
there must  be one step where the last t ime a vertex is inserted. This  vertex has an 
outdegree less or equal to n which is less than m + n + 1. But because no more vertices 
are added the outdegree cannot be increased (see the proper ty  of the graph g r a m m a r  
above).  Hence there is no derivation sequence for N leading to a contradict ion.  [] 

Proposi t ion 17 and 21 i lnmediately lead to the following corollary. 

C o r o l l a r y  22 ( G e n e r a t i v e  p o w e r  o f  n e g a t i v e  a p p l .  c o n d i t i o n s ) .  Graph gram- 
mars over rules wilh negative applicalwn cond~lions are more powerful than graph 
grammars over s~mple rules, i.e. s  C E :v. 

4.2 G e n e r a t i v e  p o w e r  o f  c o n d i t i o n a l  a p p l i c a t i o n  c o n d i t i o n s  

In this section we show tha t  graph grammars  over rules with condi t ional  appl ica t ion  
condit ions are more powerful than graph grammars  over rules with negative applica-  
t ion conditions.  First  we show that  for each graph g r a m m a r  over rules with negative 
appl ica t ion  conditions there exists a graph g rammar  over rules with condi t ional  ap- 
pl icat ion conditions which generates the same language. Fur thermore  we show tha t  
there exists a graph language which can be generated using rules with condi t ional  
appl ica t ion  conditions but  not with negative ones. 
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Propos i t ion  23 (Simulating negative application conditions) .  For every rule 
= (r : L --+ R, A(r)) with a negalwe application condition, A(r)  there exists a rule 

~t = ( r :  L --~ R, A(r')) with a conditional application condition A(r') such thai § is 
applicable lo a graph G if and only if§ I is applicable to G. 

Proof. Choose A(r ' )  = {(L -+ X, 0)I(L --+ X) E A(r)}. 2 Let rn : L -+ R be a 
total  morphism that  satisfies A(r) ,  i.e. for each simple constraint  s : L -+ X there 
exists no total  morphism n : X --+ G with n o s = m. By definition 7 m c-satisfies 
each single conditional constraint in A(r ' )  and hence m satisfies A(r ' ) .  Now assume 
that  m does not satisfy A(r),  i.e. there exists a simple constraint  s : L --+ X and a 
morphism n : X -+ G such that  n o s = m. But because of the empty conclusion of 
the constraint  in A(r t) m does not satisfy A(r ' ) .  rn 

Now we use the graph language L2 and the graph grammar  GG2 from example 3 
to show that  introducing conditional application conditions increases the generative 
power of algebraic graph transformations,  i.e. we show that  L2 cannot be generated 
by any graph grammar  over rules with negative application conditions. Analogously 
to the previous section we first prove a property such a g rammar  would have and 
then show that  this is not possible. 

L e m m a 2 4  ( P r o p e r t y  of  L2). Every graph grammarGG = (S, ~ )  over rules with 
negative application coT~ditio~ls that ge~erales tile language L2 must fullfill tile fol- 
lowing property for all graphs G, H E L2: I f  the number of vertices of G is greater 
than x an.d G ~ H then V(H)  < V(G). 

Where z ,s the maximum number of vertices of a left hand side of a rule ,n T4 
and V(G) denotes lhe number of verlwes of graph G which have at leasl lwo outgoing 
edge.s with the same target vertex. 

Proof. The stated property holds due to the fact that  if G ~ H and V(G) < V(H)  
then m must  be surjective on the vertices which is not possible if G contains more 
than x vertices. This fact is shown in the following: Let r : L -+ R be the simple 
rule of ? and m : L --+ G be a match for r which satisfies the negative application 
condition of § (H, r* : G --+ H, m* : R --+ H) is the pushout for the direct derivation 
of G to H with rule r at match n~. If n7 is not surjective for the vertices there exists 
a vertex v of graph G which has no preimage under m in L. V(G) < V(H)  implies 
tha t  there is v ~ E H with i >_ 2 outgoing edges point ing to the same target vertex, 
what is not  true for a possible preimage of v ~ under r* in G. By lemma 4 (1) r* is 
defined for v. Because H E L2 there exists an edge e from v ~ to r*(v). By lemma 
4 (2) r*(v) ~ m*(R), m* is a morphism. Hence e has no preimage under m*. With  
l emma 4 (3) e and v' have a preinaage under r*. Remember tha t  r*-~(v ') has at 
most one edge point ing to each vertex of graph G. Hence G I which is G without  the 
edge(s) r*-~(e) is also a graph of language L2 and can be derived from the s tar t ing 
graph using rules of GG. 7n induces a match m' : L --> G ~ for r, because r*-l(e) has 
no preimage under 7n. m ~ satisfies the negative application condition of r because it 
is satisfied by m. Note that  if n7 is classical m ~ is classical, too. Applying r to G ~ at 
m ~ leads to a graph H ~ which is just  t t  without the edge e. H ~ is not in L2, because 

2 Here 0 denotes the empty family. 
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the're is no edge from the vertex corresponding to v ~ to the vertex corresponding to 
r*(v). Hence we have a contradiction to the assumption that GG generates L2. r7 

P r o p o s i t i o n 2 5  (L2 (~ s  There exists no graph grammar over rules with nega- 
tive application conditions that generates the language L2, i.e. L2 ~ E, N. 

Proof. Assume that there exists a graph grammar GG = (S, Tt) over rules with 
negative application conditions generating L2. Furthermore we use the notation of 
lemma24. Let o be the number of vertices of the starting graph S and n the maximum 
number of vertices which can be inserted in one derivation step, i.e. the maximum 
number of vertices in the right hand side of a rule which have no preimages under 
the rule morphism. Choose the graph M to have o+  n + 1 + x vertices where for each 
pair of vertices vl, v2 there are exactly two edges with source vertex vl and target 
vertex v2, i.e. V ( M )  = o + n + 1 + z. M E L2 because every vertex has an outgoing 

edge to every other vertex. Now consider a derivation sequence S : : ~  N ~ _~r. 
Within the last derivation step not more than n vertices can be added. Hence N 
has more than x vertices and we get V(N)  _< V(M) = o + n + 1 + z by lemma 24. 
But V ( N )  cannot be greater than the number of vertices of N and hence N has at 
least o + n + 1 + x vertices. With the same argument we can follow backwards the 
derivation sequence. Because it is finite we sometimes arrive at the first derivation 
step. But here we know that 5: only has o vertices such that at least one must be 
added leading to a contradiction to the assumption, rn 

Proposition 18 and 25 immediately lead to the following corollary. 

Coro l l a ry  26 (Gene ra t ive  power  of  eondi t ,  appl .  eondl t ions) .  Graph gram- 
mars over rules with conddional applieatwn conditions are more powerful than graph 
grammars over rules with negative apphcatwn eonditzons, i.e. s C ~C 

5 C o n c l u s i o n s  

In this paper the concept of positive and negative application conditions as in- 
troduced in [6] is e-~tended to conditional application conditions. It is shown that 
from the specification point of view these additional features increase the expressive 
power. We presented a hierarchy of classes of graph languages s = s C E N C Z: c 
for the single pushout approach which is not much different .for the double pushout 
approach (/2 s C_ s 

Furthermore we have shown that. special application conditions can be repre- 
sented using non-equations resp. conditional equations. In the general case addi- 
tionally the existence of specific structures can be recommanded. It is left to future 
research to give a logical representation for all possible application conditions. Such 
a representation could be very useful if one wants to prove the consistency of a spec- 
ification. In [3] also application cdnditions for the right hand side of the rule were 
presented. Consistency conditions based one equations were already introduced in 
[10]. It is an open question wether both can be brought together, i.e. it is possible 
to prove that the satisfaction of application conditions implies that consistency is 
preserved. 
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Another interesting task is to carry over theoretical results known for the pure 
single pushout approach to this extended one, for example concepts of independence 
and para l le l i sm of graph t ransformat ions ,  embedding,  concurrency etc. Fi rs t  results 
are present for graph g rammars  over rules with posit ive and negative appl ica t ion  
condit ions in [6] and [7]. 

Acknowledgements 

The author  is grateful to H.Ehrig, R.Heckel and G.Taentzer  for comments  and fruit-  
ful discussions on the topics presented in this paper .  

R e f e r e n c e s  

1. M. Arbib and E.G. Manes. Arrows, Structures, and Functors: The Categorical Imper- 
ative. Academic Press, New York, 1975. 

2. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus, 
H. Ehrig, and G. Rozenberg, editors, 1st Graph Grammar Workshop, Lecture Notes 
in Computer Science 73, pages 1-69, 1979. 

3. H. Ehrig and A. Habel. Graph grammars with application conditions. In G. Rozenberg 
and A. Salomaa, editors, The Book of L, pages 87-100. 1985. 

4. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. From graph grammars to 
High Level Replacement Systems. pages 269-291, 199]. Lecture Notes in Computer 
Science 532. 

5. H. Ehrig and M. L6we. Categorical principles, techniques and results for high-level 
replacement systems in computer science. Applied Categorical Structures, 1(1):21-50, 
1993. 

6. A. Habel, R. Hecket, and G. Taentzer. Graph grammars with negative application 
conditions, accepted for special issue of Fundamenta ]nformaticae, 1994. 

7. R. Heckel. Embedding of conditional graph transformations, unpublished, 1994. 
8. R. Heckel, J. Mfiller, G. Taentzer, and A. Wagner. Attributed graph transformations 

with controlled application of rules, submitted to proceedings of Graphgrammar Mal- 
lorca Workshop 94, 1994. 

9. H. Herrlich and G. Strecker. Category Theory. Allyn and Bacon, Rockleigh, New 
Jersey, 1973. 

10. M. Korff. Single pushout transformations of equationally defined graph structures with 
applications to actor systems. In Proc. Graph Grammar Workshop Dagstuhl 93, pages 
234-247, 1994. Lecture Notes in Computer Science 776. 

11. M. L6we. Algebraic approach to single-pushout graph transformation. TCS, 109:181- 
224, 1993. 

12. U. Montanari. Separable graphs, planar graphs and web grammars. Information and 
Control 16, pages 243-267, 1970. 

13. A. Schfirr. Progress: A vhl-language based on graph grammars. In LNCS532. Springer, 
1991. 

14. A. Wagner. On the expressive power of graph grammars with application conditions. 
Technical Report 27, TU Berlin, 1994. 


