
Computing the Wadge Degree, the Lifschitz
Degree, and the Rabin Index of a Regular

Language of Infinite Words in Polynomial Time

Thomas Wilke* and Haiseung Yoo

Institut fiir Informatik und Prakt. Math., Christian-Albrechts-Universits zu Kiel,
24098 Kiel, Germany, E-mail: t~@informatik.uni-kiel .d400.de

Abs t rac t . Based on a detailed graph theoretical analysis, Wagner's fun-
damental results of 1979 are turned into efficient algorithms to compute
the Wadge degree, the Lifschitz degree, and the Rabin index of a regular
w-language: the two former can be computed in time O(f2qb + klog k)
and the latter in time O(f2qb) if the language is represented by a de-
terministic Muller automaton over an alphabet of cardinality b, with f
accepting sets, q states, and k strongly connected components.

Formal languages are often compared via reductions: in recursion theory one
compares formal languages using, e. g., truth-table reductions, in complexity the-
ory formal languages are compared by, e. g., polynomial or log-space reductions,
and in descriptive set theory continuous functions are used for the comparison
of w-languages.

In all these cases, given a formalism describing formal languages (such as
Turing machines, grammars, automata, etc.), one can ask whether the reduction
relation is decidable in the following sense: is there an algorithm that, on input
of representations of languages X and Y, determines whether X is reducible
to Y.

For ~;-languages represented by Muller automata, in [9] Wagner answered
this question affirmatively in case of continuous reductions and so-called 'syn-
chronous' continuous reductions. Our main objective is to strengthen this by
showing that the corresponding restrictions of the reduction relations are in fact
decidable in polynomial time. This requires another thorough graph theoretical
analysis of the loop structure of Muller automata, carried out below. We treat
here only the asynchronous case; a glimpse at Wagner's paper [9] will suffice to
realize the modifications necessary for the synchronous case.

A maximal class of formal languages that are pairwise reducible to each other
is usually called degree. The degrees with respect to continuous and synchronous
continuous reductions are called Wadge and Lifschitz degrees, respectively, see
[7]. A such degree is called regular if it contains a regular w-language.

In [9], K .W. Wagner introduced a naming system for regular Wadge and
Lifschitz degrees. One important property of this system is that, given names a

* Supported by the ESPRIT BRA Working Group No. 6317, ASMICS 2.

289

and ~ for degrees D and E, respectively, one can determine in quadratic time
whether the languages in D are reducible to the languages in E. Therefore, it is
sufficient to establish a polynomial time algorithm that computes the name of the
Wadge or Lifschitz degree of a regular w-language given by a Muller automaton
in order to prove that the respective restricted reduction relations are decidable
in polynomial time.

We present an algorithm that, given a language L by a Muller automaton
over an alphabet of cardinality b, with f accepting sets, q states, and k strongly
connected components, computes the name of the Wadge degree of L in time
O(f2qb + klogk). (Observe that always k _< q but f may be exponential in q.)

The algorithm is based on Wagner's discovery that the Wadge degree of a
regular w-language is determined by the loop structure--i, e., on the reachability
relations and the inclusion relations between the accepting and rejecting loops--
of any determinstic Muller automaton recognizing L. In other words, all Muller
automata that recognize languages of one degree have the same loop structure.

As Wagner also discovered, all regular w-languages with the same Rabin
index (the least possible number of accepting pairs used in a Rabin automaton
recognizing a language) form a set that is a union of Wadge degrees. Therefore
our methods to analyse the loop structure of a Muller automaton can also be
used to design an effecient algorithm computing the Rabin index of a regular
w-language. We present an algorithm running in time O(f2qb), where f , q, and b
are as above. This result contrasts with a recent result, see [3], that theproblem
of computing the Rabin index of a regular w-language given by a deterministic
Rabin or Streett automaton is AlP-complete. The reason for this is that the
encoding of accepting loops using Rabin or Streett conditions may turn out
more succinct than a mere enumeration (as in an equivalent Muller automaton
on the same transition graph).

The paper is organized in six sections. In the first three sections we develop
our algorithm computing the Rabin index of a regular w-language, in the other
three sections this algorithm is extended to our algorithm computing the Wadge
degree. Sect. 1 introduces basic notions, in Sect. 2 the key lemma (Lemma4)
about the loop structure of a Muller automaton is stated and proved and the
key procedure of all our algorithms is presented, and in Sect. 3 Wagner's result
about the Rabin index and the results of Sect. 2 are combined to the desired
algorithm. Sect. 4 and Sect. 5 review Wagner's results on the regular Wadge
degrees, and in Sect. 6 we present our algorithm to compute the Wadge degree
of a regular w-language.

For Wagner's result concerning the Rabin index the reader is also referred
to [8]. Wagner's approach to regular Wadge and Lifschitz degrees is automata
theoretic, 2 a topological approach can be found in [4], an algebraic interpretation

2 In [9], Wagner is mainly interested in (synchronous) reductions via functions defin-
able by finite state machines. Yet in the last section of that paper he shows that,
restricted to regular w-languages, (synchronous) continuous reductions and (syn-
chronous) finite-state machine definable reductions give rise to the same reduction
relations.

290

is given in [1]. The article [6] is a general reference for w-languages.
We would like to thank one of the referees for his or her comments which

improved the paper significantly.

1 A l t e r n a t i n g C h a i n s a n d t h e R a b i n I n d e x

Throughout this paper, 92 stands for a Muller automaton (Q, q0, 5, ~') over an
alphabet denoted by B, and L(92) stands for the language recognized by 92.

The set V of nodes of the transition graph 6fa = (V, E) of 92 consists of the
states of Q reachable from q0, and an edge (q, q~) belongs to the set E of edges
of ~ if there exists &letter b such that 5(q, b) = q' and q is reachable from q0.
(Observe that the number of edges of 6~ is bounded by IQIIB{.)

A loop in 92 is a set C C_ V such that the subgraph of Ca induced by C
is strongly connected. The set g of all loops in 92 is partitioned into the set
79 = C N ~" of posztwe loops and the set N" of negative loops. The set of all
maximal loops (with respect to set inclusion) is denoted by Ad. (Notice that a
maximal loop in 92 is the same as a 'strongly connected component' of ~ .) We
shall use C, C1, C', . . . for loops, P, P1, P~, . . . for positive loops, N, N1, N ~,
�9 .. for negative loops, and M, M1, M ~, . . . for maximal loops.

An alternating chain of length n is of the form

C1 C C2 c C3 c . . . C Cn,

where (Ci E g for every i with 1 < i < n and) Ci E 79 iff C~+1 ~ 7 9 for every
i with 1 < i < n. A positive alternating chain starts with a positive loop, i.e.
C1 E 79, and a negative alternating chain starts with a negative loop. If we say
that an alternating chain is 'positive' or 'negative' we speak of the sign of the
alternating chain, and sign stands for the set { + , - } .

The function c~:79 ~ N is defined as to map every positive loop P onto the
length of a longest alternating chain starting with P.

Wagner proved in [8] (see also [9]) the following about the Rabin index of a
regular w-language.

T h e o r e m 1 (W a g n e r) . The Rabin index of a regular w-language recognized by
a Muller automaton 92 is given by the term

L(max{c9~(P) I P e ;o} + 1)/2]. (1)

Term (1) was the starting point of our search for an efficient algorithm com-
puting the Rabin index of a regular w-language. After a graph theoretical anal-
ysis of the loop structure of Muller automata we found an efficient way to com-
pute ca, and thus could establish an efficient algorithm for computing the Rabin
index. The graph theoretical analysis is subject of the next section, while the
algorithms computing c~ and the Rabin index are presented in the next but one
section.

291

2 N e g a t i v e L o o p s I n B e t w e e n ?

In this section we develop an efficient procedure that checks whether for two
positive loops P, and P* with P, C P* there is a negative loop N with P, C
N C P*. This will be the key subroutine in the algorithms searching for long(est)
alternating chains.

The problem with finding alternating chains is that sometimes the number
of negative loops in an automaton happens to be exponential in the number
of states and the number of positive loops (i.e. in the size of the automaton).
Therefore one cannot simply compute all negative loops and search for alternat-
ing chains in the obvious way.

Let 9.1 and G~ be as above. We say that a loop C1 is beLween the loops Co
and C2 if Co C C1 C C2 holds.

If there is a loop N between P, and P* that is comparable with some positive
loop P between P, and P* then either P, C N C P C P* or P, C P C N C P*
holds. In this case the test whether there is a negative loop between P, and P*
can be reduced to a 'smaller' one: is there a negative loop between P, and P or
between P and P*, respectively? But what if there is no negative loop between
P, and P* that is comparable with some positive loop in between?-- This is
what we examine first.

Let (*) be the following condition:

C, C C* are two loops and neither (2) nor (3) below hold for any P E i~ /
and g E A/'. / (*)

C, C N C P C C * (2) C, c P c N c C * (3)

Remark (complementatzon property). Assume (*). If C, C N C C* and C, C
P C C * , t h e n P U N = C * .

Proof. Assume C = P U N is not C*. If C E P, then C, C N C C C C*
contradicts (2). Otherwise C, C P C C C C* contradicts (3). []

That is, two loops with complementary signs complement each other.
Let

D = { ~ c { P I C * c P c C * } ' , otherwise.ifthereiss~ (4)

L e m m a 2 . Assume (*) and C, C C C C*. Then C E 7) iff D C_ C.

Proof. For the non-trivial direction let C E A/'. If there is no P with C, C P C
C*, we have D ~ C, since D = C* by definition. Otherwise, P U C = C* for
every P with C, C P C C* by the complementation property; hence C*\ C C P
for every such P, whence

C* \ C C_ D. (5)

If we had D C C, then (5) would imply C* \ C C_ C, which, in turn, implies
C* C C. This is a contradiction to C C C*, thus (5) cannot hold. Therefore
D % C . []

2 9 2

If ~" = q l . . . qm is a path in ~ , we write I1~11 for the set {q l , . . . , qm} and I~1
f o r m .

D e f i n i t i o n 3 . Let C, C C*. A handle is a non-empty path r satisfying the
following conditions: I[~rI[C C* \ C,, and there exist q, q' e C, such that q~rq' is
also a path.

A handle is called simple if it is simple as a path.

Obviously, every minimal loop C with C, C C C_ C* can be written as
C, U II~'l[where rr is a simple handle. In presence of (*), this is true for negative
and positive loops separately:

Remark. Assume (*).

1. If N is a minimal negative loop with C, C N C C*, then N = C, U I]~rl] for a
suitable simple handle 7r. (A 'minimal negative loop N with C, C N C C*'
is a minimal element of { g ' I C, C N C C*}.)

2. If P is a minimal positive loop with C, C P C C*, then N = C, U 117r]] for
a suitable simple handle ~'.

Proof. 1) Consider a minimal loop C with C, C C _C N. This can be written as
C, U II~rl] for a suitable simple handle 7r. By (3), C is a negative loop, thus, by
the minimality of N, C = N.

2) A dual argument applies. [3

L e m m a 4 . Assume (*) and the existence of a negative loop N between C, and
C*. Then there is at most one minimal positwe loop P between C, and C*.

Proof. Assume for contradiction that there are two minimal positive loops P
and P~ of minimal cardinality between C, and C*. W. 1. o. g. assume furthermore
that N is minimal. Let P, P~, and N be given by simple handles r r and p,
respectively (see the above remark).

Since P and P~ are distinct and minimal, there exist states q and q' with
q E I ICXl \ IIr and q' E I Jr \ IlCJJ. By Lemma 2, there exists a state d E D \ N.
This state is distinct from q and q', because otherwise D C_ P or D C P ' would
not hold (Lemma 2). Since N U P = C* and N W P ' = C* (complementation
property) we also have q' C N and q G N.

According to the order in which q, q', and d occur in r r and p, we can
write r r and p, respectively, as follows,
possible choices are listed.

r = r162162 (6)
~)1 ! t I I

= r162 r (7)

p = Poqplq'p2 (8)

where in each line the respective two

r = r162162 (9)
(~1 I I / I = r r162 (10)
p = poq~plqp2 (11)

(Observe that {d, q, q'} n (U~=o t1r u I1r u U =o IIp ll) = o because of
the minimality of P, P ' , and N.) We will see that every of the eight possible
combinations leads to a contradiction.

293

Two arguments will be used again and again in what follows. For reference,
we state them before carrying on with the proof.

Let C be a loop such that C. C C C_ C* holds.

(i) I f d ~ C , t h e n C ~ 7 9 .
(ii) I f q ~ C o r q ' ~ C , t h e n C ~ A f .

The first claim is true, because d belongs to the intersection defined in (4). The
second claim is true because of the complementation property: if q ~ C, then
q ~ C U P~, thus C U P C C*, hence C ~ Af by the complementation property.
A symmetric argument applies if q~ ~ C.

Since the paths r 4', and p have points in common, it is possible to compose
new paths (and handles) from suitable segments. Which paths can be built
depends on the equations that hold. For instance, if we have (9) and (11), then
r is a path, even a handle.

If one of
40qp2, 4 q'p2, poq42, or p0q% (12)

is a path, the desired contradiction is easy to obtain. We demonstrate this for
40qP2, the other cases are similar.

Consider 7r : 4oqP2, which is a handle. On the one hand, the loop C, U I[rrll
is not positive, because d does not belong to it (cf. (i)). On the other hand, q'
does not belong to C, U 117r]l, hence C, U 117rtt is no negative loop (cf. (ii)).

Only if

1. (9), (7), and (8) hold, or if
2. (6), (10), and (11) hold,

one cannot immediately construct one of the paths enumerated in (12). The two
cases are symmetric, so we deal only with the first case.

Consider the handle 7r = 4~dr Since q does not belong to C, U]lTr I], this loop
is positive (cf. (ii)). From the minimality of P' we know]42[_>]4]q'4t21. (Other-
wise the cardinality of C, U llTrll would be strictly smaller than the cardinality of
P ' .) Since q' does not belong to]]4211, there exists a state p E]]r \ I1r
say 42 = r162

We claim that p does not occur in r (which implies p ~]]4']1 since p
]1r162 by definition). For contradiction, assume p occurs in r say r = $0pdil.
Then 7r' = ~i0pr is a handle. But the loop C, U I]rr'll is neither positive, since it
does not contain d (cf. (i)), nor negative, since it does not contain q (cf. (ii)).

We have p ~ JJ4']], and C, U JJ4~)dr162 is a positive loop, since q does
not belong to it (cf. (ii)). Therefore P and r : 40q41dr can be replaced by
C, U]]r162 and r162 respectively. We encounter a case that leads
immediately to a contradiction as above. []

By symmetry, we have:

C o r o l l a r y 5 . Assume (~'). I f there are positive and negative loops between C,
and C*, then there is a unique mznimal (i. e. smallest) positive loop and a unique
mznimal (i. e. smallest) negative loop between C, and C*.

294

We now can design an efficient procedure that takes loops P, C P* as argu-
ments and gives back TRUE if there exists N such that P, C N C P* and FALSE
otherwise, provided (*) holds (with C, = P, and C* = P*):

1. Find a minimal loop C with P, C C C_ P*.
2. If C ~ P, then return TRUE. (C is negative and between P, and P*.)
3. If C = P*, then return FALSE. (There is no loop between P, and P*, in

particular, no negative one.)
4. Search for a minimal loop C ~ with P, C C ~ C P* and C ~k C ~.
5. If there exists no such C ~, then return FALSE. (There is only one minimal

loop between P, and P*, namely C, and this is positive. Thus, by (*), there
is no negative loop between P, and P*.)

6. If there exists such a C' and
(a) if C' ~ :P, then return TRUE (C' is negative and between P, and P*),
(b) if C' C T', then return FALSE. (There is no unique minimal positive loop

between P, and P*, thus there exists no negative loop between P, and
P* by Lemma 4.)

To complete the description of the procedure we have to explain how steps 1
and 4 can be implemented.

Step 1. Since at least one minimal loop C with P, C C C_ P* is given by
a shortest handle, it is sufficient to search for a shortest handle ~r, and to set
C = P, U II~rll. We find such a handle using a breadth-first strategy in the
subgraph of ~ induced by P*: we search for a shortest non-empty path from
P, to P, and leaving P, . This takes time O(]P*I]BI).

Step 4. The situation is a bit more involved but essentially the same idea
works; we search for simple paths satisfying certain conditions.

We obtain the following upper bound for the running time of the entire test.

L e m m a 6 . Given a Muller automaton 91 and two positive loops P, C P* such
that (~') holds (with C, = P, and C* = P*), the above procedure checks in tzme
O(IQl(IBI + whether exists a negative loop between P, and P*.

This bound takes also into account that we have to construct ~ and a search
tree for the elements of 7) (in order to be able to perform a test as in step 2 in
time]QI).

3 C o m p u t i n g t h e R a b i n I n d e x

As pointed out at the end of Sect. 1, in order to compute the Rabin index we
need to compute (the maximum value of) the function c~. The rules that allow
us to determine ca inductively are summed up in the following remark.

(2, if P 3/I,
Remark. 1. If P is a maximal positive loop, then c~(P) = 1, otherwise. k

295

2. If P is not a maximal positive loop, if k = max{cga(P')] P C P ') , and if
P' = { P'] P C P' A e~(P') = k}, then

J" k + 2, if there are N and P ' E P ' such that P C N C P ' , c~(P)
k, otherwise.

This remark motivates and proofs the correctness of the following procedure
computing c~:

1. For every maximal P e P , if P E A4, then let c~(P) = 1, else c~a(P) = 2.
2. For every non-maximM P E "P in non-increasing order:

(a) Let k = max{c~(P ') I P C P '} , P ' = {P ' I p C P ' A c~(P') = k}, and
ca(P) = k.

(b) For every P~ E T '~ in non-decreasing order, if there is a negative loop
between P and P~, then let c~(P) = k + 2 and exit this for-loop.

In step 2(b), it is essential to test the elements of P~ in non-decreasing order
because otherwise (*) could not be guaranteed (with C. = P and C* = P ')
when launching the test whether there exists a negative loop between P and Pq

Taking Lemma 6 into account we get:

L e m m a 7. Given a Muller automaton 9A = (Q, q0, 5, Y=) over an alphabet B, the
above procedure computes in tzme Cg(Ifl21QIIBI) the function cga.

The upper bound for the running time also takes into account the time we
need to compute the set A4 (which is O([Q[]B[) by Tarjan's algorithm, see [5])
and the inclusion relation on P (which is O([f'[2[QI)).

As a consequence of Lemma 7 and Theorem 1, we obtain our first theorem:

T h e o r e m 8 . The Rabin index of a regularw-language gzven by a Muller automa-
ton 92 : (Q, qo, 5, yz) over an alphabet B can be computed in time (9([:pl2[QllBI).

4 R e g u l a r W a d g e D e g r e e s a n d W a g n e r ' s N a m i n g S y s t e m

The set B ~ of all w-words over an alphabet B is turned into a metric space by
introducing the distance function d with d(a, fl) = 2- m,n{q~(i)r for distinct
w-words cr and/~. A set L C B ~ is Wadge reducible to a set M C_ B ~, in symbols
L < w M, if L is the inverse image of M under a continuous function B ~ --- B ~.
The <w-rela t ion is an equivalence relation, and each equivalence class is called
a Wadge degree. The relation _<w extends in a natural way to the degrees. A
Wadge degree is called regular if it contains a regular w-language.

As mentioned in the introduction in [9] Wagner investigated the structure of
the set of all regular Wadge degrees (ordered by <w) . In a unique way he
denoted each degree by an expression, henceforth called name, of the form
Ejl J,-1 j , , l ' " E i , - l x i , , where x is either of the symbols C, D, or E, s > 1 and
il > . . . > is and, in case x = E, i, = 1. In this paper, the name of the
Wadge degree of a regular w-language L is denoted by W(L) .

296

3 rd level

2 nd level

I st level

~ - 222 ~
~ - ~ E 3 2 1

C222 D22~
321 ~ 2 2 1 , ~ .-~ 321

E~21
('>221 ~ ~ - / ' 1 2 2 1 "
"-'321 -~.r 321

E 21
32 "

:

~ 212 /
321 ~ . ,6212 ~ / 1 2 1 2

321 "~.-.~ 211 ..~., 'aJ 321

g'-~211 ' ' ' ' ' ~uJ321 ~ - / ~ 2 l 1
v 3 2 1 Ls321

22 --~--.D22

Ca21 D 21 31

F i g . 1. The s t ructure of the ordering of the regular Wadge degrees

Wagner's n a m i n g s y s t e m is chosen in such a way that the < w - r e l a t i o n can
easily be read off: for regular degrees S and T with names E41~1 " �9 "-i.-1EJ~ ~' and

E/ki i . ~l~-i I,
�9 "~k,_~Yk,, the relation S < w T holds iff there is an index u such tha t

i. = k , a n d j . = l ~ f o r v with 1 < v < u, and either (a) s = u<_t, a n d y = E
o r x = y , or (b) u < s a n d u < t and i u+ l < k u + l .

The coarse structure of the set of all regular Wadge degrees can be presented
graphically as in the left part of Fig. 1. For notational convenience we write
xi~i2...i , ~ " ~" for E ~.lzl p Js-tl,_l Xi, j" ' and if i8 > 1 the union of all degrees whose names

297

E4 1.j2.j" Circles represent one and only have E4 1,, . . . E4',, as prefix is denoted by _,~,~...,, .
one degree, boxes stand for a union of several degrees. The first lower index of
a name of a degree divides the entire hierarchy into an infinite number of levels.
Every box E,~ of the mth level (m > 1) is structured exactly as the part of
the hierarchy that consists of the levels 1, . . . , m - 1 . The corresponding circles

nj nj nj and boxes in Er~ are denoted by Cmi , Dmi , Emi , respectively. Again, if i > 1,
then E ~ j is divided into further degrees by the same procedure. This gives a
'reeursive' structure (but leading only to finite descending chains). For instance,
the structure of E~ is as depicted in the right part of Fig. 1.

5 Wagner's Naming Procedure

In the previous section, we presented and explained the structure of the regular
Wadge degrees and how Wagner named them. In this section, we will explain
how, given a Muller automaton 92, one can determine the name of the degree of
L(92). In principle, we follow [9]. By introducing the notion of 'condensed graph',
we slightly change the style of presentation. This is useful from an algorithmic
point of view.

We first come back to alternating chains, and assume a Muller automaton
9.1 = (Q, q0,6,.T) over an alphabet B to be given. If C1 C . . . C Cn is an
alternating chain in 92, then all the loops Ci with 1 < i < n belong to the same
maximal loop. If this loop is M then we say that the chain is zn M.

With 92, we associate the length functzon Ion: M ---* N that maps every max-
imal loop M onto the length of a longest alternating chain in M.

Let M be a fixed maximal loop of 92. In every longest alternating chain in M
one can replace the last element by M itself. Therefore the signs of all longest
alternating chains in M are the same, and the sign function s~: M ---* sign that
maps every maximal loop M on the sign of the longest alternating chain in M
is well-defined.

A condensed graph is a quintuple (V, E, l, s) such that (V, E) is a directed
acyclic graph and h V ---+ N and s: V ~ sign are labellings of vertices. We say
that a node v is positive if s(v) = + and negative otherwise.

The condensed graph associated with the Muller automaton 9.1 is the con-
densed graph/(;~ = (M, E, l~, sga), where E contains an edge from M to M ~ iff
there is a path from M to M ~ in ~ t that does not contain any state belonging
to one of the other maximal loops (i.e. when M ~ is an immediate successor of
M).

In the following, let G = (V, E, l, s) be a condensed graph. We define m + to
be the maximum of {I(M) I s (M) = +} U {0}, and m a analogously. That is, if
G = K~ then m + is the length of a longest positive alternating chain in 9.1, and
m a stands for the length of a longest negative alternating chain in 9.1. We write
ma for the maximum of rn + and rn~.

A top node in G is a node M such that l (M) = ma . An alternating superchain
is a sequence C1, �9 �9 C,~ of top nodes where for every i with 1 _< i < n the node
Ci+l is reachable from Ci and Ci is a positive top node iff Ci+l is not. The

298

alternating superchain is called positive if C1 is a positive top node and negative
otherwise.

We define n + to be the maximum length of a positive superehain if there
is some and 0 otherwise. The number n a is defined correspondingly. The maxi-
mum of both numbers is denoted by na. A longest superchain is an alternating
superchain of length ha. The first node in a positive longest superchain is called
a positive base node and the notion of a negative base node is defined similarly.

The condensed graph G is called non-prime if no = n~ = n + and pmme
otherwise.

For every condensed graph G with m = ma and n = ha, we define its type,
denoted by ta. If G is non-prime, then ta = /~,~, if G is prime and n + > ha ,
then ta = C~,, else, if G is prime and n a > n +, then ta = D,~. The set type
is defined to be the set {z,~ I x E {C, D, E} A m, n E N}. (So every name of a
Wadge degree can be viewed as a string over type satisfying certain conditions.)

For a non-prime condensed graph G = (V, E, l, s) we define its demvative OG.
It is the condensed graph (W, E ~, if, s~), where V ~ is the set of nodes from which
both a positive and a negative base node are reachable, E ~ = E A (V I • VI), and
l ~ and s ~ are the restrictions of 1 and s to W.

With every condensed graph G, we associate a name W(G). If G = K;~ is the
condensed graph of a Muller automaton 92 recognizing the w-language L, then
W(G) will be equal to W(L) .

The name ~ = W(G) is defined by the following procedure, also called Wag-
her's naming procedure, which iteratively constructs W(G) by essentially con-
catenating the types of G, OG, 02G, . . . :

1. Let a = e, i = 0.
2. Do forever:

(a) L e t i = i + l .
(b) If G is empty then return hE11.
(c) If G is prime then return a rc .
(d) If G is non-prime, ma = 1, and i = 1 then return ta.
(e) If G is non-prime, mc = 1, and i > 1 then return a E , ~ +1.
(f) If G is non-prime and ma > 1 then let a = ata and G = OG.

Observe that only step 2(f) leads to a new iteration of the for loop.
The correctness of the naming procedure is stated in the following theorem.

T h e o r e m 9 (W a g n e r) . For every Muller automaton 92, W(L(92)) = W(/(:~).

In particular, since the above naming procedure is effective, it follows that the
name of the Wadge degree of a regular w-language can be computed effectively.

In the next section, we will describe how the above procedure can be imple-
mented efficiently.

6 C o m p u t i n g t h e W a d g e d e g r e e

Following Theorem 9 our algorithm that, given a Muller automaton 92, computes
the name of the Wadge degree of L(92) consists of three steps:

299

1. Build G = ~ .
2. Determine a = W(G).
3. Output a.

Step 3 is straightforward. The other two steps are treated in the following
two subsections.

6.1 S t e p 1

We first compute the transition graph G~ in an obvious way. Next, using Tarjan's
algorithm, we compute the vertex set of/C~ (i. e. the set M of all maximal loops
of G~) and the edge relation.

In order to determine l~ and s~ we first compute c~ as described in Sect. 3.
After that, for each M E M , we partition the set 7r of all minimal positive
loops in M into the sets S and "Y according to whether a loop is a superset of a
negative loop or not. Using the following expressions we then determine l~(M)
and s~(M).

l~(M) = max({co~(P) + 1 I P E S} U {ca(P) I P E 7-}) (13)

+ , if 19a(M) = 1 (rood 2) and M E 7', or
s~(M) = if la(M) =_ 0 (mod 2) and M ~ P, (14)

- , otherwise

To compute the sets 7r we need time O(1~']~). To parti t ion one set Tr we need
to check whether in a given connected subset of a graph there exists a smaller
connected set. This can be done using a breadth-first search. (There exists no
smaller connected subset iff the breadth-first search tree is a path and there
are no back edges except for a back edge from the last point of the path to its
beginning.)

The upper bound for the computation of c~ (see Lemma 7) is O(liFI2IQ[IB])
and dominates the time needed to compute l~ and s~, starting from c~ as just
described, and to perform Tarjan's algorithm.

Remark. Step 1 is performed in time O(IJz]2]Q]]B]).

6.2 Step 2

The execution of step 2 follows Wagner's naming procedure (see Sect. 5). To
avoid misunderstanding, the two steps of that procedure are called phases here-
after. Apart from a and i, variables LEVEL, TYPE, TO-VISIT, and MAX-
NODES are initialized in phase 1. These additional variables are used and up-
dated in phase 2.

The current derivative (i. e. G) is represented by the array LEVEL:.s ---* N
according to the following convention (invariant).

(**) Before each execution of the for loop (i. e. at the beginning of 2(a)) G contains
the nodes M with LEVEL[M] > i. The variable MAX-NODES contains a
list of all maximal nodes of G (viewed as a partial order).

300

Recall tha t a derivative of a condensed graph is a subgraph induced by a certain
set of nodes. Therefore the current derivative is fully determined by its set of
nodes.

P h a s e 1" I n i t i a l i z a t i o n . The array TO-VISIT is initialized to PERHAPS, and
LEVEL to the number of nodes of G. (The latter is in accordance with (*).)

Each vertex M of the condensed graph G is labelled with the type of the graph
which is obtained from G by removing all vertices which M is not reachable from
(see below). The labels are stored in the array TYPE. Furthermore, a list of the
maximal nodes in G is produced and stored in MAX-NODES.

For the computat ion of T Y P E we introduce two functions:

U: type x type --* type and ~: type x N • sign --+ type.

The function U is defined in such a way that if Go and Gi are condensed
graphs then tao U tG1 is the type of the disjoint union of Go and Gi:

~ i f m > k, or Xrn ,

x,~Uy~ = y ~ U x n = i f m = k a n d n > l , or
i f m = k a n d n = l a n d x = y ,

E~, otherwise.

Obviously, U is an associative and commutat ive operation.
The flmction .~ is defined such that if Go = (V, E, l, s) is a condensed graph

with one unique maximal node v and if Go is obtained from a graph Gi by
adding v then k(tal, l(v), s(v)) = tao. If m ' > m then

)~(x~ ,m ' , s)= { CT ' ' i f s = + '
D.v , if s = - .

If m ' < m then)~(x~n, m', s) = xm Furthermore

x n+l if s = - , x = C, and n = 1 (mod 2), or
i f s = + , x = D , a n d n - - 1 (rood2) ,

C~ + i , i f s = + , x = E , a n d n = 0 (m o d 2) , o r
A(x~, m, s) = if s = - , x = E, and n __ 1 (mod 2),

D ~ + i , i f s = + , x = E , a n d n K 1 (m o d 2) , o r
i f s = - , x = E , a n d n - - 0 (mod2) ,

x m~ , otherwise,

for every possible choice of x, m, s, and n.
Since both U and k are defined by simple case distinctions, each application

of them in a procedure will take constant time.
Now, using U and A we can describe a rule that allows us to compute the

values of the array TYPE: If M1, . . . , Mr is the list of predecessors of node M,
then

T Y P E (M) = A(TYPE(Mi) U . . . U TYPE(Mr) , I (i) , s (i)) .

301

Therefore, the types of all nodes can be computed using a simple for loop treating
the nodes in a topological ordering (to make sure that the values of the predeces-
sors are already known). For a minimal node M, we have TYPE(M) = C~ (M)

if s (M) = + and TYPE(M) =- D~, rM~ otherwise. In the same for loop one can
also compute the list MAX-NODES for the entire graph. A topological ordering
of the nodes of G can be computed in linear time (see [2]).

So we get the following for the complexity of phase 1.

Remark. Phase 1 is performed in time O(]A/I] +]E]), where E is the number of
edges in K;~.

P h a s e 2: E x e c u t i o n of t h e For Loop. There are two points to be discussed
here: I) how ta (needed in 2(c), (d), and (f)) is determined, and II) how c~G
(needed in 2(0) can be computed, if G is non-prime--the other parts of phase 2
are simple tests or assignments.

ad I). The type of G is determined by combining the TYPE values of the
nodes in MAX-NODES using U; this takes time linear in the length of MAX-
NODES.

ad II). We are in 2(f). So LEVEL and MAX-NODES have to be updated
to represent the derivative of G = (V, E, l, s) in the sense of (*). We use two
additional arrays POS-S-CHAIN and NEG-S-CHAIN, and a heap H. The arrays
POS-S-CHAIN and NEG-S-CHAIN store for every M E V the length of the
longest positive and negative superchain, respectively, that is reachable from M
in G. This information is used to determine the nodes that have to be deleted in
order to obtain the desired derivative, ie., the nodes from which no positive or
no negative base loop is reachable. On the heap H, the candidates for deletion
are stored, the node being the greatest in a topological ordering of/C~ on top
of H. The array TO-VISIT records which nodes are already on the heap and
which of them are to be disregarded (although they are on the heap).

For every element M of MAX-NODES, we set LEVEL[M] to i - 1, put all
its predecessors on the heap H, and set TO-VISIT[M'] to YEs for each such
predecessor. If l (M) = rnG and s(M) = +, the variable POS-S-CHAIN[M] is
set to 1 and POS-S-CHAIN[M] to 0. If l (M) = ma and s(M) = - , the variable
NEG-S-CHAIN[M] is set to 1 and POS-S-CHAIN[M] to 0. In all other cases, 0 is
assignedto POS-S-CHAIN[M] and NEG-S-CHAIN[M]. The list MAX-NODES
is emptied.

In a while loop we proceed until the heap H is empty. In every iteration, a
node M is extracted from H and processed as follows. If TO-VISIT[M] is not
YES, nothing happens. Otherwise, POS-S-CHAIN[M] and NEG-S-CHAIN[M]
are determined. This is done by combining the corresponding values of the succes-
sors of M in G, the value l (M), and the value s(M). If POS-S-CHAIN[M] < na
or NEG-S-CHAIN[M] < Ha, LEVEL[M] is set to i - 1, i.e., M is deleted, and
every predecessor M' of M is added to the heap, provided TO-VISIT[M'] =
PERHAPS. In the other case, if POS-S-CHAIN[M] = NEG-S-CHAIN[M] = Ha,
M is put into MAX-NODES and TO-VISIT[M/] is set to NO for every predeces-

302

sor M ' of M. After exit of the while loop, TO-VISIT is reset to PERHAPS and
H is emptied.

Remark. Phase 2 is performed in t ime O(IEI + I M l l o g l M I) , where E is the
number of edges in/Cga.

The factor of log IAdl reflects the t ime that is needed to maintain the heap
H .

Adding up the running times for step l, phase 1, and phase 2, we finally
obtain:

T h e o r e m 10. The name of the Wadge degree of a regular w-language given by
a Muller automaton 92 - (Q, qo, 8,.T) can be computed in lime O(]Y:I2[QIIBI +
I.h41 log I.MI), where Ad is the set of all maximal loops in 92.

References

1. O. CARTON. "Mots Infinis, w-Semigroupes et Topologie". PhD thesis, Universit6
Paris 7, France (1993).

2. D. E. KNUTH. "Fundamental Algorithms", vol. 1. Addison-Wesley (1968). Second
edition 1973.

3. S. C. KRISHNAN, A. PURl, AND R. K. BRAYTON. Structural complexity of w-
automata. In "STACS 95: 12th Annual Symposium on Theoretical Aspects
of Computer Science", Mfinchen (1995), Lecture Notes in Computer Science.
Springer-Verlag. To appear.

4. V. SELIVANOV. Fine hierarchy of regular w-languages. This volume.
5. R. E. TARJAN. Depth first search and linear graphs. SIAM J. Comput. 1(2),

146-160 (1972).
6. W. THOMAS. Automata on infinite objects. In J. VAN LEEUWEN, editor, "Hand-

book of Theoretical Computer Science", vol. B: Formal Methods and Semantics,
pp. 134-191. Elsevier Science Publishers B. V. (1990).

7. R. VAN WESEP. Wadge degrees and descriptive set theory. In A. S. KECHRIS AND
Y. N. MOSCHOVAKIS, editors, "Cabal Seminar 76-77", vol. 689 of "Lecture Notes
in Mathematics", pp. 151-170 (1978). Springer-Verlag.

8. K. W. WAGNER. Eine topologische Charakterisierung einiger Klassen regul/~rer
Folgenmengen. Elektron. Informationsverarb. Kybernet. 13(9), 473-487 (1977).

9. K. W. WAGNER. On w-regular sets. Information and Control 43(2), 123-177
(1979).

10. H. Yoo. Ein effizienter Algorithmus zur Bestimmung des Rabin-Index in Muller-
Automaten. Diploma thesis, Inst. f. Inform. u. Prakt. Math, CAU Kid, Germany
(1994). 59 pages.

