
Computing the Wadge Degree, the Lifschitz 
Degree, and the Rabin Index of a Regular 

Language of Infinite Words in Polynomial  Time 

Thomas Wilke* and Haiseung Yoo 

Institut fiir Informatik und Prakt. Math., Christian-Albrechts-Universits zu Kiel, 
24098 Kiel, Germany, E-mail: t~@informatik.uni-kiel .d400.de 

Abs t rac t .  Based on a detailed graph theoretical analysis, Wagner's fun- 
damental results of 1979 are turned into efficient algorithms to compute 
the Wadge degree, the Lifschitz degree, and the Rabin index of a regular 
w-language: the two former can be computed in time O(f2qb + klog k) 
and the latter in time O(f2qb) if the language is represented by a de- 
terministic Muller automaton over an alphabet of cardinality b, with f 
accepting sets, q states, and k strongly connected components. 

Formal languages are often compared via reductions: in recursion theory one 
compares formal languages using, e. g., truth-table reductions, in complexity the- 
ory formal languages are compared by, e. g., polynomial or log-space reductions, 
and in descriptive set theory continuous functions are used for the comparison 
of w-languages. 

In all these cases, given a formalism describing formal languages (such as 
Turing machines, grammars, automata,  etc.), one can ask whether the reduction 
relation is decidable in the following sense: is there an algorithm that,  on input 
of representations of languages X and Y, determines whether X is reducible 
to Y. 

For ~;-languages represented by Muller automata,  in [9] Wagner answered 
this question affirmatively in case of continuous reductions and so-called 'syn- 
chronous' continuous reductions. Our main objective is to strengthen this by 
showing that  the corresponding restrictions of the reduction relations are in fact 
decidable in polynomial time. This requires another thorough graph theoretical 
analysis of the loop structure of Muller automata,  carried out below. We treat 
here only the asynchronous case; a glimpse at Wagner's paper [9] will suffice to 
realize the modifications necessary for the synchronous case. 

A maximal class of formal languages that  are pairwise reducible to each other 
is usually called degree. The degrees with respect to continuous and synchronous 
continuous reductions are called Wadge and Lifschitz degrees, respectively, see 
[7]. A such degree is called regular if it contains a regular w-language. 

In [9], K .W.  Wagner introduced a naming system for regular Wadge and 
Lifschitz degrees. One important  property of this system is that,  given names a 
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and ~ for degrees D and E, respectively, one can determine in quadratic time 
whether the languages in D are reducible to the languages in E. Therefore, it is 
sufficient to establish a polynomial time algorithm that  computes the name of the 
Wadge or Lifschitz degree of a regular w-language given by a Muller automaton 
in order to prove that  the respective restricted reduction relations are decidable 
in polynomial time. 

We present an algorithm that,  given a language L by a Muller automaton 
over an alphabet of cardinality b, with f accepting sets, q states, and k strongly 
connected components, computes the name of the Wadge degree of L in time 
O(f2qb + klogk).  (Observe that always k _< q but f may be exponential in q.) 

The algorithm is based on Wagner's discovery that the Wadge degree of a 
regular w-language is determined by the loop structure--i,  e., on the reachability 
relations and the inclusion relations between the accepting and rejecting loops-- 
of any determinstic Muller automaton recognizing L. In other words, all Muller 
automata  that  recognize languages of one degree have the same loop structure. 

As Wagner also discovered, all regular w-languages with the same Rabin 
index (the least possible number of accepting pairs used in a Rabin automaton 
recognizing a language) form a set that is a union of Wadge degrees. Therefore 
our methods to analyse the loop structure of a Muller automaton can also be 
used to design an effecient algorithm computing the Rabin index of a regular 
w-language. We present an algorithm running in time O(f2qb), where f ,  q, and b 
are as above. This result contrasts with a recent result, see [3], that  theproblem 
of computing the Rabin index of a regular w-language given by a deterministic 
Rabin or Streett automaton is AlP-complete. The reason for this is that  the 
encoding of accepting loops using Rabin or Streett conditions may turn out 
more succinct than a mere enumeration (as in an equivalent Muller automaton 
on the same transition graph). 

The paper is organized in six sections. In the first three sections we develop 
our algorithm computing the Rabin index of a regular w-language, in the other 
three sections this algorithm is extended to our algorithm computing the Wadge 
degree. Sect. 1 introduces basic notions, in Sect. 2 the key lemma (Lemma4) 
about the loop structure of a Muller automaton is stated and proved and the 
key procedure of all our algorithms is presented, and in Sect. 3 Wagner's result 
about the Rabin index and the results of Sect. 2 are combined to the desired 
algorithm. Sect. 4 and Sect. 5 review Wagner's results on the regular Wadge 
degrees, and in Sect. 6 we present our algorithm to compute the Wadge degree 
of a regular w-language. 

For Wagner's result concerning the Rabin index the reader is also referred 
to [8]. Wagner's approach to regular Wadge and Lifschitz degrees is automata  
theoretic, 2 a topological approach can be found in [4], an algebraic interpretation 

2 In [9], Wagner is mainly interested in (synchronous) reductions via functions defin- 
able by finite state machines. Yet in the last section of that paper he shows that, 
restricted to regular w-languages, (synchronous) continuous reductions and (syn- 
chronous) finite-state machine definable reductions give rise to the same reduction 
relations. 
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is given in [1]. The article [6] is a general reference for w-languages. 
We would like to thank one of the referees for his or her comments which 

improved the paper significantly. 

1 A l t e r n a t i n g  C h a i n s  a n d  t h e  R a b i n  I n d e x  

Throughout this paper, 92 stands for a Muller automaton (Q, q0, 5, ~') over an 
alphabet denoted by B, and L(92) stands for the language recognized by 92. 

The set V of nodes of the transition graph 6fa = (V, E) of 92 consists of the 
states of Q reachable from q0, and an edge (q, q~) belongs to the set E of edges 
of ~ if there exists &letter b such that 5(q, b) = q' and q is reachable from q0. 
(Observe that  the number of edges of 6~ is bounded by IQIIB{.) 

A loop in 92 is a set C C_ V such that the subgraph of Ca induced by C 
is strongly connected. The set g of all loops in 92 is partitioned into the set 
79 = C N ~" of posztwe loops and the set N" of negative loops. The set of all 
maximal loops (with respect to set inclusion) is denoted by Ad. (Notice that  a 
maximal loop in 92 is the same as a 'strongly connected component'  of ~ . )  We 
shall use C, C1, C', . . .  for loops, P,  P1, P~, . . .  for positive loops, N, N1, N ~, 
�9 .. for negative loops, and M, M1, M ~, . . .  for maximal loops. 

An alternating chain of length n is of the form 

C1 C C2 c C3 c . . .  C Cn,  

where (Ci E g for every i with 1 < i < n and) Ci E 79 iff C~+1 ~ 7 9 for every 
i with 1 < i < n. A positive alternating chain starts with a positive loop, i.e. 
C1 E 79, and a negative alternating chain starts with a negative loop. If we say 
that  an alternating chain is 'positive' or 'negative' we speak of the sign of the 
alternating chain, and sign stands for the set { + , - } .  

The function c~:79 ~ N is defined as to map every positive loop P onto the 
length of a longest alternating chain starting with P. 

Wagner proved in [8] (see also [9]) the following about the Rabin index of a 
regular w-language. 

T h e o r e m  1 ( W a g n e r ) .  The Rabin index of a regular w-language recognized by 
a Muller automaton 92 is given by the term 

L(max{c9~(P) I P e ;o} + 1)/2].  (1) 

Term (1) was the starting point of our search for an efficient algorithm com- 
puting the Rabin index of a regular w-language. After a graph theoretical anal- 
ysis of the loop structure of Muller automata we found an efficient way to com- 
pute ca, and thus could establish an efficient algorithm for computing the Rabin 
index. The graph theoretical analysis is subject of the next section, while the 
algorithms computing c~ and the Rabin index are presented in the next but one 
section. 
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2 N e g a t i v e  L o o p s  I n  B e t w e e n ?  

In this section we develop an efficient procedure that checks whether for two 
positive loops P, and P* with P, C P* there is a negative loop N with P, C 
N C P*. This will be the key subroutine in the algorithms searching for long(est) 
alternating chains. 

The problem with finding alternating chains is that sometimes the number 
of negative loops in an automaton happens to be exponential in the number 
of states and the number of positive loops (i.e. in the size of the automaton). 
Therefore one cannot simply compute all negative loops and search for alternat- 
ing chains in the obvious way. 

Let 9.1 and G~ be as above. We say that a loop C1 is beLween the loops Co 
and C2 if Co C C1 C C2 holds. 

If there is a loop N between P, and P* that is comparable with some positive 
loop P between P, and P* then either P, C N C P C P* or P, C P C N C P* 
holds. In this case the test whether there is a negative loop between P, and P* 
can be reduced to a 'smaller' one: is there a negative loop between P, and P or 
between P and P*, respectively? But what if there is no negative loop between 
P, and P* that is comparable with some positive loop in between?-- This is 
what we examine first. 

Let (*) be the following condition: 

C, C C* are two loops and neither (2) nor (3) below hold for any P E i~ / 
and g E A/'. / (*) 

C, C N C P C C *  (2) C, c P c N c C *  (3) 

Remark (complementatzon property). Assume (*). If C, C N C C* and C, C 
P C C * , t h e n  P U N = C * .  

Proof. Assume C = P U N is not C*. If C E P, then C, C N C C C C* 
contradicts (2). Otherwise C, C P C C C C* contradicts (3). [] 

That is, two loops with complementary signs complement each other. 
Let 

D = { ~ c { P I C * c P c C * } ' ,  otherwise.ifthereiss~ (4) 

L e m m a 2 .  Assume (*) and C, C C C C*. Then C E 7 ) iff D C_ C. 

Proof. For the non-trivial direction let C E A/'. If there is no P with C, C P C 
C*, we have D ~ C, since D = C* by definition. Otherwise, P U C = C* for 
every P with C, C P C C* by the complementation property; hence C*\  C C P 
for every such P, whence 

C* \ C C_ D.  (5) 

If we had D C C, then (5) would imply C* \ C C_ C, which, in turn, implies 
C* C C. This is a contradiction to C C C*, thus (5) cannot hold. Therefore 
D % C .  [] 
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If ~" = q l . . . qm is a path in ~ ,  we write I1~11 for the set {q l , . . . ,  qm} and I~1 
f o r  m .  

D e f i n i t i o n 3 .  Let C, C C*. A handle is a non-empty path r satisfying the 
following conditions: I[~rI[ C C* \ C,, and there exist q, q' e C, such that  q~rq' is 
also a path. 

A handle is called simple if it is simple as a path. 

Obviously, every minimal loop C with C, C C C_ C* can be written as 
C, U II~'l[ where rr is a simple handle. In presence of (*), this is true for negative 
and positive loops separately: 

Remark. Assume (*). 

1. If N is a minimal negative loop with C, C N C C*, then N = C, U I]~rl] for a 
suitable simple handle 7r. (A 'minimal negative loop N with C, C N C C*' 
is a minimal element of { g '  I C, C N C C*}.) 

2. If P is a minimal positive loop with C, C P C C*, then N = C, U 117r]] for 
a suitable simple handle ~'. 

Proof. 1) Consider a minimal loop C with C, C C _C N. This can be written as 
C, U II~rl] for a suitable simple handle 7r. By (3), C is a negative loop, thus, by 
the minimality of N, C = N. 

2) A dual argument applies. [3 

L e m m a 4 .  Assume (*) and the existence of a negative loop N between C, and 
C*. Then there is at most one minimal positwe loop P between C, and C*. 

Proof. Assume for contradiction that  there are two minimal positive loops P 
and P~ of minimal cardinality between C, and C*. W. 1. o. g. assume furthermore 
that  N is minimal. Let P, P~, and N be given by simple handles r r and p, 
respectively (see the above remark). 

Since P and P~ are distinct and minimal, there exist states q and q' with 
q E I ICXl \ IIr and q' E I Jr \ IlCJJ. By Lemma 2, there exists a state d E D \ N. 
This state is distinct from q and q', because otherwise D C_ P or D C P '  would 
not hold (Lemma 2). Since N U P = C* and N W P '  = C* (complementation 
property) we also have q' C N and q G N. 

According to the order in which q, q', and d occur in r r and p, we can 
write r r and p, respectively, as follows, 
possible choices are listed. 

r = r162162 (6) 
~)1 ! t I I 

= r162 r (7) 

p = Poqplq'p2 (8) 

where in each line the respective two 

r = r162162 (9) 
(~1 I I / I = r r162 (10) 
p = poq~plqp2 (11) 

(Observe that {d, q, q'} n (U~=o t1r u I1r u U =o IIp ll) = o because of 
the minimality of P,  P ' ,  and N.) We will see that every of the eight possible 
combinations leads to a contradiction. 
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Two arguments will be used again and again in what follows. For reference, 
we state them before carrying on with the proof. 

Let C be a loop such that C. C C C_ C* holds. 

(i) I f d ~ C ,  t h e n C ~ 7  9 . 
(ii) I f q ~ C o r q ' ~ C ,  t h e n C ~ A f .  

The first claim is true, because d belongs to the intersection defined in (4). The 
second claim is true because of the complementation property: if q ~ C, then 
q ~ C U P~, thus C U P C C*, hence C ~ Af by the complementation property. 
A symmetric argument applies if q~ ~ C. 

Since the paths r 4', and p have points in common, it is possible to compose 
new paths (and handles) from suitable segments. Which paths can be built 
depends on the equations that hold. For instance, if we have (9) and (11), then 
r is a path, even a handle. 

If one of 
40qp2, 4 q'p2, poq42, or p0q% (12) 

is a path, the desired contradiction is easy to obtain. We demonstrate this for 
40qP2, the other cases are similar. 

Consider 7r : 4oqP2, which is a handle. On the one hand, the loop C, U I[rrll 
is not positive, because d does not belong to it (cf. (i)). On the other hand, q' 
does not belong to C, U 117r]l, hence C, U 117rtt is no negative loop (cf. (ii)). 

Only if 

1. (9), (7), and (8) hold, or if 
2. (6), (10), and (11) hold, 

one cannot immediately construct one of the paths enumerated in (12). The two 
cases are symmetric, so we deal only with the first case. 

Consider the handle 7r = 4~dr Since q does not belong to C, U]lTr I ], this loop 
is positive (cf. (ii)). From the minimality of P' we know ]42[ _> ]4]q'4t21. (Other- 
wise the cardinality of C, U llTrll would be strictly smaller than the cardinality of 
P ' . )  Since q' does not belong to ]]4211, there exists a state p E ]]r \ I1r 
say 42 = r162 

We claim that p does not occur in r (which implies p ~ ]]4']1 since p 
]1r162 by definition). For contradiction, assume p occurs in r say r = $0pdil. 
Then 7r' = ~i0pr is a handle. But the loop C, U I]rr'll is neither positive, since it 
does not contain d (cf. (i)), nor negative, since it does not contain q (cf. (ii)). 

We have p ~ JJ4']], and C, U JJ4~)dr162 is a positive loop, since q does 
not belong to it (cf. (ii)). Therefore P and r : 40q41dr can be replaced by 
C, U ]]r162 and r162 respectively. We encounter a case that leads 
immediately to a contradiction as above. [] 

By symmetry, we have: 

C o r o l l a r y 5 .  Assume (~'). I f  there are positive and negative loops between C, 
and C*, then there is a unique mznimal (i. e. smallest) positive loop and a unique 
mznimal (i. e. smallest) negative loop between C, and C*. 
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We now can design an efficient procedure that takes loops P, C P* as argu- 
ments and gives back TRUE if there exists N such that  P, C N C P* and FALSE 
otherwise, provided (*) holds (with C, = P, and C* = P*): 

1. Find a minimal loop C with P, C C C_ P*. 
2. If C ~ P,  then return TRUE. (C is negative and between P, and P*.) 
3. If C = P*, then return FALSE. (There is no loop between P, and P*, in 

particular, no negative one.) 
4. Search for a minimal loop C ~ with P, C C ~ C P* and C ~k C ~. 
5. If there exists no such C ~, then return FALSE. (There is only one minimal 

loop between P, and P*, namely C, and this is positive. Thus, by (*), there 
is no negative loop between P, and P*.) 

6. If there exists such a C'  and 
(a) if C'  ~ :P, then return TRUE (C' is negative and between P, and P*), 
(b) if C'  C T', then return FALSE. (There is no unique minimal positive loop 

between P, and P*, thus there exists no negative loop between P, and 
P* by Lemma 4.) 

To complete the description of the procedure we have to explain how steps 1 
and 4 can be implemented. 

Step 1. Since at least one minimal loop C with P, C C C_ P* is given by 
a shortest handle, it is sufficient to search for a shortest handle ~r, and to set 
C = P, U II~rll. We find such a handle using a breadth-first strategy in the 
subgraph of ~ induced by P*: we search for a shortest non-empty path from 
P, to P, and leaving P, .  This takes time O(]P*I]BI). 

Step 4. The situation is a bit more involved but essentially the same idea 
works; we search for simple paths satisfying certain conditions. 

We obtain the following upper bound for the running time of the entire test. 

L e m m a 6 .  Given a Muller automaton 91 and two positive loops P, C P* such 
that (~') holds (with C, = P, and C* = P*), the above procedure checks in tzme 
O(IQl(IBI + whether exists a negative loop between P, and P*. 

This bound takes also into account that we have to construct ~ and a search 
tree for the elements of 7 ) (in order to be able to perform a test as in step 2 in 
time ]QI). 

3 C o m p u t i n g  t h e  R a b i n  I n d e x  

As pointed out at the end of Sect. 1, in order to compute the Rabin index we 
need to compute (the maximum value of) the function c~. The rules that  allow 
us to determine ca inductively are summed up in the following remark. 

( 2, if P 3/I, 
Remark. 1. If P is a maximal positive loop, then c~(P) = 1, otherwise. k 
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2. If P is not a maximal positive loop, if k = max{cga(P') ] P C P ' ) ,  and if 
P'  = { P'  ] P C P' A e~( P') = k}, then 

J" k + 2, if there are N and P '  E P '  such that  P C N C P ' ,  c~(P) 
k, otherwise. 

This remark motivates and proofs the correctness of the following procedure 
computing c~: 

1. For every maximal P e P ,  if P E A4, then let c~(P) = 1, else c~a(P) = 2. 
2. For every non-maximM P E "P in non-increasing order: 

(a) Let k = max{c~(P ' )  I P C P '} ,  P '  = {P '  I p C P '  A c~(P')  = k}, and 
ca(P) = k. 

(b) For every P~ E T '~ in non-decreasing order, if there is a negative loop 
between P and P~, then let c~(P) = k + 2 and exit this for-loop. 

In step 2(b), it is essential to test the elements of P~ in non-decreasing order 
because otherwise (*) could not be guaranteed (with C. = P and C* = P ' )  
when launching the test whether there exists a negative loop between P and Pq  

Taking Lemma 6 into account we get: 

L e m m a  7. Given a Muller automaton 9A = (Q, q0, 5, Y=) over an alphabet B, the 
above procedure computes in tzme Cg(Ifl21QIIBI) the function cga. 

The upper bound for the running time also takes into account the time we 
need to compute the set A4 (which is O([Q[]B[) by Tarjan's algorithm, see [5]) 
and the inclusion relation on P (which is O([f'[2[QI)). 

As a consequence of Lemma 7 and Theorem 1, we obtain our first theorem: 

T h e o r e m 8 .  The Rabin index of a regularw-language gzven by a Muller automa- 
ton 92 : (Q, qo, 5, yz) over an alphabet B can be computed in time (9([:pl2[QllBI). 

4 R e g u l a r  W a d g e  D e g r e e s  a n d  W a g n e r ' s  N a m i n g  S y s t e m  

The set B ~ of all w-words over an alphabet B is turned into a metric space by 
introducing the distance function d with d(a, fl) = 2- m,n{q~(i)r for distinct 
w-words cr and/~. A set L C B ~ is Wadge reducible to a set M C_ B ~, in symbols 
L < w M, if L is the inverse image of M under a continuous function B ~ --- B ~. 
The <w-rela t ion is an equivalence relation, and each equivalence class is called 
a Wadge degree. The relation _<w extends in a natural way to the degrees. A 
Wadge degree is called regular if it contains a regular w-language. 

As mentioned in the introduction in [9] Wagner investigated the structure of 
the set of all regular Wadge degrees (ordered by <w) .  In a unique way he 
denoted each degree by an expression, henceforth called name, of the form 
Ejl  J,-1 j ,  , l ' " E i , - l x i , ,  where x is either of the symbols C, D, or E,  s > 1 and 
il > . . .  > is and, in case x = E, i, = 1. In this paper, the name of the 
Wadge degree of a regular w-language L is denoted by W(L) .  
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3 rd level 

2 nd level 

I st level 

~ -  222 ~ 
~ - ~ E 3 2 1  

C222 D22~ 
321 ~ 2 2 1 , ~  .-~ 321 

E~21 
('>221 ~ ~ - / ' 1 2 2 1  " 
"-'321 -~.r 321 

E 21 
32 " 

: 

~ 212 / 
321 ~ .  ,6212 ~ / 1 2 1 2  

321 "~.-.~ 211 ..~., 'aJ 321 

g'-~211 ' ' ' ' ' ~uJ321  ~ - / ~ 2 l  1 
v 3 2 1  Ls321 

22 --~--.D22 

Ca21 D 21 31 

F i g .  1. The  s t ructure  of the ordering of the regular Wadge degrees 

Wagner's  n a m i n g  s y s t e m  is chosen in such a way that  the < w - r e l a t i o n  can 
easily be read off: for regular degrees S and T with names E41~1 " �9 "-i.-1EJ~ ~' and 

E/ki i . ~l~-i I, 
�9 "~k,_~Yk,, the relation S < w  T holds iff there is an index u such tha t  

i. = k ,  a n d j .  = l ~  f o r v  with 1 < v < u, and either (a) s =  u<_t, a n d y =  E 
o r x = y ,  or (b) u < s a n d u < t  and i u+ l  < k u + l .  

The coarse structure of the set of all regular Wadge degrees can be presented 
graphically as in the left part  of Fig. 1. For notational  convenience we write 
xi~i2...i , ~ "  ~" for E ~.lzl . . . .  p Js-tl,_l Xi,  j"  ' and if i8 > 1 the union of all degrees whose names 
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E4 1.j2.j" Circles represent one and only have E4 1,, . . .  E4',, as prefix is denoted by _,~,~...,, . 
one degree, boxes stand for a union of several degrees. The first lower index of 
a name of a degree divides the entire hierarchy into an infinite number of levels. 
Every box E,~ of the mth level (m > 1) is structured exactly as the part of 
the hierarchy that  consists of the levels 1, . . . ,  m - 1 .  The corresponding circles 

nj nj nj and boxes in Er~ are denoted by Cmi , Dmi , Emi , respectively. Again, if i > 1, 
then E ~  j is divided into further degrees by the same procedure. This gives a 
'reeursive' structure (but leading only to finite descending chains). For instance, 
the structure of E~ is as depicted in the right part  of Fig. 1. 

5 Wagner's Naming Procedure 

In the previous section, we presented and explained the structure of the regular 
Wadge degrees and how Wagner named them. In this section, we will explain 
how, given a Muller automaton 92, one can determine the name of the degree of 
L(92). In principle, we follow [9]. By introducing the notion of 'condensed graph',  
we slightly change the style of presentation. This is useful from an algorithmic 
point of view. 

We first come back to alternating chains, and assume a Muller automaton 
9.1 = (Q, q0,6,.T) over an alphabet B to be given. If C1 C . . .  C Cn is an 
alternating chain in 92, then all the loops Ci with 1 < i < n belong to the same 
maximal loop. If this loop is M then we say that the chain is zn M.  

With 92, we associate the length functzon Ion: M ---* N that  maps every max- 
imal loop M onto the length of a longest alternating chain in M. 

Let M be a fixed maximal loop of 92. In every longest alternating chain in M 
one can replace the last element by M itself. Therefore the signs of all longest 
alternating chains in M are the same, and the sign function s~: M ---* sign that  
maps every maximal loop M on the sign of the longest alternating chain in M 
is well-defined. 

A condensed graph is a quintuple (V, E,  l, s) such that (V, E)  is a directed 
acyclic graph and h V ---+ N and s: V ~ sign are labellings of vertices. We say 
that  a node v is positive if s(v) = + and negative otherwise. 

The condensed graph associated with the Muller automaton 9.1 is the con- 
densed graph/(;~ = (M,  E, l~, sga), where E contains an edge from M to M ~ iff 
there is a path from M to M ~ in ~ t  that  does not contain any state belonging 
to one of the other maximal loops (i.e. when M ~ is an immediate successor of 
M). 

In the following, let G = (V, E,  l, s) be a condensed graph. We define m + to 
be the maximum of {I(M) I s (M)  = +} U {0}, and m a analogously. That  is, if 
G = K~ then m + is the length of a longest positive alternating chain in 9.1, and 
m a stands for the length of a longest negative alternating chain in 9.1. We write 
ma  for the maximum of rn + and rn~. 

A top node in G is a node M such that l (M)  = ma .  An alternating superchain 
is a sequence C1, �9 �9 C,~ of top nodes where for every i with 1 _< i < n the node 
Ci+l is reachable from Ci and Ci is a positive top node iff Ci+l is not. The 
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alternating superchain is called positive if C1 is a positive top node and negative 
otherwise. 

We define n + to be the maximum length of a positive superehain if there 
is some and 0 otherwise. The number n a is defined correspondingly. The maxi- 
mum of both numbers is denoted by na. A longest superchain is an alternating 
superchain of length ha. The first node in a positive longest superchain is called 
a positive base node and the notion of a negative base node is defined similarly. 

The condensed graph G is called non-prime if no = n~ = n + and pmme 
otherwise. 

For every condensed graph G with m = ma and n = ha, we define its type, 
denoted by ta. If G is non-prime, then ta = /~,~, if G is prime and n + > ha ,  
then ta = C~,, else, if G is prime and n a > n +, then ta  = D,~. The set type 
is defined to be the set {z,~ I x E {C, D, E} A m, n E N}. (So every name of a 
Wadge degree can be viewed as a string over type satisfying certain conditions.) 

For a non-prime condensed graph G = (V, E,  l, s) we define its demvative OG. 
It is the condensed graph (W, E ~, if, s~), where V ~ is the set of nodes from which 
both a positive and a negative base node are reachable, E ~ = E A (V I • VI), and 
l ~ and s ~ are the restrictions of 1 and s to W. 

With every condensed graph G, we associate a name W(G).  If G = K;~ is the 
condensed graph of a Muller automaton 92 recognizing the w-language L, then 
W(G)  will be equal to W(L) .  

The name ~ = W(G)  is defined by the following procedure, also called Wag- 
her's naming procedure, which iteratively constructs W(G)  by essentially con- 
catenating the types of G, OG, 02G, . . .  : 

1. Let a =  e, i =  0. 
2. Do forever: 

(a) L e t i = i + l .  
(b) If G is empty then return hE11. 
(c) If G is prime then return a rc .  
(d) If G is non-prime, ma = 1, and i = 1 then return ta. 
(e) If G is non-prime, mc  = 1, and i > 1 then return a E , ~  +1. 
(f) If G is non-prime and ma > 1 then let a = ata and G = OG. 

Observe that  only step 2(f) leads to a new iteration of the for loop. 
The correctness of the naming procedure is stated in the following theorem. 

T h e o r e m  9 ( W a g n e r ) .  For every Muller automaton 92, W(L(92)) = W(/(:~). 

In particular, since the above naming procedure is effective, it follows that  the 
name of the Wadge degree of a regular w-language can be computed effectively. 

In the next section, we will describe how the above procedure can be imple- 
mented efficiently. 

6 C o m p u t i n g  t h e  W a d g e  d e g r e e  

Following Theorem 9 our algorithm that,  given a Muller automaton 92, computes 
the name of the Wadge degree of L(92) consists of three steps: 
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1. Build G = ~ .  
2. Determine a = W(G). 
3. Output  a.  

Step 3 is straightforward. The other two steps are treated in the following 
two subsections. 

6.1 S t e p  1 

We first compute the transition graph G~ in an obvious way. Next, using Tarjan's 
algorithm, we compute the vertex set of/C~ (i. e. the set M of all maximal loops 
of G~) and the edge relation. 

In order to determine l~ and s~ we first compute c~ as described in Sect. 3. 
After that,  for each M E M ,  we partition the set 7r of all minimal positive 
loops in M into the sets S and "Y according to whether a loop is a superset of a 
negative loop or not. Using the following expressions we then determine l~(M) 
and s~(M). 

l~(M) = max({co~(P) + 1 I P E S} U {ca(P)  I P E 7-}) (13) 

+ ,  if 19a(M) = 1 (rood 2) and M E 7', or 
s~(M) = if la(M) =_ 0 (mod 2) and M ~ P,  (14) 

- ,  otherwise 

To compute the sets 7r we need time O(1~']~). To parti t ion one set Tr we need 
to check whether in a given connected subset of a graph there exists a smaller 
connected set. This can be done using a breadth-first search. (There exists no 
smaller connected subset iff the breadth-first search tree is a path and there 
are no back edges except for a back edge from the last point of the path to its 
beginning.) 

The upper bound for the computation of c~ (see Lemma 7) is O(liFI2IQ[IB]) 
and dominates the time needed to compute l~ and s~, starting from c~ as just 
described, and to perform Tarjan's algorithm. 

Remark. Step 1 is performed in time O(IJz]2]Q]]B]). 

6.2 Step 2 

The execution of step 2 follows Wagner's naming procedure (see Sect. 5). To 
avoid misunderstanding, the two steps of that procedure are called phases here- 
after. Apart from a and i, variables LEVEL, TYPE,  TO-VISIT, and MAX- 
NODES are initialized in phase 1. These additional variables are used and up- 
dated in phase 2. 

The current derivative (i. e. G) is represented by the array LEVEL:.s ---* N 
according to the following convention (invariant). 

( ** ) Before each execution of the for loop (i. e. at the beginning of 2(a)) G contains 
the nodes M with LEVEL[M] > i. The variable MAX-NODES contains a 
list of all maximal nodes of G (viewed as a partial order). 
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Recall tha t  a derivative of a condensed graph is a subgraph induced by a certain 
set of nodes. Therefore the current derivative is fully determined by its set of 
nodes. 

P h a s e  1" I n i t i a l i z a t i o n .  The array TO-VISIT  is initialized to PERHAPS, and 
LEVEL to the number  of nodes of G. (The latter is in accordance with (*).)  

Each vertex M of the condensed graph G is labelled with the type of the graph 
which is obtained from G by removing all vertices which M is not reachable from 
(see below). The labels are stored in the array TYPE.  Furthermore, a list of the 
maximal  nodes in G is produced and stored in MAX-NODES. 

For the computat ion of T Y P E  we introduce two functions: 

U: type x type --* type and ~: type x N • sign --+ type. 

The function U is defined in such a way that  if Go and Gi are condensed 
graphs then tao U tG1 is the type of the disjoint union of Go and Gi:  

~ i f m  > k, or Xrn , 

x,~Uy~ = y ~ U x  n = i f m = k a n d n > l ,  or 
i f m = k a n d n = l a n d  x = y ,  

E~,  otherwise. 

Obviously, U is an associative and commutat ive  operation. 
The flmction .~ is defined such that  if Go = (V, E, l, s) is a condensed graph 

with one unique maximal  node v and if Go is obtained from a graph Gi  by 
adding v then k(tal, l(v), s(v)) = tao. If m '  > m then 

)~(x~ ,m ' , s )= { CT ' ' i f  s = + '  
D.v , if s = - .  

If  m '  < m then )~(x~n, m', s) = xm Furthermore 

x n+l if s = - ,  x = C, and n = 1 (mod 2), or 
i f s = + , x = D ,  a n d n - -  1 ( rood2) ,  

C~ + i , i f s = + , x = E , a n d n = 0  ( m o d 2 ) , o r  
A(x~, m, s) = if s = - ,  x = E, and n __ 1 (mod 2), 

D ~  + i , i f s = + , x = E , a n d n K  1 ( m o d 2 ) , o r  
i f s = - , x = E ,  a n d n - - 0  (mod2) ,  

x m~ , otherwise, 

for every possible choice of x, m, s, and n. 
Since both U and k are defined by simple case distinctions, each application 

of them in a procedure will take constant time. 
Now, using U and A we can describe a rule that  allows us to compute the 

values of the array TYPE:  If M1, . . . ,  Mr is the list of predecessors of node M, 
then 

T Y P E ( M )  = A(TYPE(Mi)  U . . .  U TYPE(Mr) ,  I ( i ) ,  s ( i ) ) .  
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Therefore, the types of all nodes can be computed using a simple for loop treating 
the nodes in a topological ordering (to make sure that  the values of the predeces- 
sors are already known). For a minimal node M, we have TYPE(M) = C~ (M) 

if s (M)  = + and TYPE(M)  =- D~, rM~ otherwise. In the same for loop one can 
also compute the list MAX-NODES for the entire graph. A topological ordering 
of the nodes of G can be computed in linear time (see [2]). 

So we get the following for the complexity of phase 1. 

Remark. Phase 1 is performed in time O(]A/I] + ]E]), where E is the number of 
edges in K;~. 

P h a s e  2: E x e c u t i o n  of  t h e  For Loop.  There are two points to be discussed 
here: I) how ta  (needed in 2(c), (d), and (f)) is determined, and II) how c~G 
(needed in 2(0 ) can be computed, if G is non-prime--the other parts of phase 2 
are simple tests or assignments. 

ad I). The type of G is determined by combining the TYPE values of the 
nodes in MAX-NODES using U; this takes time linear in the length of MAX- 
NODES. 

ad II). We are in 2(f). So LEVEL and MAX-NODES have to be updated 
to represent the derivative of G = (V, E, l, s) in the sense of (*). We use two 
additional arrays POS-S-CHAIN and NEG-S-CHAIN, and a heap H. The arrays 
POS-S-CHAIN and NEG-S-CHAIN store for every M E V the length of the 
longest positive and negative superchain, respectively, that is reachable from M 
in G. This information is used to determine the nodes that have to be deleted in 
order to obtain the desired derivative, ie., the nodes from which no positive or 
no negative base loop is reachable. On the heap H, the candidates for deletion 
are stored, the node being the greatest in a topological ordering of/C~ on top 
of H. The array TO-VISIT records which nodes are already on the heap and 
which of them are to be disregarded (although they are on the heap). 

For every element M of MAX-NODES, we set LEVEL[M] to i - 1, put all 
its predecessors on the heap H, and set TO-VISIT[M'] to YEs for each such 
predecessor. If l (M)  = rnG and s(M)  = +, the variable POS-S-CHAIN[M] is 
set to 1 and POS-S-CHAIN[M] to 0. If l (M) = ma and s(M)  = - ,  the variable 
NEG-S-CHAIN[M] is set to 1 and POS-S-CHAIN[M] to 0. In all other cases, 0 is 
assignedto POS-S-CHAIN[M] and NEG-S-CHAIN[M]. The list MAX-NODES 
is emptied. 

In a while loop we proceed until the heap H is empty. In every iteration, a 
node M is extracted from H and processed as follows. If TO-VISIT[M] is not 
YES, nothing happens. Otherwise, POS-S-CHAIN[M] and NEG-S-CHAIN[M] 
are determined. This is done by combining the corresponding values of the succes- 
sors of M in G, the value l (M),  and the value s(M).  If POS-S-CHAIN[M] < na 
or NEG-S-CHAIN[M] < Ha, LEVEL[M] is set to i -  1, i.e., M is deleted, and 
every predecessor M'  of M is added to the heap, provided TO-VISIT[M'] = 
PERHAPS. In the other case, if POS-S-CHAIN[M] = NEG-S-CHAIN[M] = Ha, 
M is put into MAX-NODES and TO-VISIT[M/] is set to NO for every predeces- 
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sor M '  of M.  After exit of the while loop, TO-VISIT  is reset to PERHAPS and 
H is emptied.  

Remark. Phase 2 is performed in t ime O(IEI + I M l l o g l M I ) ,  where E is the 
number  of edges in/Cga. 

The factor of log IAdl reflects the t ime that  is needed to maintain the heap 
H .  

Adding up the running times for step l, phase 1, and phase 2, we finally 
obtain: 

T h e o r e m  10. The name of the Wadge degree of a regular w-language given by 
a Muller automaton 92 - (Q, qo, 8,.T) can be computed in lime O(]Y:I2[QIIBI + 
I.h41 log I.MI), where Ad is the set of all maximal loops in 92. 
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