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A b s t r a c t .  We present effective criteria for first-order definability of reg- 
ular tree languages. It is known that over words the absence of mod- 
ulo counting (the "noncounting property") characterizes the expressive 
power of first-order logic (McNaughton, Schfitzenberger), whereas non- 
counting regular tree languages exist which are not first-order definable. 
We present new conditions on regular tree languages (more precisely, 
on tree automata) which imply nondefinability in first-order logic. One 
method is based on tree homomorphisms which allow to deduce nondefin- 
ability of one tree language from nondefinability of another tree language. 
Additionly we introduce a structural property of tree automata (the so- 
called A-V-patterns) which also causes tree languages to be undefinable 
in first-order logic. Finally, it is shown that this notion does not yet give 
a complete characterization of first-order logic over trees. The proofs rely 
on the method of Ehrenfeucht-Fraiss6 gaznes . 

1 Introduct ion  

Regular word languages as well as many  sub classes of regular word languages can 
be defined using very different formalisms, e.g. finite au tomata ,  regular expres- 
sions and monadic second-order formulas. An impor tan t  example is the class 
of star-free word languages tha t  has been investigated by McNaughton and 
Schiitzenberger [10, 15]. In particular it was shown by McNaughton tha t  this 
class coincides with the class of first-order definable word languages and f rom 
Schiitzenberger we know that  a regular word language is star-free iff the lan- 
guage is aperiodic. (A word language L is called aperiodic if there exists n E IN 
such tha t  for all u, v, w E Z* we have uvnw E L r  uvn+lw E L.) Since ape- 
riodicity is decidable for a regular word language by inspecting the minimal  de- 
terministic au tomaton  accepting this language, also first-order definability turns 
out to be decidable. 

In the introduction to [1] Biichi wrote: "The extension f rom unary  Mgebras 
to n-ary algebra~ (tree au tomata )  sometimes is obvious and sometimes requires 
additionM ideas." The "obvious extension" applies well to the definition of reg- 
ular tree languages in the above mentioned formalisms whereas the notions of 
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star-freeness, aperiodicity and first-order definability introduced by Thomas  [18] 
yield different classes of regular tree languages. In [14] it was shown that  every 
regular tree language over an alphabet without unary symbols is star-free and in 
[8] tha t  there exist aperiodic tree languages which are not first-order definable. 
Thus aperiodicity is only a necessary criterion for first-order definability. 

Up to now, the only way to prove that  an aperiodic tree language is not 
first-order definable is to apply the well-known Ehrenfeucht-Fra'iss$ game [4, 6]. 
In the present context this game is played by two players on two trees. Trees 
satisfy the same set of first-order formulas of a certain quantifier-depth n if and 
only if the second player has a winning strategy in the play with n rounds on 
these trees. Thus a tree language T is not first-order definable if there exists a 
sequence (sn, t~)nerq of trees such that  for all n E IN: sn E T, t~ ~ T, and the 
second player has a winning strategy in the n-round play on sn and tn. As can 
be seen in [8] it is often difficult to construct such a sequence and to verify the 
required properties. 

The aim of this paper is to provide effective necessary conditions for first- 
order definability. We show that  certain mappings on trees (nondeleting linear 
tree homomorphisms [5]) preserve winning strategies of the second player and 
thus allow to deduce nondefinability of one tree language from nondefinability 
of another tree language. We also apply these mappings to show that  it suffices 
to deal with languages of binary trees in order to find a decision procedure for 
definability in first-order logic. 

In [12] it was shown that  a certain set of partial  boolean expressions is aperi- 
odic, but  not first-order definable. From this example we extract  the notion of an 
A-V-pattern which is a condition on state transformations in the corresponding 
minimal tree automaton.  We show that  this notion provides a quite powerful 
necessary condition for first-order definability but  still does not characterize the 
class of first-order definable tree languages. The example language proving that  
the absence of an A-V-pattern does not suffice to insure first-order definabil- 
ity also corrects an error in [18] by showing that  there exists an aperiodic tree 
language that  is definable in chain logic but  not in first-order logic. 

The remainder of this paper has 5 sections. In Section 2 we introduce regular 
tree languages in terms of tree au tomata  and monadic second-order formulas. In 
Section 3 we present an Ehrenfeucht-Frgiss~ game for first-order logic on finite 
trees and recall some basic facts on this game. In Sections 4 we investigate tree 
homomorphisms and in Section 5 A-V-patterns. An outline of future work will 
be given in Section 6. For lack of space some proofs have to be omit ted which 
can be found in [13]. 

2 Notat ion  

Let Z = 2Y0 U . . .  U ~ r  be a finite ranked alphabet where Zi denotes the set of all 
symbols of arity i. Let furthermore V denote a set of 0-ary variables. The set of 
all trees over Z with variables in V, denoted by T~(V),  is inductively defined as 
follows: every 0-ary symbol a E ~0 and every variable c C V belongs to T~(V) 
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and with b E Zi and t l , . . . , t i  E T ~ ( V )  also b ( t l , . . . , t i )  belongs to T ~ ( V ) .  T~  
denotes the set of trees over Z without any variables. T C_ T~ is called a tree 
language over Z .  I f  additionally Z = Z0 U Z2 we call a tree language over Z 
binary. In the remainder  of this section we denote by a always a O-ary symbol,  
by e a variable and by b a symbol  of positive arity. The labelling of the leaves 
of a tree t f rom left to right is denoted yield(t) ,  e.g. yield(a)  = a, yield(e)  = c 
and y i e l d ( b ( Q , . . . ,  t i ))  = y i e l d ( Q ) . . . . ,  y ie ld( t i ) .  With each tree we associate 
a prefix closed set dora(t) C {1 ,~  r}* called the domain of t and defined by 
dora(a) = dom(  c ) = {s} and dom( b( t l , . . . , ti ) ) = {r U U~=I ..... i k .  dom(  t k ) . < 
denotes the part ial  prefix ordering on the domain of a tree. We refer to the set of 
leaves of a tree t by f r o n t ( t )  C dora(t). For k E dora(t) we denote by t ( k )  E S 
the label of node k in t. t k denotes the tree obtained f rom t by removing all nodes 
tha t  are not greater than  k, i.e. dom( t  k) = {11 k l  E dora( t ) }  and tk( l)  = t (k l )  
for all 1 E dom( tk ) .  

We will now introduce a concatenation on trees via replacement of variables. 
Let T, T 1 , . . . , T m  C T 2 ( V )  and {e~, . . . , e ,~}  C V, then we denote by T[et  ~-- 
T 1 , . . . , c m  ~-- T,~] the set of all trees obtained f rom trees in T by replacing 
all variables ci by possibly different trees in the corresponding tree language 
T/, more formally we put  T[~ ~ 7 ~] = UteT t[~ ~-- 7 ~] with a[~ +-- T] = a 
for a E Zo U V \ { c l ~ . . . , C m ) ,  ci[~ ~-- T] = Ti and b ( t l , . . . , t i ) [ ~  (--- T] = 

o ' tj[~ 7 ~] for . . i} For T C T ~ ( V )  and c E Y { b ( t ~ .  .~t~) [ t j  E *-- j = 1, . , . _ 

we put  T *'c = Ui>0 Tc'i with T ~,~ = {c} and T c,i+l = T c,~ u TC,i[c +-- T]. 

A tree s E T~({c}) with exactly one leaf labelled c is called a special tree. The 
set of all special trees is denoted by Ss  For s E Ss  and t E T~ U S~ we write 
s .  t instead of s[c ~- t]. (S~ , . ,  c) is a monoid tha t  serves to extend the notions 
of Nerode-congruence and aperiodicity f rom word languages to tree languages. 
Let T C_ T2 and t, t ~ E Ts t and t ~ are called (Nerode-)congruent with respect 
to T (t ~--T tt) iff Vs E S~ s �9 t E T ~ s �9 t '  E T. T is called aperiodic iff 
3 n E I N V s  j , s E S ~ V t E T ~ s  ~ . s = . t  E T ~ s' . s =+I . t  E T.  

A determinis t ic  bottom-up tree automaton ( D B A )  .4 = (Q, S ,  5, F )  consists 
of a finite set of states Q, a set of final states F C_ Q, a ranked alphabet  S 
and a transit ion function 5 : U~=0 ..... ~ s ~  • Q~ --+ Q. We can extend 5 in the 
usual way to a mapping  5 : T s  --+ Q. The tree language accepted by A is 
T ( A )  = {t E T~ I 5(t) E F} .  A tree language T is called regular if T = T ( A )  
for a DBA A. Let p E Q, s E $2  and t E T s  with 5(t) = p. Then we put  

= t ) .  

As in the case of regular word languages there exists a min ima l  DBA for 
every regular tree language which is unique up to state renaming and which is 
characterized by the following two conditions: Vq E Q Bt E T2  5(t) = q and 
Vp, q E Q p r q ~ 2s E S s  5(s ,p)  E F ~ 5(s ,q)  ~ F .  Fur thermore  the 
minimal  DBA can be computed effectively f rom an arbi t rary DBA accepting the 
tree language. The states of this minimal  DBA correspond to the equivalence 
classes of the Nerode-congruence, thus a tree language is regular iff the Nerode- 
congruence has finite index. Furthermore,  if .4 is a minimal  DBA accepting T 
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we have that  T is aperiodic iff there exists n E IN such that  for all s E Ss and 
for all q E Q we have ~(s n , q) -- ~(s n+~, q). Therefore we obtain that  aperiodicity 
is decidable for regular tree languages. For a more detailed introduction in tree 
language theory see [7]. 

We will now describe tree languages in terms of monadic second-order logic. 
With every tree t we associate a relational structure t = (dora(t), <, $ 1 , . . . ,  S t ,  
(Pa )aes  where < denotes the partial prefix ordering on dora(t) and Si denotes 
the i-th successor relation (with kS~k ~ iff ki  = k ') .  Pa consists of all nodes 
labelled a. 

We use x, y, . . .  to denote variables ranging over nodes and X ,  Y ,  . . .  to 
denote variables ranging over sets of nodes. Atomic formulas are the follow- 
ing: x < y, x = y, xS iy ,  X x  and Pax.  From the atomic formulas we build up 
the set of all monadic second-order formulas using the boolean connectives A, 
V~ -~, and the quantifiers 3 and V for both kinds of variables~ We denote by 
~ ( x l , . . . ,  xn,  X I ~ . . . ,  X,~) a formula with free variables among x l , . . . ,  xn and 
X1,  . . . , Xra. The satisfaction relation ( t~ kl  , . . . , kn , K1, . . . , Kin) ~ ~(  x l , . . . ~ xn , 
X 1 , . . . , X m )  is defined as usual. By FO we denote the set of first-order for- 
mulas, i.e. formulas without any set variables. The quantifier-depth of a first- 
order formula is inductively defined as follows: qd(to) = 0 for all atomic for- 
mulas ~, qd(~ V r -- qd(~a ,\ r  -- m a x  {qd(~) ,  qd(r qd(-~V) = qd(~)  and 
qd(Sx~)  = qd(Yx~o) = qd(~) + 1. Every formula ~ without free vari/~bles de- 
fines a tree language T(~)  = {t I t ~ ~}. A tree language is called monadic 
second-order definable (first-order definable) if there exists a monadic second- 
order formula (first-order formula) ~o such that  T = T(~) .  Regular and monadic 
second-order definable tree languages are related by the following theorem: 

T h e o r e m l .  [2, 17] A tree language T is regular l i f T  is monadic second-order 

definable. 

Chain logic and antichain logic have been introduced by Thomas  [18] as frag- 
ments of monadic second-order logic. In chain logic set quantifiers range only over 
chains, i.e. sets of nodes that  are totally ordered by the partial  prefix ordering. 
An antichain in a tree is a set of nodes such that  no two nodes in this set are 
comparable in the partial prefix ordering. Antichain formulas (where set quanti- 
tiers are restricted to range over antichains) define exactly the class of star-free 
tree languages. 

The following theorems summarize the relations between the notions of star- 
freeness, aperiodicity and first-order definability: 

T h e o r e m  2. [14] Every  regular binary tree language is star-free. 

T h e o r e m  3. [8] Every  f irst-order definable tree language is aperiodic, but there 
exist aperiodic tree languages that are not f irst-order definable. 

The only difference between word languages and tree languages of unary 
trees is that  word automata  process a word starting from the minimal node in 
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the usual ordering whereas bot tom-up tree au tomata  start at the maximal node 
in the partial  prefix ordering. Since regular word languages are closed against 
reversing we can apply the results of Schfitzenberger and McNaughton to sets 
of unary trees. In [11] Perrin presents an effective construction of a star-free 
expression defining all words which effect the same transformation on the states 
of an aperiodic word automaton.  Star-free expressions on words can he rewritten 
syntactically to a first-order formula defining the same word language. With a 
technique of restricting the range of quantifiers we finally arrive at the following 
proposition: 

L e m m a 4 .  Let A = (Q,~ ,5 ,  F) be an aperiodic DBA and m : Q --+ Q. Then 
there exists a first-order formula ~m(x) such that for all t E T2 we have: (t, k) 
~.~ (x) iff the maximal unary subtree above x effects state transformation m. 

3 A n  Ehrenfeucht -Fra ' i s s~  G a m e  

Ehrenfeucht-Fra'issd games are widely used in the literature to show that  certain 
properties of relational structures are not expressible in a given logic [3, 4, 6]. 
In this section we recall the rules of the first-order game played on trees as 
introduced in [8]. Furthermore we enumerate some basic facts on this game. 
Most proofs can be found in [8, 12, 13] and are therefore omit ted here. 

The Ehrenfeucht-Fra'iss6 game is played on two trees by two players, here 
called player I and player II, with the aim of player I to show that  the given 
trees are different. By Gn((t, k l , . . . ,  kin), (t', k~ , . . . ,  k~)) we denote a play with n 
rounds on two trees t and t ~ with a sequence of m specified nodes in both trees. In 
each move player I chooses a node in t or t ~ and player II reacts by choosing a node 

I in the other tree. Let k,~+i resp. kin+ i be the nodes chosen in t resp. t ~ in the i-th 
round. Player lI wins the play if the nodes k l , . . . ,  kn+m in t and k~, . . . ,  k~+ m ~  in 
t ~ define a partial  isomorphism from t to t ~, i.e. if we have for all i < i, j <_ re+n,  
for all a E S and for all 1 < l < r: ki = (<, St) kj ~ k~ = (<, St) k~ and 
P~ki ~ P~k~. Since we deal with finite trees either player I or player lI has a 
winning strategy. This fact yields to the following definition: 

D e f i n i t i o n b .  Let T ~  denote the set of all trees in T$ with a sequence of m 
specified nodes and let FO m denote the set of all first-order formulas with m 
free variables. For (t, k), (t', ]~') C T~ n we denote by (t, k) ~n (t', ]~) that  player ]I 
has a winning strategy in the play G~ ((t, k), (t', k')). 

~n and ~n+l-equivalence are related by the so-called back and forth prop- 
erty: 

L e m m a  6. Let (t, k), (t', ]c~) C T~.  
(t, ~) Z~+l (t', Z') i~  
Vk E dora(t) 3k' E dom(t') (t, [e, k) ..~ (t', k', k') and 
Vk' C dom(t') 3k C do.~(t) (t, ~, k) ~ (t', ~', k') 
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From this property the following theorem can be deduced easily: 

T h e o r e m  7. [8] The relations .~n are equivalence relations of finite index on 
T ~  and we have for all (t, fe),(t~,k ') e t a :  

(t, ~) ~ (t', ~,) i/y 
V~(~) E FO "~ qd(~(2)) < n ~ [(t, ~) ~ ~(2) ~ (t',/~t) ~ ~(2)] 

We will use the last theorem in the following way to prove that  a tree language 
is not first-order definable: 

C o r o l l a r y  S. T C T~ is not first-order definable iff there exists a sequence 
(sn,tn)nelq such that sn E T, t~ ~ T and sn ,,~n tn for all n E IN. 

We will construct such sequences of pairs of trees by induction. For the 
inductive step we need some technical propositions that  allow us to construct 
~ ,+l-equivalent  trees from ~n-equivalent ones. The first proposition states that  
winning strategies of player lI on certain parts of two trees can be combined to 
get a winning strategy for the whole trees. 

L e m m a  9 (Composition Lemma). 
t p Lets ,  t E S s  with s(l) = t(k) = c ands' ,  E Ts .  

(s, l~ , . . . ,  l~,  l) ~ ,  (t, k~ , . . . ,  k~,  k) 
^ (s t, ~, I I , . . . ,  l'~) ~.~ (t', ~, kl , .  �9 k'~) 

(s .  s t , l l , . . . , l ~ , l ,  l l l , . . . , l l ' )  ~ ( t - t ' , k ~ , . . . , k ~ , k ,  kk~, . . . ,kk' )  

The previous lemma allows us to weaken the precondition of Corollary 8. 

R e m a r k  10. Let T be a regular tree language. T is not first-order definable iff 
there exists a sequence ( sn , tn )ner~ such that sn ~T tn and sn ~ tn for all n E IN. 

Proof. The direction from left to right follows directly from Corollary 8. For the 
reverse direction we use that  the Nerode-congruence has finite index. Thus there 

t ~ ' ~T t a n d t ~ n ~ T t ~ f o r a l l n ,  m >  exists a subsequence (s~, tn)ner~ such that  s n s m 
0. From the definition of this congruence we obtain a special tree s such that  

t s �9 s ,  E T ~ s .  t"  ~ T for all n ~ IN. The Composition Lemma 9 shows that  
either the sequence (s(s'~), s(t'n))~er~ or the sequence ( s ( t ' ) ,  s(stn))~e~ proves 
nondefinability of T according to Corollary 8. 

A more powerful method to combine winning strategies is formulated in the 
following proposition. 

Lemma 11 ( S u b s t i t u t i o n  L e m m a ) .  [13] 
Let (u, ll, . . . , lm) , (V ,  k l , . . . , k i n )  e T ~ ' ( { c l , . . . , c ~ ) )  and 7"1, . . . ,T~  C_ T~ such 
that 

(u, l l , . . . ,  lm) ,,~n (v, kl . . . .  , kin) and 
(s, e) .~= (s t, e) for all s, s t C Ti (i = 1 , . . . ,  r). 

Then (t, l l , . . . , l , ~ )  ~,~ ( t ' , k l , . . . , k , ~ )  for all t e U[Cl ~-- T1 , . . . , c~  ~-- T~] and 
t' e V[Cl ~ T 1 , . . . ,  c~ ~ T 4 .  
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The following remark describes exactly the way how sequences of pairs of 
trees as required in Corollary 8 are constructed in the sequel. 

R e m a r k 1 2 .  Let u ,v  �9 T.v({Cl,. . . ,c~}), t l , t~ , . . . , t~ , t~  �9 Tin, s �9 u[cl *-- 
{ti,t~} I1 < i < r] andt  �9 v[ci *-- {ti,t~} l1 < i < r] such that 

(1) (u, r ~n+l  (v, r 
(2) (t,, 1 < i < r 
(S) W �9 f r o n t ( u )  3k' �9 f ron t ( v )  (u, k) (v, k') ^ s k = t 

Vk' �9 front(v) 3k �9 front(u) (u, ~, k) ~,~ (v, r k') A s k = t k' 
Then we have (8, g) ~nq-1 (t,g). 

4 T r e e  H o m o m o r p h i s m s  

In this section we introduce tree homomorphisms (see also [5]) and show that  
these mappings preserve winning strategies of player lI. Then we use tree homo- 
morphisms to show that  it suffices to deal with binary tree languages in order 
to obtain a decidability result for first-order logic. 

D e f i n i t i o n  13. In order to define tree homomorphisms we extend the notion 
of special trees. The set of n-special trees, denoted by S~, consists of all trees 
t E T~({c l , . . . , c~} )  such that  yield(t) �9 Z ~ c l Z ~ . . . Z ~ c , Z ~ .  For t �9 S~ and 
t l , . . . ,  t~ �9 T$ we abbreviate t[cl *- t l , . . . ,  cn *--- tn] by t ( t ] , . . . ,  t,~). 

A tree homomorphism from T2 to Tn assigns to a symbol b �9 Zk a k-special 
tree h(b) � 9  ..... r Z k - ' + S ~ ' h i n d u c e s  a m a p p i n g h *  :T~  ~ T n  
by h*(a) = h(a) for a �9 ~U0 and h*(b(Q, . . . , tk ) )  = h(b)(h*(t l ) , . . . ,h*(t~))  for 
b �9 Z~. In the sequel we will identify h and h*. 

Since copying (multiple occurences of a variable c~) is not allowed for tree 
homomorphisms we can transfer a winning strategy of player ]I on two trees to 
the images of these trees. At first we show that  the restriction to noncopying 
mappings is indeed necessary. 

Ezample 1. Let S = Z0 U Z1 with Z0 = {a} and Z1 = {b}, T C T2 the set of 
all trees (words) of even height, f2 = 120 U f22 with 120 = {a} and S22 = {b} and 
finally T e ~  C Tn the set of all trees that  contain a path of even length. 

T is periodic and therefore not first-order definable. Let h :Tm --+ Tn be 
defined by h(a) = a and h(b) = b(cl, cl). Then h is syntactic for T and T r  
but T~,~. is first-order definable. 

We call the path that  starts at node k arid contains all nodes in the set 
k(12)*(1 u ~) the "zig-zag" path starting at k. This path has even length if the 
final node belongs to the set k(12)* and has odd length otherwise. It is easy to 
construct a first-order formula ~ , ~ ( x )  which is satisfied by all nodes k with 
a zig-zag path of even length starting at k. A tree contains a least one path of 
even length and one path of odd path of length iff there exists a node k such 
that  all path below the left successor of k have even length and all path below 
the right successor have odd length or vice versa . in  particular ~ ( x )  applies 
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to k l  iff ~ ( z )  does not apply to k2 in this case. Hence we are able to define 
the set of all trees tha t  contain at least one pa th  of even length and one pa th  of 
odd length. I f  a tree has only paths of even length or only paths  of odd length, 
then also the zig-zag pa th  start ing at the root has even length or odd length 
respectively. So a disjunction of two formulas defines T~,~,, one defining the set 
of trees with paths of even and odd length and the other one defining the trees 
with a zig-zag pa th  of even length start ing at the root. 

L e m m a  14. Let h : T~ --+ T s  be a tree homomorphism and t, t' E T~.  
Then we have t ~n+l  t' ~ h(t) ~n  h(t').  

Proof. Let us call a subtree in h(t) or h(t') resulting f rom a node labelled a in 
t or t '  an a-segment.  Suppose player I chooses a node I in h(t). Let k be the 
preimage of this node in t. Then player ]I chooses a node k ~ in t ~ according to his 
winning strategy in the n + 1-round game on t and t ~. I f  the node k in t is labelled 
with a then also k ~ in t ~ is labelled with a. In a last step player 11 computes the 
a-segment which is the image of k'  in h(t') and chooses in this segment the same 
node as player I. The strategy of player lI is shown in the following picture. 

h(t) 
t 

I c.+l(t,t') 
t I 

After n moves the game ends with n chosen nodes in h(t),  h(t '),  t and t ' .  Let 
us call these nodes 1~, 1~, k~ and k~ for i = 1 , . . . ,  n. Now we have to verify the 
winning conditions for player lI . We only show the most  difficult condition to 

verify, i.e. li < lj ~ 1~ < l~. 
So let li < lj. If  li and lj belong to the same segment, i.e. ki = kj,  then also 

k~ = k~ and since player lI has chosen the same nodes in corresponding segments, 

we also have l~ < l~. 
I t  remains to investigate the case that  li and lj do not belong to the same 

segment. Thus we have k~ < kj and k~ < k~. From this fact we can not deduce 
directly tha t  l~ < 1~ because not all nodes in the segment belonging to k~ are 
predecessors of all nodes in the segment belonging to k~. Let k i t  be the direct 
successor of kl above kj,  i.e. k~r < kj.  Thus li is a predecessor of the segment 
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belonging to the r- th successor of ki and so is l~ for the segment belonging to 
k}r. Since player II has played in t and t ~ according to his winning strategy in the 
game with n + 1 moves and up to know only n moves a played, we can deduce 
that  also k~r < k~. Thus l~ is a predecessor of all nodes in the segment of k~, in 
particular of l~. 

In order to be able to transfer nondefinability from a tree language T to 
another tree language T ~ using a tree homomorphism we need an additional 
condition stating that  the tree homomorphism respects the Nerode-congruences 
of T and T I. 

D e f i n i t i o n l h .  A tree homomorphism h : T$ --* To is called syntactic for 
T g T~ and T'  C T~ iff for all t, t' E Ts t ~ T  t' ~ h(t) ~T '  h(t'). 

Lemma 14 and Remark 10 yield immediately: 

T h e o r e m  16. Let T C T~ and T ~ C T~ be regular tree languages. I f  T is not 
first-order definable and if h : T~ -~ T~ is a syntactic tree homomorphism for 
T and T ~, then T I is not first-order definable. 

One application of tree homomorphisms is the proof of the following theorem, 
stating that  the decidability problem for first-order logic can be reduced to binary 
tree languages over a one letter alphabet. 

T h e o r e m  17. [13] For every regular tree language T, we a~re able to construct 
effectively a regular binary tree language T I over a one letter alphabet such that 
T is first-order definable i f fT '  is first-order definable. 

Proof. The proof can be divided into two parts. In the first part  we eliminate 
unary symbols. Therefore state transformations obtained from unary subtrees 
are shifted to minimal nonunary nodes below. Then we code non-unary symbols 
in a binary one letter alphabet. The correctness of these transformations is shown 
using tree homomorphisms and manipulations of first-order formulas. 

The next lemma states that  it is decidable whether a syntactic tree homo- 
morphism between two regular binary tree languages exists. The restriction to 
binary tree languages is motivated by Theorem 17 and also simplifies the proof. 
Thus in order to obtain decidability of first-order logic it would suffice to find a 
recursively enumerable set of regular binary tree languages such that  every other 
nondefinable regular tree language is related via a syntactic tree homomorphism 
to one of these tree languages. It can be shown that  at least no finite set of tree 
languages has this property. 

L e m m a  18. Let T and T ~ be regular binary tree languages. Then it is decidable 
if there exists a syntactic tree homomorphism for T and T I. 
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Proof of Lemma 18. Let A = (Q, Z ,  5, F )  and ,4' = (Q', Y2, 5% F ' )  be minimal 
DBA accepting T and T ~ respectively. Every tree homomorphism h induces a 
mapping H :  Q ~ 2 Q' defined by H(q) = {5(h(t))[5(t) = q} with the following 
properties: (i) H(q) r 0 for q E Q, (ii) 5'(h(a)) e H(5(a)) for all a e Z0, (iii) 
5'(h(b),H(pl),H(p2)) C g(5(b,pl,p2)) for all b E Z2 and all p~,p2 6 Q. h is 
syntactic if additionly (iv) H(p) n H(q) = q} for all p r q. 

Condition (ii) can be satisfied for all g that  already satisfy condition (i). Thus 
it suffices to test all mappings H which satisfy conditions (i) and (iv) whether for 
all b E ~2 there exists tb e $2~ such that  5'(tb, g(pl), g(p~)) C_ H(5(b, pl,p2)) 
for all Pl, p~ E Q. Therefore we only have to show that  we can compute all binary 
mappings m : Q • Q --+ Q effected by any tree in S 2 . Every 2-special tree can 
be decomposed in 3 special trees and a binary symbol as shown in the following 
picture. 

/5/5 
Thus it suffices to compute all state transformations obtained from special 

trees and then to combine these transformations with all binary symbols in all 
possible ways as indicated in the previous picture. 

An application of Theorem 16 will be given in the next chapter. 

5 A - V - P a t t e r n s  

In [12] it was shown that  a certain set of partial boolean expressions is not 
first-order definable. The simplicity of this particular tree language allows us to 
transfer the proof of nondefinability in first-order logic of this tree language to 
all tree languages that  satisfy a certain condition (called A-V-pattern) on state 
transformations in the corresponding minimal DBA. We first recall the definition 
of this tree language. 

D e f i n i t l o n l 9 .  Let Z B = Z B U Z B with Z B = {0,1)  and Z B = {A,V}. Let 
A^,v be the DBA over Z B with set of states {0, 1, _l_}, set of final states {1} and 
the transition function 7 with 7(0) = 0 and 7(1) -= 1. For A and V we define 7 
in the following tables: AIOI• 

0 • 1 7 7  
1 0 1 •  s177 

W e d e n o t e T ( ~ A , v )  b y ~ , v o  

0 0 1 /  
l l L /  
i l l /  

It is easy to see that  T^,v is aperiodic, because A and V are monoton on 0 
and 1. Now we introduce the notion of an A-V-pattern. 
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D e f i n i t i o n 2 0 .  Let A = (Q, ~ ,  5, F )  be a DBA and let tq denote an arbitrary 
tree with 5(tq) = q for all q E Q. We say that  A contains an A-Y-pattern if there 
exists a nonempty, irreflexive and symmetrical relation R _ Q • Q such that  
there exists for all (p, p') E R a tree tpm, E T~ ({x~,~,, y~,r, I (r, r ~) E R}) such 
that  

(i) 5(tv, p, [xr,~, *- tr, y~,~' *-- t~]) = p, 
(ii) 5(tv, p, [xr,r, ~- t~, Y~,r' ~-- t~]) = ff  and 
(iii) 5(tp,p, [xr,r' ~- t~, Y~,r' ~ t~]) = p~. 

The following remark justifies the notion A-V-pattern by showing that  tp,p, 
acts as a generalized v for p -- 0 and p~ = 1. 

R e m a r k  21. Let A = (Q, Y2, 5, F )  be a DBA and let tq be a tree with 5(tq) = q 
for  all q E Q. Let furthermore R CC Q x Q and tp,p, E TY2({xr,r' ,yr,r'  I (r , r ' )  E 
R}) for  all (p,p')  E R as in the previous definition. We define simultaneously 
for aU (P,F)  C R a mapping g~,~, : T ~ . ( { c } )  -~ T~({~, , . ,  I (r, ~') ~ R})  by 

gpm,(0) = tp, gp,p,(1) = tv,, gp,p,(c) = cp,p,, 

g~,~,(v(t~, t~)) = t~,p,[~,~, ~ g~,~,(t~), y~,~, ~-- ~,~,(t~)] and 

gp,p'(A(tl, t2)) = tp,,p[Xr, r~ *-" gr%r(tl), yr, r ~ *-- gr',r(t2)]. 

Then we have for  all t E Ts and all (p,p~) E R: 

7(t) = 0 =:)- 5(gp,p,(t)) = p and 7(t)  = 1 ~ 5(gp,p,(t)) = p'. 

The conclusion in the previous remark does not depend on a particular choice 
of the trees gmp,(0) and gp,p,(1) whereas the definition of these mappings does. 
Therefore we will denote mappings obtained from different choices with the same 
name and specify gpm,(0) and gp,p,(1) more precisely when necessary. 

Now we turn to the main result of this section stating that  the existence 
of an A-V-pattern implies nondefinability in first-order logic. In the proof we 
will use the trees u~ E T~B({c}) for i E IN defined as follows: u0 = c and 
um = A(Um-1, urn-l)  if m is even and u,~ = V(urn-1, urn-l) if m is odd. 

L e m m a  22. [12] Let l, l', l" be leaves in Um (m > 2) which are not neighbours. 
Then we can label all leaves of Urn with 0 and 1 in two different ways such that 
the resulting trees vm and wrn have the following properties: 

- v ~ ( k )  = ~ m ( k )  f o r  a l l  l e a v e s  k e x c e p t  l 
- v ~ ( l )  = v . , ( l ' )  = ~ r n ( t ' )  = o 
- w , ~ ( l )  = v ~ ( l " )  = w r n ( l " )  = 1 

- 7 ( v r n )  = 0 and 3~(wrn) = 1 

T h e o r e m 2 3 .  Let A = (Q, t?, 5, F )  be a minimal  DBA that contains an A-V- 
pattern. Then T ( A )  is not first-order definable. 

Proof. Let R C Q x Q and tp,p, e T~({x~,~,, Yr,~, I (r, r') e R}) for all (p,p')  E R 
as in Definition 20. We will construct simultaneously for all (p, p') E R a sequence 
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sV,p ,p,v'~ _~. such that  5(s p,v') p, 5(tP~ ,p') = p' and (sP~,P',z) . ~  (tP~'v',~). 
Then we obtain nondefinability of T(A)  directly from Remark 10. 

For n = 0 we put  d ' /  = gv,v,(V(0,0)) and and t~ 'p' = gv,v,(V(0,0)) where 
gp,v, (0) and gp,v, (1) are arbitrary with 5(gv,v,(0)) = p and g(gp,v, (1)) = pS. 

~,r' and r'rZ For the induction step let us assume that  s n t~ have the required 
properties for all (r, r') E R and let (p,p') E I~ be fixed in the sequel. Now 
we apply gp,p, to the trees urn. For l e front(urn) let us denote by Ml the 
set of images of 1 in gp,v'(urn). From finiteness of the ~=-equivalence relation 
on Ta({c~,~, [ (r, r ')  E /~}) we obtain that  for sufficiently large m there exist 
l, I t, l" E dom(urn) such that:  
(.)  Vk E Ml 3k' e M1, 3k" E Mw 

(urn), k) (urn), k') (urn), k"). 
Let vrn and wrn as in Lemma22.  We put on+l op,p, = gp,v,(vrn) and ~n+l ~p,p~ - -  

gp,v,(wrn) with g~,~,(0) = s ~ ,  and g~,~,(1) = t ~ ,  for all ( r , r ' )  e R. From 

Remark 21 we obtain immediately that  ~+1 n+l p,. 5(se,v, ) = p and 5(tv, v, ) = 
In order to prove ~=+t-equivalence of ~+1 and ~n+l using Remark 12 let us ~p,p~ ~p,p~ 

first mention that  o~+~ § �9 gp,v,(urn)[c~,~, ~ { s ~ , ,  (t~r,} ] ( r ,  r ') �9 R] and Op,p~ ~ ~p,p~ 

that  s~+, ~ = ~v,p,§ for all k �9 frout(gv,v,(urn)) \ M~. Thus it remains to verify 
condition (c) of Remark 12 for k �9 M~. But this condition is guaranteed by the 
choice of l, l', l" satisfying (*) and the construction of vrn and win. 

It remains to state effectiveness of this condition. 

L e m m a  24. It is decidable whether an A-V-pattern exists in a DBA A.  

Proof. There is only a finite number of relations R C Q • Q, hence it suffices to 
decide whether an A-V-pattern for a fixed R exists. We can assign to every tree 
t E Ta({x~,r,, y~,~, I (r, r') E R}) three states according to the equations (i)-(iii) 
in Definition 20. Now let us enumerate all trees in Ta({z~,~,, Yr,r' [ (r, r ')  E R}) 
by increasing height and collect the corresponding tupels of states until all trees 
of a certain height m < IQ[ 3 do not add any new tupel to the collection. Then 
it remains to test whether for each pair (p, p') E R there exists a tupel (p, p', p') 
in the computed set. This is the case if and only if there exists an A-V-pattern 

for R. 

The following examples show applications of Theorem 16 and Theorem 23. 

Example 2. The first tree language known to be aperiodic and not first-order 
definable was introduced by Heuter [8]. The proof of the latter property was quite 
difficult. In this example we obtain the same result using a tree homomorphism. 

Let S = S0 = $2 = {a,b}. A set of nodes in a tree is called a cut if this 
set is an antichain that  is maximal  with respect to set inclusion. The labelling 
of a cut C is the labelling of the nodes of C in the lexicographical ordering. 
Let T2*~a~* = {t E T~ I every cut of size greater than 1 has a labelling in 
Z ' h a S * } .  Let T C TsB be the set of boolean expressions with value "1 where A 



137 

and V are totally defined, i.e. A(0, 0) = 0 and V(1, 1) = 1. Finally let h be the 
tree homomorphism defined as follows: h(0) = a(b, b), h(1) = a, 

a a a a 
/\ /\ /\ /\ 

b Cl c2 b b a a a 
/ \  / \  

Cl e2 a b 
By induction on the height of t, we are able to show: 
If t E T then h(t) E T~*~a2* and if t E T then h(t) contains a cut with 

labelling in bS*b \ Z?*aaS*. Thus h is syntactic for T and T ~ . a ~  and therefore 
we obtain that  T ~ . ~ $ .  is not first-order definable. 

Example 3. Let S = So U $2 with $2 = {V, G} and So = {0, 1} where V and G 
are defined in the following tables: 

~10 1 _L V[O 1 A_ 
0 1.k_L 0 0 I_L 
1 _L 0 _L 1 I_L_L 
_L _L _L _L _L _L _L _L 

The following trees show that  the minimal automaton (with set of states 
{0, 1, _L}) accepting the set of expressions with value 1 contains an A-V-pattern. 
Let R = {(0, 1), (1, 0)} and 

to, t,0 

Xo,~ Yo,~ V V 
/\ /\ 

20,1 YO,1 20,1 YO,1 

In order to verify that  these trees match the required properties, one only 
has to replace x0,1 and y0,1 by 0 and 1 respectively and to compute the value of 
the tree. So we obtain easily that  this tree language is not first-order definable. 

Many aperiodic tree languages that  are not first-order definable can be 
treated this way. But the tree language introduced in the next definition shows 
that  the absence of an A-V-pattern does not guarantee first-order definability. 
This tree language is aperiodic, contains no A-V-pattern and is chain definable, 
but  not first-order definable. Thus we also correct a proposition in [18] stat- 
ing that  every aperiodic and chain definable tree language is already first-order 
definable. 

D e f i n i t i o n 2 5 .  Let S = S2US0 with $2 = {G, ~ }  and S0 = {0, 1}. The binary 
symbols ~ and ~ denote partial boolean functions defined in the following 
tables: 
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~]0 l_l_ • 1 7 7  +-~ 0 1 •  
0 1 • 1 7 7  0 1 O •  
1 • 1 7 7  1 0 1 •  
• 1 7 7 1 7 7 1 7 7  l •  

Let val(t) E {0, 1, s  denote the value of a tree t. The set of M1 trees with 
value 1 is periodic, because the tree +-~(c, O) is counting modulo two. Thus we 
have to forbid unlimited direct nestings of +-+ in order to obtain an aperiodic 
tree language, 

Let T' = .~ {0, 1} and let T = T' cl {t I val(t) = 1}o 

T h e o r e m  26. T is aperiodic, contains no A-V-pattern and is chain definable. 

Proof. T is regular, because it is an intersection of a first-order definable tree 
language and a regular tree language. It is also easy to see that  T is aperiodic 
and contains no A-V-pattern because the leftmost path of a tree in T ~ consists 
of inner nodes only labelled "-- and already determines the value of the tree in 
the following sense: if this path is of even length then the value of the tree is • 
or the value of the leftmost leaf, if the path is of odd length then the value of 
the tree is • or the complement of the value of the leftmost leaf. The property 
of a path to be of even length can be easily expressed in chain logic. Thus we 
can construct a formula ~ l (x)  expressing that  the leftmost path below node x 
determines the value of the subtree at node x to be 1 or •  Then we can define 
T by the following formula, where ~r ,  describes T~: 

A ? Vx' (x < A a 
YxVx2VxllVx12[P~= A xS2x2 A x~Slx21 A x2S2x22] 

r  

T h e o r e m 2 7 .  [13] T is not first-order definable 

The proof of this theorem is rather technical and is therefore omitted. 

6 C o n c l u s i o n  

The notions of tree homomorphisms and A-V-patterns introduced here provide 
effective and powerful criteria for first-order definability of regular tree languages. 
Nevertheless the problem of deciding first-order definability remains unsolved. 

We want to mention some other possibilities to investigate this problem. 
Whereas we decrease the alphabet of tree automata  and increase the number 
of states in the proof of Theorem 17, one can also t ry  the opposite direction, 
i.e. to define operations on tree automata  that  decrease the number of states 
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but preserve nondefinability of the accepted tree language. A more algebraic 
approach may result from the notion of tree language variety defined in [16] 
since the class of first-order definable tree languges build such a variety. 
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