
Theory and Practice of Software Development
- S t a g e s i n a D e b a t e -

Cbxistiane Floyd

Department of Computer Science
University of Hamburg

Vogt-Krlln-Strage 30, 22527 Hamburg
e-mail: floyd @ informatik.uni-hamburg.de

Abstrac t . Starting from the experience gained in organizing TAPSOFT'85, the
paper discusses the place of formal methods in software development. It dis-
tinguishes two notions of theory: the mathematical science of computation and the
treatment of computing as a human activity. An adequate software theory needs to
take both theoretical perspectives into account. Therefore, the paper explores the
borderline of formalization and human activity in several directions: concerning the
role and scope of formalized procedures, the relation between formal models and
situated use, the process of learning in software development and the ways computer
programs become effective in use. Fundamental assumptions underlying formal
methods and their relation to emancipatory approaches such as participatory design
are discussed. The paper closes with calling for a dialogical framework for further
pursuing these questions.

1 S t a r t i n g a d i a l o g u e i n 1 9 8 5

As a co-organizer o f the original TAPSOFF conference held at the Technical University
of Berlin in March 1985, I have been invited to make a contribution to the tenth anni-
versary of the ensuing movement. So, let me start by congratulating all those who have
participated in the TAPSOFT effort during the past decade, for having achieved a highly
successful series of scientific events. And I hope, that it will continue in the future.

Assessing the success of my own involvement in TAPSOFF is a little more difficult.
When Hartmut Ehrig originally approached me about co-organizing a conferenbe on
formal methods, he wanted me to bring in the practice perspective - the "P". Though we
probably did not have the same notion of "P" in mind, I agreed and suggested to discuss
the relevance of formal methods in software development. And he, in turn, agreed to that.
Thus, we created a field of tension between two scientific communities, one focussing on
formal approaches and their foundations, and the other reflecting the role of formal ap-
proaches in practice, and we set the stage for a controversial discussion. The resulting
conference organization is explained in detail in the contribution by Ehrig and Mahr in
this volume [EhM 95]. It comprised three parts: two colloquia and an advanced seminar.

26

However, the discussion we planned for did not actually come about. In the context of
the individual colloquia, the members of each community discussed largely among them-
selves. In the plenary sessions, there were impressive talks from both sides, but no dial-
ogue. My role as a hostess kept me from bringing in a strong position myself. In retro-
spect I believe, I may have been the only one to consider this dialogue an essential ele-
ment of TAPSOFT. I also arranged an evening discussion on responsibility. This, I be-
lieve, was an important event for quite a few people who were able to voice and exchange
their human concerns. The discussion there was very lively, but it took place outside the
scientific program.

As soon as the conference organization moved from Berlin to Pisa, the outlook has
changed. Since then, I have come to think of the TAPSOFT conferences simply as of a
platform for promoting formal methods.

Now I am happy to see that Peter Mosses wishes to take up the discussion again. When
inviting me, he encouraged me to say something about my work on software develop-
ment and reality construction. He also expressed his hope that I might promote an
exchange between the formal methods group and the system development group at the
University of Aarhus, both very prominent in the international discussion in their
respective fields of interest. Therefore, I will focus here on the limits and borderlines of
formalization. I will not concentrate on the technical issues in programming, but on the
place of formalization in design.

Looking back at TAPSOFT'85 once more, I would like to bring out two reasons for the
lack of actual discussion. On one hand, it is a question of personal motivation and of an
appropriate style of interaction. TAPSOFT was a very friendly gathering, but the confer-
ence took place at a time, when controversies on formalization (both oral and written)
tended to be put forth in a hostile and arrogant manner on both sides. This experience
may have made the participants unwilling to speak up and carry on an open dispute in a
large group. If we want dialogue, we need to cultivate an attitude of mutual respect.

Even more important, however, in my opinion, was the absence of a common level of
reference that would allow the two parties to engage in a fruitful exchange. I remember
taking part in a panel discussion where I suggested that we needed a theory of the human
processes involved in software development. This was met with strong rebuke by an-
other panel member from the formalist community - he took it entirely for granted that
"theory" must refer to mathematical theory and thus misunderstood completely what I
tried to say.

Between 1985 and 1995, some basic elements of the theory I was looking for have been
formulated. Therefore, I have now taken up the challenge to make a dialogical contribu-
tion to TAPSOFT'95.

In doing so, it seems natural to start from the position I presented shortly after
TAPSOFT'85 at the conference on Development and Use of Computer-based Systems
and Tools - in the Context of Democratization of Work held at the University of Aarhus
in August 1985, leading to the publication of [BEK 87]. This conference was also a high-
ly successful scientific event and thus there is another ten years' anniversary I wish to
commemorate here.

27

The Aarhus 85 conference was like a scientific watershed in my life. On one hand, it gave
me the opportunity to present a theoretical basis for my own work in software engineer-
ing. The positive reaction to this greatly encouraged me to delve into studying the epis-
temological foundations of software development. This became my predominant area of
research for several years. On the other hand, it was one of the first events to make ex-
plicit that there was an emerging scientific community dealing with human and social is-
sues in computing. Thus, the role of this conference in promoting encounters and form-
ing alliances was similar to that of TAPSOFT, only for a different group.

At this conference, I also became acquainted with the work on model monopoly and dia-
logue by Stein Br~ten [Br~ 73], which has been very helpful to me ever since. In the con-
text of the present paper, I would like to apply his ideas to the interaction between two
theoretical paradigms dealing with software development. In 1985, the mathematical
science of computation was already well under way, while only fragmentary attempts for
understanding computing as a human activity had been published (cf. section 2).

Thus, the formalist community held what Br~ten calls a model monopoly on software
theory. If, in a situation of model monopoly, two partners engage in a dialogue, this can-
not be symmetric, since one actor is model-strong, while the other is model-weak. The
model-weak actor has to try to express his or her concerns in the terms proposed by the
model-strong actor. This can only lead to further strengthening the position of the model-
strong actor. This is well in keeping with my impressions from TAPSOFT and other at-
tempts at discussion at that time. The formalist community wanted to change practice by
introducing formal approaches. They did not see the need to understand practice in its
own right. On the other side, the practice-oriented community seemed pre-occupied with
fighting off formal approaches as though they were a threat. But they were not in a posi-
tion to offer an alternative.

What is needed to resolve the model monopoly is to formulate an alternative position and
allow the two to interact. The aim of the present paper is to sketch such a platform for
dialogue about theory and practice of software development, as seen from my side.

Another prerequisite for dialogue is to clarify our mutual positions. I would like to illus-
trate this by reference to the specific debate about formal methods. The success story re-
ported by Ehrig and Mahr in [EhM 95] is impressive. But it smoothes out the original
controversy.

At the time of TAPSOFT, the idea put forth by the formalist community was that a com-
plete and strictly formal (for example, algebraic) specification should be prepared before-
hand as a basis for implementation. This was considered necessary, in keeping with the
idea of providing formal semantics for the program.

I suppose that from the formalist point of view the main point of interest here is the use of
formal concepts in dealing with a practical problem. But from the human activity point of
view, a formalized procedure is implied, prescribing at what time and for what purposes
these concepts are supposed to be worked with in software development projects. When
and how this can or must be done, makes all the difference. In my argumentation, I never
opposed formal concepts as such, but I spent a lot of energy objecting to what I still con-
sider senseless manners of proceeding in using them.

28

Instead, I argued for partial formalization, for the flexible, semi-formal use of formal
concepts [Flo 85]. Reading [EhM 95], it is not entirely clear to me any more, what the
proponents now mean by using formal methods in software development. In particular,
the success reported from the practical project relies on semi-formal use of formal ap-
proaches - exactly along the lines that I have advocated and practiced in 1985. The paper
shows that many of the original claims associated with formal methods could not be ful-
filled. Thus, the success reported rests on restating more realistic claims with respect to
formal methods and on subsuming large parts of basic software engineering and pro-
gramining languages research into the TAPSOF-f movement.

So, what are we talking about? What was really the part contributed by strictly formal
methods to the success reported? And why are the objections raised by critics like myself
not quoted as having been confn'med by practical experience?

Once an alternative model is available, we have the conditions for a symmetric dialogue -
at least i'n principle. In practice, conducting such a dialogue depends on the willingness of
the participants. On creating and maintaining environments and on allocating resources
for allowing it to take place. I believe that this task is ahead of the computer science com-
munity as a whole now and in the near future.

2 Two notions of theory about computing

In my paper Outline of a Paradigm Change in Software Engineering in [Flo 87], I con-
trast two perspectives on software development:

�9 The'product-oriented perspective regards software as a product standing on its
own, consisting of a set of programs and related defining texts.

The process-oriented perspective, on the other hand, views software in connection
with human learning, work and communication, taking place in an evolving world
with changing needs.

The notion of "product" is used in a very general sense here. It refers to any tangible
result of human activity, while the notion of "process" denotes the unfolding activity in
the situation. Bringing out these complementary perspectives is helpful for understanding
many spheres of human activity. For most contexts of interest in software development,
the relevant products are formal artifacts, such as programs or defining documents. Pro-
cesses are carried out by individuals working on their own or, more often, by groups of
developers and users and other people responsible for embedding these artifacts in human
context.

The two perspectives can be expressed concretely for concepts such as programs, quality
and method. In any software development project both the product- and the process-
oriented perspectives need to be adopted and reconciled. I criticize the established soft-
ware engineering tradition for focussing almost exclusively on the product-oriented per-
spective and declaring a concern with the process-oriented perspective to be outside the
realm of computer science. I suggest that a shift of emphasis is needed, giving greater
priority to the process-oriented perspective.

29

Taking these two perspectives seriously, we are also lead to reexamine the very idea of
"theory and practice of software development". It is no longer adequate to distinguish
"formal theory" from "informal practice" to which this theory is applied, we are now
faced with two different notions of theory and their respective relation to practice.

In what follows, I shall address three levels:

�9 software development as a (collection of) human process(es) giving rise to formal
artifacts and their embedding in human contexts,

�9 the theoretical frameworks needed for dealing with these aspects, and their potential
interleavement,

�9 the nature of the discipline concerned with software development in computer
science, a question which belongs to the philosophy of science.

In investigating the relation of theory and practice, I will draw extensively on a very in-
teresting book [CFR 93] on program verification, whose aim is to make a contribution to
the philosophy of computer science. Colburn; one of the editors, shows in his introduc-
tion [CFR 93, p.7], how for several sciences the philosophy of that science centers
around a basic reductionist question. For example in biology, the controversy between
vitalism and mechanism deals with the question, whether or not life can be explained in
terms of inorganic processes. Colburn suggests: Can Computer Science be reduced to a
branch of mathematics? as the basic reductionist question for our discipline. The book
contains an excellent selection of articles from the proponents of the mathematical para-
digm on one hand, and from some of the most prominent critics on the other. I have the
pleasure that [Flo 87] is also included.

The mathematical is traced back to John McCarthy. In his seminal paper Towards a
mathematical science of computation, [McC 63], he asks "What are the entities with
which computer science deals?" and gives the answer "These are problems, procedures,
data spaces, programs representing procedures in particular programming languages, and
computers". While some of these entities are expressed in terms that nowadays are no
longer in use, the formal research programme initiated by McCarthy, and continued by
Floyd, Hoare, Dijkstra and so many other great proponents stayed on the course that was
laid out here.

It is interesting to look at the collection of entities (latin for "beings") a little closer. What
kind of an entity is a problem? What is its ontological status? Does it have a way of
existing on its own? Whose problem is it and who decides on the options for solutions?
Surely, the problems considered here must have been posed by someone and passed on
in the community. Similarly for procedures: can we consider a procedure as an entity
without referring to the class of human activities it is meant to standardize? On the other
hand, what kind of entity is a computer here? Can we treat it as a formal automaton with
no concern for its technical counterpart? It is clear that the mathematical science proposed
by McCarthy should treat these entities as formal objects with no reference to their human
and technical context. And it does. But all of these entities, even the elusive problems, are
artifacts, resulting from human activity and used within human activity.

30

So, the mathematical paradigm stands for the product-oriented theory perspective about
software. In principle, no way of organizing human activity is associated with the math-
ematical paradigm. But in practice, many authors rely on recommending predefined pro-
cesses such as top-down development. Thus product-formalization and process-formal-
ization tend to be combined. I shall denote this combination as formal methods approach
for the time being, but eventually argue for a separation of these two aspects.

In contrast, I would like to denote the process-oriented theory perspective by computing:
a human activity, the title chosen by Peter Naur for his recent book [Nau 92], which
contains a collection of his articles written in the course of the past three decades. It starts
with "The Place of Programming in a World of Problems, Tools and People" [Nau 92,
pp. 1-8], published in 1965. Here, we find some of McCarthy's entities again - but what
a shift of emphasis. It is not a science about formal objects any more, but about the ac-
tivity of programming considered in its context, and about problems seen in connection
with people on one hand and with tools on the other. Naur applied this view both to the
use of computers in human activity and to the activity of software development itself.
Thus, amongst other issues, he is concerned with the place of formalization in human in-
sight. He is also the most-featured author in Colburn et al., since he has published ar-
ticles both with and as a critic of the mathematical paradigm.

The two notions of theory suggested here differ in many ways, and yet they are closely
related:

They are inherently complementary, one cannot be treated without implying the ba-
sis for the other. This is exemplified in the very titles. When arguing for a math-
ematical science, McCarthy needs to refer to the human activity "computation", and
conversely, when denoting the human activity of interest, Naur calls on the nucleus
of mathematical science, "computing".

Their historical development is quite different. McCarthy's article started a research
programme, the mathematical paradigm was taken up and pursued hotly by many
researchers from the 1960s onwards and came to full bloom in the seventies and
eighties. The resulting theory has a strong coherence, enabling the community to
take a common scientific stand. By contrast, the theory about computing as a hu-
man activity was slow in starting. For a long time, it manifested itself in critical po-
sitions formulated by individuals in different contexts, and only started gaining mo-
mentum in the mid-eighties. There is no central theme here, but a network of indi-
vidual and related views.

The relation of these notions of theory to the practice of computing is different.
While the formal theory of computing deals with an ideal practice, the human activ-
ity approach rests on actual practical experience in developing and using formal arti-
facts in human contexts. Thus, the nature of one is prescriptive and that of the other
reflective.

The foundations of these theories are different: one rests on formal logic and math-
ematics, while the other rests on approaches in the humanities for understanding
human learning and communication, individual and cooperative work.

31

The gist of my contribution is that an adequate treatment of software development must
comprise both theoretical perspectives. Thus, I take a stand on Colburn's reductionist
question. In what follows, I shall not argue for intermingling these perspectives into one
common super-theory, but for creating a dialogicalframework, taking both perspectives
into account. Such a framework has to allow for the formal properties of software on one
hand and for the human context of their development and use on the other. I will refer to
such a framework as software theory. This conversational use of the term theory is in
keeping with the ideas proposed in Germany under the name "Theorie der Informatik"
[CNPRSSS 92].

3 Basic questions for a software theory

In this and the following sections, I shall take you on something like a guided tour
through the world of human activities associated with computing. We shall concern our-
selves with the stuffthat software is made of, in particular with the borderlines between
the formal and the informal, the static and the dynamic, the controlled and the unfolding
aspects of it.

In order to examine these borderlines, we need to address questions such as: How does
software emerge? How is it embedded in human contexts? What can and should be
formalized? How do we decide what to model? How do we relate the model to reality?
How are operational models effective? How do we judge software quality? How should
humans interact with computers? Let me start by pointing out that when thinking in this
way about software we always imply assumptions on the nature of human thinking, on
the being of formal objects and on desirable ways of handling human affairs. In doing
so, whether or not we admit it, we draw on epistemology, ontology and ethics. More-
over, we also refer to ourselves and to our professional role. To the claims we make
about computing in society. To the way we deal with power, hierarchy and control.

Some of the basic works addressing these questions from various angles have appeared
since the mid-eighties.

Many of these contributions come from Scandinavian countries, including Naur's work
which has already been mentioned. On the basis of a study of Scandinavian approaches
[FMRSW 89] I have come to the conclusion that the focus of computer science in the
Scandinavian countries has been different from the beginning. It is not primarily concern-
ed with technical innovation and formal artifacts as such, but with their explicit orienta-
tion to human use. It is also characterized by cooperation between researchers working in
different fields.

This is evidenced by Simula, for example, a language that had a profound influence on
programming methodology, but at the same time addressed itself towards a particular
class of applications. Simula was developed by Ole Johan Dahl and Kristen Nygaard, a
member of the formalist community and an application-oriented scientist. As we know,
Simula created the technical basis for object-orentafion and for user-oriented modelling.
Also, the connection between computing and work design was already studied in the
early 1960s in Norway - much earlier than anywhere else.

32

The ideas and the technology developed by scientists in the generation of Naur, Dahl and
Nygaard had a profound influence on the younger scientists in Scandinavia, as they were
passed on through education. Most Scandinavians I know refer to their programming
practice with Simula sooner or later, when they try to explain the way they think. The
borderline between what is in and outside of computer science becomes quite different
when taking this approach.

Kristen Nygaard was also the pioneer in studying the social nature of software develop-
ment, pointing out perspectivity as fundamental in what we consider relevant for model-
ling and programming [Nyg 86]. And he is responsible for founding a whole school of
"systems development" in Oslo and here in Aarhus which has made many important con-
tributions to studying the human activity of computing. For example, Susanne Bedker
gave an excellent theoretical treatment of human computer interface [Bed 87]. Pelle Ehn
came up with basic guidelines for designing computer based artifacts for supporting
human work [Ehn 88]. Bo Dahlbom and Lars Mathiassen treated computers in context in
philosophical terms [DM 93]. And so on.

By now, these approaches have acquired a great significance in the international discus-
sion. "A'Scandinavian Challenge" was the subtitle chosen by [BEK 87], the book result-
ing from the Aarhus conference in 1985. This challenge has been taken up by many re-
searchers elsewhere, since meaningful ways of applying information technology are now
a dominant concern. For the rest of us working in this field, it is sometimes a bit strange
to be considered part of the "Scandinavian school".

In the United States, the discussion centered along the philosophical assumptions embod-
ied in computer science. While the early classic Dreyfus mainly focussed on artificial in-
telligence, Winograd and Flores set the stage with [WF 86], their well-known book on
philosophical foundations for design. From an anthropological point of view, Lucy
Suchman showed in [Suc 87] how to think about software use in terms of situated action.

My own project was to study the epistemological foundations of software development.
In cooperation with a number of colleagues in Germany, I arranged a small interdiscipli-
nary workshop held in September 1988 under the name of Software Development and
Reality Construction. This suggestive phrase was used to indicate a range of philosoph-
ical questions pertaining to the practice of software development and use. The participants
were scientists from several fields in computer science and from other disciplines, such
as linguistics, philosophy, psychology and sociology. The resulting book [FZBKS 92]
discusses the nature of computer science as a scientific discipline and the theoretical foun-
dations and systemic practice required for human-oriented system design. It comprises a
series of contributions by different authors, arranged so as to form a coherent whole.

As I pointed out in [Flo 92], there is a Leitmotiv underlying this whole line of research:
How do we understand people in relation to computers? This comes up in different ways:
Are human beings in their cognitive faculties similar to computers? Can computers, in
principle, be likened to human beings? How should computers be allowed to interfere
with human affairs?

Computer science has inherited fundamental views equating humans with computers.
Even in formulating his basic theoretical concepts, Turing explained the functioning of
his universal machine by likening it to a man proceeding according to rules. The overall

33

social context of the emerging computer science was taylorism as a way of rationalizing
and optimizing human work by rules, so that groups performing work would behave like
machines. A very interesting analysis of the interplay of the theoretical basis of computer
science and the socio-cultural developments in the 1920s and 1930s is given in [Hei 93].

While equating humans and computers is explicit in artificial intelligence, it is also im-
plied by many approaches in software engineering and human-computer interface,
whenever we rely solely on rule-based human thinking and predictable functional behav-
iour. There is a direct connection between these questions and formalization, since what
can be formalized can also be mechanized. Formalizing and automating human activity is
inherent in computing.

To characterize the specific way in which formalization occurs in computing, I shall use
the term operational form. By this, I mean an abstract characterization of the informa-
tional basis and the functional content of defined human activity. Note that this termino-
logy avoids reducing human activity to operational form. It merely aims at characterizing
that aspect of human activity that is amenable to being formalized and automated. The
practice of computing, in particular software development, always involves bringing out
and automating operational form. This presumes routine in human activity and a model-
ling process in which this routine is explicitly defined. It rests on characterizing the ob-
jects we work with by informational attributes and our dealing with them as manipulation
of these attributes.

A program executed on a computer can then be seen as auto-operational form. What is of
basic interest to the theory I have in mind, is how operational form, and in particular,
auto-operational form, relates to situated human activity.

My aim in the following sections is to sketch different orientations for research in a dia-
logical framework drawing on both the formalist and the human activity oriented theoret-
ical perspectives. I will support my arguments by some of the positions taken by different
authors mentioned in this section. Rather than discussing their individual contributions
one by one, I would like to group them according to the issues involved.

4 The role and scope of formalized procedures

Computing invariably has to do with identifying and standardizing discrete operational
steps and grouping them into complex formalized procedures, which give rise to algo-
rithmic structures to be executed on a computer.

Thus, the basic way of thinking in our discipline involves several instances:

an instance to set up rules: a human, who makes or identifies rules (for example the
software developer complying with the wishes of the customer, the method devel-
oper prescribing how to proceed in software development and so on),

�9 an instance to impose rules, often a non-human agent (the computer controlling
work processes or technical systems), and

�9 an instance to carry out rules, either human or technical.

34

It is difficult to write about these instances without equating people and computers, since
we have to choose between "which" and "who". This seemingly linguistic triviality re-
flects the fact that the mutual "rights" of these instances depend entirely on our views of
their interaction and thus on decisions taken in systems design. There is, however, little
concern in computer science with how to embed formalized procedures in human activity.

Imposing automated formalized procedures leads to basic questions, since the computer
brings about a new quality. While in general, the rules imposed on human activity have to
be sufficiently clear and unambiguous for humans to follow, here they must be formula-
ted in machine-interpretable terms. While humans interpret rules as they apply to the
needs of the specific situation, programs always operate according to their predefined
model. And while humans tend to associate rules with exceptions, computers do not.

As was first pointed out by Lehman in [Leh 80], automating a sphere of human activity is
not a problem that can be specified in formal terms, thus the need to distinguish between
"specification-based" S-programs and "embedded" E-programs. One important border-
line to explore in software theory is the scope and the limits of process formalization and
to develop criteria for design choices here. This is connected with the identification and
the connection between the individual operation steps to be automated, with the possibil-
ity for humans to interfere and with the organization of computer-supported work. We
find these questions arising both in the process of software development, and in concepts
for software application.

Thus the instance setting up the rules must have a mental picture of the class of possible
situations and a sufficiently rich understanding to allow for any potentially relevant
activity at any time. There are two basic options for embedding formalized procedures in
the richness of human situations. One is to rely on a formal model of the class of use
situations, and to automate a set of rules for how to proceed according to this model. The
other is to leave the use context open and to offer a repertoire of resources to use in self-
organizing work. In this way, I shall differentiate between "centralized control" and
"situated coordination" of cooperative work.

The choice between these options arises at many levels in computing. For example: how
do we view the embedding of computers in work processes? The design of human-
computer interfaces? The automation of the software development process with CASE
tools? Or the application of formal methods in software development?

Because of their basic importance for computers in connection with work design, many
authors have addressed these questions. For example, I have implicitly referred to Lucy
Suchman's discussion in [Suc 87] just now: rather than as rule systems to be followed,
she suggests that plans could be seen as resources to be relied on. Related is Reinhard
Keil-Slawik's design guideline: avoid all unnecessary sequencing of predefined work
steps in [K-S 92]. The common theme here is that formalized procedures should not be
imposed, but be available for flexible use in cooperative work.

Closely connected are the perspectives and metaphors used in design, ranging from
machine, to tool, media and so on. An excellent overview has been given by Susanne
MaaB and Horst Oberquelle [MO 92]. They show, how different perspectives embody
views on how humans should interact with computers. Examples of specific metaphors
include the tools and materials metaphor first elaborated by Reinhard Budde and Heinz

35

Ztillighoven in [BZ 92], and the subject-oriented approach to information systems put
forth by Markku Nurminen [Nur 92]. I suggest, we should investigate how formal
approaches can be combined with using such metaphors.

5 Formal models in s i tuated use

Since all operational form rests on reductionist models of entities carrying informational
attributes, another borderline to explore is the relation of formal models to reality. This
involves various levels: How do we decide which aspects are relevant for being included
into a model? How do our modelling concepts shape how we think about the world?
What kind of being do we ascribe to modelled entities? What claims do we associate with
models? How are different models connected? How do models become operational in
use?

The underlying assumptions of modelling can be expressed with reference to various phi-
losophical schools dealing with ontology and epistemology. This is particularly relevant
in connection with global data models in enterprises. It also has direct bearings to how
computer based systems are used to control technical and social processes.

Heinz Klein and Kalle Lyytinen address in [KL 92] the socialprocess of model building,
in particular data modelling in organizations as one of negotiation. Data models appear
like laws, codifying the informational work basis in a specific manner. Modelling in-
volves making choices. It also involves the power and authorization for making these
choices. Thus, it is essential who participates in the processes leading to formal models.

Naur gives a careful account of what he calls the mystique of formal models [Nau 92, pp.
468-479]. He addresses specifically the relation between what is to be modelled, the
rnodellee, the concepts used for modelling and the modelling process.

Starting from a different angle, Brian Cantwell Smith discusses the relevance of formal
models for use in his thoughtful paper on the limits of correctness in computers [Smi 85].
He contrasts formal correctness (i.e. logical consistency) with suitability or adequacy in
the situation. Since formal approaches do not help us with suitability, the connection be-
tween the model and its use remains unresolved. Only humans can take the responsibility
for bridging the gap.

A basic distinction made by several authors is between modelling structure and behaviour
as such, and modelling with a view to human use. In the former case we adopt the stand
that attributes for formal entities can be described in a context-free manner, while in the
latter, the entities to be modelled are perceived in the context of the work to be performed
with them. If we want to use models, like plans, as resources in situated activity, this re-
quires an understanding of their relation to use.

Therefore, Michaela Reisin understands a reference theory in software development as
centering around the use-meaning of software. The use-meaning must be anticipated in
cooperative design processes involving developers and users [Rei 92]. Similarly, Budde
and Ziillighoven regard programs as things to use and formulate their object-oriented con-
cepts in terms of how things are used in work processes [BZ 92]. Use-oriented mod-
elling rests on understanding the human activity to be supported.

36

We can identify various semantic dimensions of modelling in software development. This
requires a holistic approach, relying on different notions of semantics. That is, we need
to concern ourselves with individuals forming personal meaning, with groups relying on
conventional meaning in their respective technical language, and with the relation of these
two to the formal meaning specified for the attributes and operations in formal models
and implemented in programs. Since embedded programs dominate in practice, we are
faced with the emergence of insights on software issues on the part of the people in-
volved as constitutive for the formal artifacts to be developed.

We can also distinguish different ways in which auto-operational form becomes effective
in use. Is it supportive or controlling? Is it informative or instructive? Is it simulative or
does it directly affect reality? I don't know a good classification here, but we need to
work in this direction, as we populate the world with auto-operational entities of various
kinds. Perhaps we need something akin to the speech-act theory in the philosophy of lan-
guage: an operational model-effect theory that would provide us with conceptual cate-
gories for discussing how computers interfere with human activity in situated use.

In these fields, I see important avenues for joint research combining the formalist and the
human activity perspective.

6 Formal methods as resources in software development

Naur's radical statement: There is no right method for theory building refers to an under-
standing of "method" as a formalized procedure. Instead, he argues in [Nau 92, pp. 37-
48], we should master a repertoire of concepts for modelling to be used as needed in the
situation. '

This is quite similar to Goguen's argumentation in [Gog 92]. He deals with the idea of
error-free programming as treated by the "Dijkstra School". He criticizes the tendency to
apply formal methods in a rigid top-down hierarchical manner and argues for using them
in flexible non-ideological ways. He also considers bugs in programs as interesting and
important in themselves: they define the boundary between what is understood and what
is not. Since errors in programming are a major reason for advocating formal methods, it
is illuminating how this topic is addressed by different authors.

In formal approaches, errors are defined as deviances between the program and its speci-
fication. By contrast, Don Knuth has reported on his own errors in developing TEX in
[Knu 92]. The most amazing thing to me is his classification of errors., He analyzes his
errors in terms of how he saw them in relation to what would have been desirable. Thus,
his error categories range from "blunder, botch" to "quest for quality". There is no way
of expressing all of these errors in terms such as "right" and "wrong" with respect to a
formal specification. Rather, errors refer to mismatches between actual and desirable de-
cisions taken during programming, where no frame of reference is available for judging
what is right and wrong.

The connection between errors and formalization is a subtle one. On one hand, formal ap-
proaches provide us with conceptual means that enable suitable ways of abstraction and
avoid certain categories of errors altogether. Thus, they greatly improve the logical con-
sistency of our programs. On the other hand, they introduce new sources of blunders.

37

And they give us no hint about quality. Whether or not we make suitable decisions with
respect to the context. Whether we tackle the right problem, so to speak.

The formalist notion of errors is based on the idea of considering software development
as the construction of a defined product, it is not compatible with the idea of a learning
process in design. Here, errors have the constructive role of learning events, a point
which is made by several authors in [FZBKS 92], in particular by [K-S 92], as well as
by [WF 86] and by many others. In [Flo 87], I argue that errors need to be understood in
term~ of the human processes where they originate.

This leads to the question on how formalization is embedded in other modes of thinking
and being. [Sic 92] gives hints by showing how formal statements need to be commun-
icated in informal ways. This too is a point stressed by Naur repeatedly. In [Bur 92],
Rod Burstatl gives a fascinating account of the states of mind associated with computing.
He concludes that we need to free ourselves from "being entrapped by a limited perspec-
tive based on desire for control and exclusive reliance on conceptual thought". Admitted-
ly, this danger of single-mindedness is inherent in whatever approach to system develop-
ment we adopt. But strictly formal methods introduce yet another level of expertise, con-
trol and potential alienation that we have to deal with.

There is by now a wealth of literature dealing with human processes in software develop-
ment. Basically, it is a question of how insight is to be reached. The dissatisfaction with
the original phase models formalizing the software process has given rise to the move-
ment of prototyping and evolutionary development, where the basic idea is understanding
and supporting the communication involved with an orientation to feedback and construc-
tive ways o f viewing human errors.

Adopting such a view leads us to examine the following issues:

�9 What is the place of formalization in contexts of multiperspectivity and evolving
insight?

. When should we formalize, how and why?

~ Is the nature of program verification one of using formal proofs or one of context-
oriented argumentation?

�9 How can we use formal concepts as modelling tools?

�9 How carl we adapt methods cooperatively rather than following rules?

I am passionate in these questions, since they reflect my own area of research. Allow me
therefore, to point to [Flo 87] once more and also to our work on STEPS which is a me-
thodical framework accommodating for various approaches. In particular, you can also
take a formal approach in STEPS, if you find ways for incorporating this in an overall
evolutionary process ([FRS 89], see also [K-S 92]).

In the meantime, I have also gained extensive experience in working with emancipatory
approaches in software development. With participatory design, for example, with dem-
ocratic work organization and with self-organization. It remains an open question to me,

38

how formal methods could be used as resources in this context. While software devel-
opers can and should learn to master formal methods by better education, users cannot.
We have to find ways how formalization can be used without interfering in the human
process of shaping technology for human use.

7 An invitation to continued dialogue

In this paper, I have named some of the issues of interest in treating computing as a
human activity, but I have not treated them in depth. There are several reasons for this.
One is the scope and time available. If you want to delve into these issues I have raised,
be sure to look at some of the books I have suggested. Another reason is the context. I
am not primarily addressing the human-activity community here, but those of the for-
malist community who are interested in cooperating on these questions in a dialogical
way across boundaries. Note that in this paper I have not drawn on any philosophical
school for founding my arguments.

Essentially, I argue that the stuff that software is made of, is a web of human views.
Software does not only embody facts amenable to logical analysis, it also reifies
decisions on how human affairs should be handled, resulting as compromises in proces-
ses of learning, communication and negotiation. This is often soft stuff, as the name soft-
ware suggests, the validity of our formal models depending on subjective judgements.
Inspite of its name, we are not always engaged in computing in our profession.

Therefore, I plead for a serious concern with theories from the humanities as an integral
part of computer science education and for admitting such theories as basis for foundation
in computer science research. Furthermore, I propose to create conditions in universities
that would enable students to gain experience in communicative software practice during
their education and to understand the interplay between the formal and the human activity
dimensions of software development.

In 1985, I was engaged in building up a research group at the Technical University of
Berlin. Technical and formal aspects of software development were considered there a-
gainst the background of the human processes giving rise to them. Thus, the students in
our department were exposed to formal methods as taught by Ehrig's group on one hand
and to reflections on communicative practice in our group on the other hand.

I cannot agree to the overall harmonious interpretation of TAPSOFT given by Ehrig and
Mahr. As seen from my side, it stands for conflict as well. TAPSOFT has marked the be-
ginning of a profound change at my former home university with a strong shift of empha-
sis in the direction of formal methods. Eventually this became so forceful that the values
and belief systems inherent in formal methods left no room for other views. I am not
blaming this on any individual, it was a qualitative shift in culture. Based on my expe-
rience in the years following TAPSOFT, I have come to conclude that formalization is-
sues are not just topics of academic dispute. Only at the surface are we talking about the
merits and the limits of formal methods. Underneath, human convictions and scientific
power struggle are at play. Decisions must be taken relating to curricula and learning
forms. To positions to be created, to criteria for filling them and to money to be allocated
for research. There are battles to be fought here, and they are hard, since they involve us.

39

Within a few years, the tensions became so strong that my willingness for continuing the
dialogue came to an end. My continued personal friendship with Hartmut Ehrig was not
sufficient as a basis for maintaining a dialogical milieu. So, inspite of my remaining
loyalty to the department, I left Berlin and rebuilt my existence in Hamburg. As far as I
am concerned, my move was one of professional emancipation.

I remember TAPSOFT'85 as a rare and valuable example for scientific cooperation across
boundaries of theoretical perspectives and associated values and belief systems. And I
consider my mission here at TAPSOFT'95 to formulate an invitation for joint research.
Let us strive for a new dialogue on equal terms, while taking both perspectives seriously.
Let us engage in common projects, aiming at bringing out and reconciling the different
points of view.

As for maintaining a dialogical milieu: Though we have failed in the long run in Berlin, I
wish good luck to our hosts for intensifying their dialogue here in Aarhus.

But dialogue is not confined to taking place within one university site. It is a question of
forming alliances and networks of individuals between people from different commu-
nities sharing the same concerns.

Acknowledgements

I would like to thank Cliff Jones for sharing with me at TAPSOFT'85 his experience in
putting VDM into practice, and to commemorate with pleasure the contributions made by
Rod Burstall and Joseph Goguen to Software Development and Reality Construction. I
am very grateful to Dirk Siefkes for a continued stream of discussion throughout the past
decade on the issues raised here. The present paper draws to some extent on the work of
Uli Piepenburg on "Softwareentwicklung als Semantikerstellung" and that of Guido Gry-
czan on "Situierte Koordination" to be published in their doctoral theses this year.

References

[BEK 87]

[Bur 92]

[Bod 87]

[BZ 92]

[Brh 73]

[CFR 931

Bjerknes, G., Ehn, P., and Kyng, M. (eds.): Computers and Democracy.
A Scandinavian Challenge. Avebury, Aldershot, UK, 1987.

Burstall, R.M.: Computing: Yet Another Reality Construction. In [FZBKS
92]: 45-51.

BCdker, S. (1987). Through the Interface. A Human Activity Approach to
User Interface Design. Aarhus University, Aarhus, 1987.

Budde, R., Ztillighoven, H.: Software Tools in a Programming Workshop.
In [FZBKS 92]: 252-268.

Brhten, S.: Model monopoly and communication: Systems theoretical notes
on democratization. Acta Sociologica, 16(2): 98-107.

Colburn, T. R., Fetzer, J. H., and Rankin T. L. (eds.): Program Veri-
fication. Khiwer Academic Publishers, Dordrecht/Boston/London, 1993.

40

[CNPRSSS 92]
Coy, W., Nake, F., Pfli~ger, J.--M., Rolf, A., Seetzen, J., Siefkes, D.,
Siransfeld, R. (eds.): Sichtweisen der Informatik. Vieweg-Verlag, Braun-
schweig/Wiesbaden, 1992.

[DM 93] Dahlbom, B., Mathiassen, L.: Computers In Context - The Philosophy and
Practice of Systems Design. Blackwell Publishers. Cambridge, Mas-
sachusetts, 1993.

[Eh_M 95] Ehrig, H., Mahr, B.: A Decade of TAPSOFr: Aspects of Progress and
Prospects in Theory and Practice of Software Development. This volume.

[Ehn 88] Ehn, P.: Work~oriented Design of Computer Artifacts. Almquist and Wik-
sell International, Stockholm, 1988.

IFlo 855 Floyd, Co: On the Relevance of Formal Methods to Software Development.
In Springer LNCS 186 (1986): 1-11.

[F!o 87] Floyd, C.: Outline of a Paradigm Change in Software Engineering. In
[BEK 87]: 191-210.

[No 92] IZloyd, C.: Human Questions in Computer Science. In [FZBKS 92]: 15-27.

[FMRSW 89]
Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., arid Wolf, O.: Out
of Scandir~avia: Alternative approaches to software design and system de-
velopment. Ht~rnan-Computer !nteraction, 4(4): 253-349.

Floyd, C., ReJsin, F.-M., Schmidt, G.: STEPS to Software Development
with Users. In: Ghezzi, C. and McDerrnid, J.A. (eds.): ESEC'89, Springer
LNCS 387: 48-64.

Floyd, C., Ziillighoven, H., Budde, R., Keil-Slawik, R. (eds.): Software
Development and Reality Construction. Springer-Verlag, Berlin, Heidel-
berg, New York, Tokio, 1992.

Goguen, J.: The denial of Error. In [FZBKS 92]: 193-202.

Heintz, B.: Die Herrsehaft der Regel. Zur Grundlagengeschichte des
Computers. Campus Verlag, Frankfurt/New York, 1993.

Klein, H. K., Lyytinen, K.: Towards a New Understanding "of Data
Modelling. In [FZBKS 92]: 203-219.

Knuth, D.E.: Learning from our Errors. In [FZBKS 92]: 28-30.

Keil-Slawik, R.: Artifacts in Software Design. In [FZBKS 92]: 168-188.

Lehmann, M.: Programs, life cycles, and laws of software evolution.
Proceedings of the IEEE, 86(9): 1060-1076.

Towards a Mathematical Science of Computation. In [Ck-R 93]: 35-56.

Maal3, S., Oberquelle, H.: Perspectives and Metaphors for Human-Com-
puter Interaction. In [FZBKS 92]: 233-251.

Naur, P.: Computing: A Human Activity. ACM-Press, New York, 1992.

Nurminen, M. I.: A Subject-Oriented Approach to Information Systems. In
[FZBKS 92]: 302-311.

[FRS 89J

[IaZBKS 92]

[Gog 92]

[Hei 93]

[KL 92]

[Knu 92]

]K-S 92t

[[~h 80]

[McC 63]

[MO 921

[Nan 92]

[Nur 92]

41

[Nyg 86]

[Rei 921

ISle 92]

[Smi" 85]

[Suc 87]

[WF 86]

Nygaard, K.: Program development as social activity, ha Kugler, H. G.
~- r , I ~ed.): Information Processing 86 - Proceed;ngs of the ~FI~]0~h World

Computer Congress. North-Holland, Amsterdam, 189-198.

Reisin, F.-M.: Anticipating Reality Construction. In [FZBKS 92]: 312-
325.

Sie~:es, D.: How to Commun}cate Proofs or Programs. in [FZBKS 92):
140-!54.

S~rath, B.C.: Limits of Correctness in Computers. Reprinted fi'~ ~5..t'g ' '
2"75-293.

Suchman, I.,.A.: Plans and Situated Actions - 'The Problem of I4.t, ma;.
Machine Communication. Cambridge University Press, Ca:nbridg~, UK
1987.

Wh~og, ad, T., Flores, F.: Understanding Computers and ~',',.~,m~.un~ "~" - A
new Foundation for Design. Ablex, Norwoo,t, N](~ 1986.

