
Language Series Revisited: The Complexity of
Hypothesis Spaces in ILP (Extended Abstract)

Irene Weber, Birgit Tausend and Irene Stahl

Fakults Informatik, Universit/~t Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart

Restrictions on the number and depth of existential variables as defined in
the language series of CLINT [3] or the ij-determinacy constraint of GOLEM [2]
are widely used in ILP and expected to produce a considerable reduction in the
size of the hypothesis space (see [1] for an empirical comparison). In this paper
we will show that this expectation does not hold in general.

In CLINT, language series are introduced in order to allow a dynamic exten-
sion of the hypothesis language in case that learning fails in the current hypoth-
esis space. Based on combinatorial investigations, we argue that the language
definitions chosen in CLINT are unsuitable for sensible bias shift operations. We
propose alternative approaches resulting in the desired reduction of the hypoth-
esis space and allowing for a natural integration of the shift of bias.

Problem Setting. Given a set of examples E = E + UE- , the background knowl-
edge K and a hypothesis language LH, the task of Inductive Logic Programming
is to find a logic program H E LH that is necessary, i.e., K ~/E +, sufficient, i.e.,
K A H F- E +, and consistent, i.e., K A H A E - [/D. An important point when
comparing and evaluating different systems is the complexity of the hypothesis
space that is searched in LH in worst case.

Bottom-up approaches like CLINT start the learning process by constructing
a starting clause that is subsequently generalized. As described in [3], CLINT
computes the most specific clause Z contained in the hypothesis language LH
and then generalizes 2- by the dropping condition rule until a given positive
example e + E E + is covered. The set of generalizations of 2- covering e + is called
the set of justifications Jus(K, L, e+). The clauses in Jus(K, L, e +) consistent
with the negative examples are used as starting clauses. The complexity of the
subsequent generalisation depends on the length and the number of starting
clauses for a given positive example. In worst case, when I covers e + and all body
literals of 2- are consistent with the negative examples, 2_ has to be chosen as
starting clause. The most specific clause .1_ depends on the hypothesis language.
Since the length of 2_ is crucial for the complexity of the hypothesis space, it is
a useful measure for comparing the complexity of hypothesis spaces searched by
CLINT.

CLINT offers five different language series [3], the basic form of which is

L is the set of clauses c such that
head(c) = p(xl, . . . ,xk) and body(C) C B(Xl, .. .,xl:), where
p(xl, . . . , x~) is the predicate to be learned,
c is linked and range restricted,
all xk are different.

361

The language series mainly differ in the definition of the set of body literals B.
For each language, the most specific clause _l_ includes all literals in B in its body.
Thus, the complexity of _L equals the number of literals in the set B (x l , . . . , xk).
In this paper, we investigate the influence of the parameters of the language
series on the complexity of the respective sets B(Xl , . . . , xk). For convenience,
the set of all predicates in the theory is denoted by Pred...4 is the maximum
arity of all predicates in Pred.

Language Series 1. The set of body literals Bi (x l , . . . , xk) for a language Li of
series 1 is defined as follows.

q(Yl,. . . , Y~)lq ~ Pred and
(1) \ < i and

(2) {Yl , . . . , Yn} A {Xl , . . . , xk} r 0 and
(3) each variable in {Yl,.-.,Yn} N { x l , . . . , x k } occurs

only once }

Table 1 shows the number of literals in Bi (x t, . . . , xk) as a function of parameter
i. (For equations and combinatorial details see the full length version of this pa-
per or [5].) As background knowledge we assume the following set of predicates
Bred1 = {nil~l, atom/l, sort/2, list/3, append/3, partition/4}. Since the maxi-
mum arity of the predicates in Predl is .4 = 4, the parameter i can be varied
from 0 to 3.

I I1~ = 0 i - 1 i --- 2 i = 3 t

IBm(X, Y)II 40 100 136 144 1

Tab le 1. The number of literals in .L in Language Series 1 as a function of i.

As table 1 indicates, incrementing i results in only a small growth of
Bi (x l , . . . , x k) when i comes close to its maximum value A - 1. Thus, it is
not sensible to use this language series in a bias shift environment as described
in [3] since the languages differ too little to justify the risk of failing because of
the weakness of the hypothesis language.

Language Series 2. In the languages of series 2, the parameter q controls
the maximum level of existential quantification of variables [3]. The sets
B~ (x~ , . . . , xk) of body literals for a hypothesis language L~ of series 2 are defined
as follows.

B I (x l , . . . , xk) =

B~(x l , . . . , xk) = Bi (z , , . . . , zl), where {Zl , . . . , Zl} is the sel of

all variables in B] - l (x l , . . . , xk).

Table 2 shows the number of literals of B~(xl , . . . , xk) for i, q e {1, 2, 3} which
arise when learning a 2-ary predicate with the set of list predicates Predt.

362

l B ~ _ ~ q - 1 q = 2 q = 3 l

: : t00 1.623-107 9"096'10~110~;]I6.94

144 6.472.10 s

Table 2. The number of literals in B~(xl , . . . , x~) as a function of i and q
when learning a 2-ary predicate using background knowledge Pred.

Our investigations of language series 2 show that parameter i has only little
influence on IB~(xl, . . . , xk)l, whereas the impact of parameter q is too strong.
In fact, I B q (x l , . . . , x~)] grows super-exponentially in q [5]. So, we can conclude
that the parameters i and q as used here are suitable neither for controlling the
complexity of the hypothesis language nor for sensible bias shift operations.

Language Series 3. Language series 3 is a generalisation of language series 2.
The set of body literals Bil ~_l , i~(xi , . . . ,xk) , i l , . . . , i n_ l E No, for a lan-
guage Lil,...,i~_l,i ~ of series 3 is defined as follows.

B~I ~ (~ , . . . , ~) = B ~ (z ~ , . . . , z 5 ~here {z~ , . . . , zz} i~ the se~ of

all variables in Bi~ i , _~ (X l , . . . , x k) .

Table 3 shows some values of Bi~,. . . , i=(xl , . . . ,xk) for the most restrictive ar-
rangement of languages which can be defined in series 3.

I lILo L0, L0,,,0 t
IBm40 100 1.526. I0 r 1.623-107 9.095.i0 ~ 9.095.10 ~]

Table 3. The number of literals in the sets Bi~ %(X, Y) of language series 3.

These results show that there is only little difference between a language L...,0
and the next complex language L...,o,1, i.e., L0 = L q, L0,1 = L~ = L1,
L0,1,0 ~ L0,1,0,1 = L~, and so on. This means that language series 3 does not
offer significant improvement compared to series 2.

An alternative language series. The literal sets B (x l , . . . , x~) in language series
2 and 3 grow super-exponentially because the number of variables which are
newly introduced when shifting the bias depends on the number of variables
already available. A method to prevent this growth is to set a fixed limit on the
number of variables which are generated on each level of existential quantification
as in the following lemguage definition.

Si(m,, xk) = { q(y~, . . . , y,)lq E Pred,
{ w , . . . , v , } c {~, , ~k} u {v~, . . . ,v~} and
{vl, . . . ,vi} is a set of i different new variables,
all variables Yi, Yj E pred(y l , . . . , Yl) are different ,
{y~ , . . . , y , } n { < , . . . , ~ } # O}

U {equal(vm,vn)]l < n < i, 1 <_ m <_ i ,n # m}

{~ , . . . , z,} : vars(Bg-~(~l,..., ~)) \ va~s(Bg-~(~,...,.~)).
vars(Bg(~,..,*~)) := { ~ , , . . . , ~ } .

363

As in language series 2 of CLINT, the parameter q in this language defines the
maximum level of existential quantification. However, the parameter i does not
indicate the maximum number of new variables in each literal, but restricts the
total number of variables on each level 1 , . . . , q.

Table 4 shows the number of literals in the sets Bq(x , Y) as defined here
for the set of list predicates Predl. In the language series proposed here,
I B~ (Xl, �9 -., xk)l grows linearly with parameter q.

~] - ~ q = l q = 2 q = 3

87 174 261
249 870 1491
556 2894 5232

1056 7386 13 716

Table 4. The number of literals in the sets Bq(X, Y) of the new language
series as a function of i and q.

Predicate Invention. An alternative approach to reduce the complexity of hy-
pothesis languages without sacrificing expressiveness is to use predicate invention
as bias shift operation. The idea is to produce a starting clause for the target
predicate in the more restricted language Li of series 1 that covers the posi-
tive examples but might be inconsistent. If the starting clause is inconsistent,
a new auxiliary predicate is introduced that discriminates between positive and
negative instantiations of the clause. Then, the process continues with the new
predicate as target predicate. The main advantage is that the number k of old
variables for the auxiliary predicate can be reduced using methods for finding a
minimal set of arguments for a new predicate [4].

Conclusions. Our results on the language series of CLINT are largely negative.
The super-exponential growth of the most special clause J_ for language series 2
and 3 makes learning intractable except for toy domains. Furthermore, the cho-
sen parameters are unsuitable for sensible bias shift operations since languages
discriminated by the number of existential variables scarcely differ whereas lan-
guages discriminated by the depth of existential variables differ too strongly. As
a solution for these problems, we proposed a language which allows for tractable
learning procedures, and discussed how predicate invention can be used to im-
prove the shift of bias.

References

1. Ad~, Hilde, Luc De Raedt und Maurice Bruynooghe. Declarative Bias for Bottom-up
ILP Learning Systems, 1994. To appear in Machine Learning.

2. Muggleton, S. , C. Fang. Efficient Induction of Logic Programs. Proc. of the 1st
Conference on Algorithmic Learning Theory, Tokyo, OHMSHA, 1990.

3. L. De Raedt. Interactive Theory Revision: an Inductive Logic Programming Ap-
proach. Academic Press, 1992.

4. I. Stahl and I. Weber. The Arguments of Newly Invented Predicates in ILP. In Proc.
of ILP-9~, 1994.

5. I. Weber. Komplexitiit yon Hypothesenriiumen in der Induktiven Logisehen Program-
mierung. Diplomarbeit Nr. 1164, Universitit Stuttgart, Fakults Informatik, 1994.

