
P a t c h i n g P r o o f s for R e u s e (Extended Abstract)

Thomas Kolbe and Christoph Walther

FB Informatik, TH Darmstadt, Alexanderstr. 10, D-64283 Darmstadt, Germany.
Emaih {kolbe] walther } @inferenssyst eme.informatik.th-darmstadt .de

1 Introduction

We investigate the application of machine learning paradigms [2, 4, 3] in auto-
mated reasoning for improving a theorem prover by reusing previously computed
proofs [7]. Assume that we have already computed a proof P of a conjecture

~p := (Vu plus(sum(z), sum(u)) = sum(append(z, u)))

-~ plus(sum(add(n, z)), sum(v)) _-- sum(appe.d(aad(n, z), V))
from a set of axioms AX. The schematic conjecture ~ : - H --* C : -

(Vu F(C(z), G(u)) -- G(H(z , u))) ~ F(G(D(n, z)), G(y)) = G(H(D(n, z), y))

is obtained from ~ via the generalization (plus ~-* F, sum ~-* G, append ~-~
H, add ~-~ D} of function symbols plus,sum, ... to function variables F, G, ...
In the same way a schematic catch, i.e. a set of schematic axioms AX ~ =
{(1), (2),(3)} is obtained from AX where e.g. (1) stems from the axiom
sum(add(n, z)) - plus(n, sum(z)). The generalization of P finally yields a sche-
matic proof P' of �9 in which the G(D(n, z))
schematic conclusion C is modified in tt(D(n, z), y)
a backward chaining style: F(F(z, y), z)

F(G(D(n, z)), G(y)) =_ G(H(D(n, z), y))
F(F(n, G(z)), G(y)) - G(H(D(n, z), y))
F(F(n, G(z)), G(y)) = G(D(n, H(z,y)))
F(F(n, G(z)), G(V)) -- F(n, G(H(z, V)))
F(F(n, G(z)), G(y)) =_ F(n, F(G(z), G(y)))
F(n, F(G(z) , G(y))) =_ F(n, F(O(z), G(y)))

TRUE

The key idea of our reuse procedure is to inatantiate such a schematic proof with
a second-order substitution a" obtained by matching ~ with a new conjecture
which is (formally) similar to ~, i.e. ~ = ~(~). As long as the marcher ~ only
replaces function variables with function symbols, the instantiated schematic
proof ~.(pt) is a proof of ~ from the axioms ~r(AX ~) because the structure of
P~ is preserved. However, the success of the method is limited by such a restric-
tion. Therefore function variables are also replaced using general second-order
substitutions 1 like ~r : - {F/wz, G/minus(w1, wl), H/plus(w1, w2), D/succ(w2)}
obtained by matching @ with the new conjecture ~ : - ~-(@) = ~'(H --~ C) =

A second-order substitution replaces a n-ary function variable V with a (first-order)

__ F(n , C(z)) (1)
=- D(n, ~ (. , v)) (2)
- F(z,F(y,z)) (3)

C
Replace (1)
Replace (2)
Replace (1)
Replace (H)
Replace (3)
Reflexivity

304

(Vu minus(u, u) -- minus(plus(z, u), plus(z, u)))
--~ minus(y, y) ~ minus(plus(succ(z), y), plus(succ(~), y)).

A X ' is instantiated yielding the set of axioms ~(AX ') -- {~r(1), 7r(2), r(3)}:

- mi.us(,

y) - suet(plus(z, y))

z - z

ff the proof P shall be reused for proving ~ from the set of axioms ~r(AX I) by
instantiating the schematic proof PI with % we obtain 7r(P I) as

minus(y, y) - minus(plus(succ(z), y), plus(succ(z),y)) It(C)
minus(y,y) - minus(plus(succ(z),y),plus(succ(z),y)) Replace (~r(1))
m i . u s (y . y) - Repl e
minus(y, y) ~ minus(plus(z,y), plus(z, y)) Replace (~v(1))
minus(y,y) = miaus(y,y) Replace (~r(H))
minus(y,y) _-- minus(y,y) Replace (7r(3))

TRUE Reflexivity

But ~r(P I) is not a proof: Although each statement is implied by the statement
in the line below, the justifications of the inference steps are not valid. E.g. the
first replace(r(1))-step is illegal because the position of the replacement (the
former first argument of F) does not exist in r (C) . Also the replace(r(2))-step
is iltegal, as it actually consists of two replacements which have to be performed
separately at different positions. FinaLly, the replace(r(3))-step is redundant and
should be omitted. Thus r ~) has to be patched for obtaining a proof of r

Such a machine-found proof can be processed subsequently, e.g. by translat-
ing it into natural language to obtain a proof similar to those found in math-
ematical textbooks [5]. Furthermore proofs can be worked up for planning or
synthesis tasks if plans or programs should be extracted form proofs [1]. These
applications require a specific proof, i.e. it is not enough to know that some proof
exists.

2 A n A l g o r i t h m f o r P a t c h i n g P r o o f s

We first illustrate the patching of a single replacement step: Let t be a schematic
term (containing function variables) which can be modified by one replacement
step with a certain schematic equation I - r at a certain position p (i.e. tip = I)
yielding another schematic term t ~ = t ~ ~-- ~'] as the result. The function call
t~ztch_positions(t, p, lr) yields for an arbitrary
second-order substitution z" a list of positions t I ~ r .~ t t
[P1, ...,pk] such that the instance ~(t) can be . 1 /

modified by a (possibly empty)sequence of k ~'] ~'1
replacement steps with the instantiated equa- §

tion w(1) = ~r(r) at the positions Pl, . . . ,Pk such ~r(t) lr(l) =__ ~r(r), r(F)
that the instance lr(t ~) is obtained, h

term where special argument variables w l , . . . , wn serve as the formal parameters of
V. For instance 7r replaces the binary function variable D with the function symbol
suet, where the first argument wx of D is ignored.

305

f u n c t i o n patch_positions (t, p, ~) : list o f positions in ~(t)
i f p : e t h e n r e t u r n [el
else le t p =: ip'; t : : X(t l , ...,tn); [Pl, ...,Ph] : : patch_positions(tl,p', iv)

i f X E dora(It) t h e n s := ~'(X); [ql, ..., qm] := {q E Pos(s) I slq :- w d

r e t u r n [qlPl, ..., qlPk , ..., q,,,Pl , ..., q,nPk]
else r e t u r n [ipl, ..., ipl,] fi fi

T h e o r e m 1. [6] Let t, l, r be schematic terms, p a position in t and ~ a second-
order substitution. I f tip = l then the call patch_positions(t,p,~r) terminates
yielding a list o f positions [Pl,...,pk] in ~r(t) such that for i , j E {1, .. . ,k}
1) f f i # j then there is no p 6 iN* such that Pl = PiP or pj = PiP,

The goal of a (schematic) proof is a so-called sequent H ~ C with a conjunc-
tion H of hypotheses each of which is of the form Vu* t l = t2 and a conclusion
C of the form sl = s2. A proof of H --* C (from a set of axioms A X) is a list
[So, j ~ , S z , j 2 , . . . , S,~] of sequents Si (with So = H--* C) and justifications j~,
where the latter contain the information how the next sequent is derived. A proof
is constructed by applying the following inference rules, 2 where ~r is a flrst-order
substitution, p is a position in C and m E {"AX" ," t I"} :

Reflexivity
[H --, t - t]

IH --, t i p ,-- , ,(,)] I L]
Replacement

[~r ~ C ~ ,-- ,r(0], (p, ~, , , ' , l, , , m), H --. C[p ,-- ~(~)] IL]

f fe i ther Yu* l ~ v 6 A X a n d m = " A X "
or Vu* I - r 6 H, dom(o') C u* and m = "/-2'.

f u n c t i o n patch_proof (P', It) : proof
i f P' = [H ~ C] t h e n r e t u r n [~(H) ~ ~r(C)]
else le t P ' =: [/-/--* C, (p, o', u*, I, ~', m), H ---, C' IL]

P~- := patch_proof([H --* C' I L], 7r)
i f ~-(c) # ~r(C') t h e n [W, ..., P~] := patch_positions(C, p, ~r)

~r,~ := {v/~r(o'(v)) Iv E dom(tr)}; CI, := a'(C')
f o r j : : k d o w n t o 1 do Ci_1 : : Cj[pj ~-- o'~(~'(1))]

P~ := [~(~) ~ cj_~, (pc, ~ , ,~ , , ~(I), ~(~), m) IP~] od
r e t u r n Px fi

In a replacement step an instance ~(l) = ~(r) of an equation I = ~" is applied, but
in the patched proof only (instances of) the equation ~r(1) - ~r(~,) axe available.
However, we can use the first-order substitution ~ , := {v /r (a(v)) I v ~ dom(o')}
in patch_proof because ~(~(=)) = ~ . (~ (, ,)) ho~ds for e = h (schematic) te ,m ~.

Now we can compute P,~ := patch_proof(P', ~) to obtain a patched proof for

Proofs can be extended to deal with arbitrary formulas instead of equations only if
we define further inference rules. Then H may also contain additional conditions.

306

the conjecture r = ~r(H) ~ ~r(C) from Section 1:

minus(y, y) ~ minus(plus(succ(z), y), plus(succ(z), y)) r (C)
minus(y, y) = minus(succ(plus(z, y)), plus(succ(z), y)) Replace (~'(2))
minus(y, y) = minus(succ(plus(z, y)),succ(plus(z, y))) Replace (~r(2))
minus(y, y) =- minus(plus(z, y), plus(z,y)) Replace (z'(1))
minus(y,y) = minus(y,y) Replace (~r(H))

TRUE Reflexivity

Compared to the schematic proof P from Section 1, the first replace(1)-step
is eliminated while the replace(2)-step is doubled. The test r (C) # ~'(C')
in patch_woof is merely an optimization to avoid redundant steps like
reptace(~(3)), of. Section 1.

T h e o r e m 2. [6] Let pl be a proof of the sequent H ~ C from the set of ax-
ioms AX. Then for each second-order substitution ~r, the call patch_Froof(P t, r)
terminates and yields a proof P~ of ~r(H) - . r (C) s r (A X) .

Summing up, we have presented an algorithm that constructs a proof for the
instantiated conjecture from a schematic proof of a schematic conjecture and a
second-order substitution. This allows us to exploit the full flexibility of second-
order instantiations for the reuse procedure developed in [7]. Thus more con-
jectures are (formally) similar than by just instantiating function variables with
function symbols, i.e. the applicability of a schematic catch is increased. Further-
more the obtained proofs may be more flexible, i.e. the reusabihty of a schematic
catch is increased.

Acknowledgements . This work was supported under grants no. Wa652/4-1,2,3 by
the DFG within the focus program "Deduktion'. We thank Jfirgen Brauburger, Stefan
Gerberding, Jftrgen Giesl and Martin Protzen for helpful comments and discussions.

R e f e r e n c e s

1. J. L. Bates and R. L. Constable. Proofs as Programs. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):113-136, 1985.

2. T. Ellman. Explanation-Based Learning: A Survey of Programs and Perspectives.
ACM Computing Surveys, 21(2):163-221, 1989.

3. F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial Intelligence,
57:323-389, 1992.

4. R. P. Hall. Computational Approaches to Analogical Reasoning: A Comparative
Analysis. Artificial Intelligence, 39:39-120, 1989.

5. X. Huang. PROVERB: A System Explanining Machine-Found Proofs. In Proc. of
16th Annual Conference of the Cognitive Science Society, Atlanta, Georgia, 1994.

6. T. Kolbe and C. Walther. Patching proofs for reuse. Technical report, Teclmische
I-Iochschule Darmstadt, 1994.

7. T. Kolbe and C. Walther. Reusing Proofs. In A. Colin, editor, Proceedings of the
11th European Conference on Artificial Intelligence, Amsterdam, pages 80-84. John
Wiley & Sons, Ltd., 1994.

