Patching Proofs for Reuse (Extended Abstract)

Thomas Kolbe and Christoph Walther

FB Informatik, TH Darmstadt, Alexanderstr. 10, D-64283 Darmstadt, Germany. Email: {kolbe|walther}@inferenzsysteme.informatik.th-darmstadt.de

1 Introduction

We investigate the application of machine learning paradigms [2, 4, 3] in automated reasoning for improving a theorem prover by reusing previously computed proofs [7]. Assume that we have already computed a proof P of a conjecture

$$arphi := (orall u \ \mathsf{plus}(\mathsf{sum}(x),\mathsf{sum}(u)) \equiv \mathsf{sum}(\mathsf{append}(x,u))) \ o \mathsf{plus}(\mathsf{sum}(\mathsf{add}(n,x)),\mathsf{sum}(y)) \equiv \mathsf{sum}(\mathsf{append}(\mathsf{add}(n,x),y))$$

from a set of axioms AX. The schematic conjecture $\Phi := H \rightarrow C :=$

$$(\forall u \ F(G(\boldsymbol{x}), G(u)) \equiv G(H(\boldsymbol{x}, u))) \rightarrow F(G(D(n, \boldsymbol{x})), G(y)) \equiv G(H(D(n, \boldsymbol{x}), y))$$

is obtained from φ via the generalization {plus $\mapsto F$, sum $\mapsto G$, append \mapsto H, add $\mapsto D$ } of function symbols plus, sum, ... to function variables F, G, ...In the same way a schematic catch, i.e. a set of schematic axioms AX' ={(1),(2),(3)} is obtained from AX where e.g. (1) stems from the axiom sum(add(n, x)) \equiv plus(n, sum(x)). The generalization of P finally yields a schematic proof P' of Φ in which the $G(D(n, x)) \equiv F(n, G(x))$ (1) schematic conclusion C is modified in $H(D(n, x), y) \equiv D(n, H(x, y))$ (2) a backward chaining style: $F(F(x, y), z) \equiv F(x, F(y, z))$ (3)

$F(G(D(n, \boldsymbol{x})), G(\boldsymbol{y})) \equiv G(H(D(n, \boldsymbol{x}), \boldsymbol{y}))$	С
$F(F(n, G(x)), G(y)) \equiv G(H(D(n, x), y))$	Replace (1)
$F(\overline{F(n,G(x))},G(y)) \equiv G(D(n,H(x,y)))$	Replace (2)
$F(F(n,G(x)),G(y)) \equiv F(\overline{n,G(H(x,y))})$	Replace (1)
$F(F(n,G(\boldsymbol{x})),G(\boldsymbol{y})) \equiv \overline{F(n,F(G(\boldsymbol{x}),G(\boldsymbol{y})))}$	Replace (H)
$F(n, F(G(\boldsymbol{x}), G(\boldsymbol{y}))) \equiv F(n, \overline{F(G(\boldsymbol{x}), G(\boldsymbol{y}))})$	Replace (3)
TRUE	Reflexivity

The key idea of our reuse procedure is to instantiate such a schematic proof with a second-order substitution π obtained by matching Φ with a new conjecture ψ which is (formally) similar to φ , i.e. $\psi = \pi(\Phi)$. As long as the matcher π only replaces function variables with function symbols, the instantiated schematic proof $\pi(P')$ is a proof of ψ from the axioms $\pi(AX')$ because the structure of P' is preserved. However, the success of the method is limited by such a restriction. Therefore function variables are also replaced using general second-order substitutions¹ like $\pi := \{F/w_2, G/\min(w_1, w_1), H/plus(w_1, w_2), D/succ(w_2)\}$ obtained by matching Φ with the new conjecture $\psi := \pi(\Phi) = \pi(H \to C) =$

¹ A second-order substitution replaces a *n*-ary function variable V with a (first-order)

$$(\forall u \ minus(u, u) \equiv minus(plus(x, u), plus(x, u)))$$

 $\rightarrow minus(y, y) \equiv minus(plus(succ(x), y), plus(succ(x), y)).$

AX' is instantiated yielding the set of axioms $\pi(AX') = {\pi(1), \pi(2), \pi(3)}$:

$$\min us(succ(x), succ(x)) \equiv \min us(x, x) \qquad \pi(1)$$

$$plus(succ(x), y) \equiv succ(plus(x, y))$$
 $\pi(2)$

$$z \equiv z \qquad \pi(3)$$

If the proof P shall be reused for proving ψ from the set of axioms $\pi(AX')$ by instantiating the schematic proof P' with π , we obtain $\pi(P')$ as

$$\begin{array}{rcl} \minus(y,y) &\equiv \minus(\operatorname{plus}(\operatorname{succ}(x),y),\operatorname{plus}(\operatorname{succ}(x),y)) & \pi(\mathrm{C}) \\ \minus(y,y) &\equiv \minus(\operatorname{plus}(\operatorname{succ}(x),y),\operatorname{plus}(\operatorname{succ}(x),y)) & \operatorname{Replace}(\pi(1)) \\ \minus(y,y) &\equiv \minus(\underbrace{\operatorname{succ}(\operatorname{plus}(x,y)),\operatorname{succ}(\operatorname{plus}(x,y))}_{\minus(y,y)} & \operatorname{Replace}(\pi(2)) \\ \minus(y,y) &\equiv \underbrace{\minus(\overline{\operatorname{plus}}(x,y),\operatorname{plus}(\overline{x},\overline{y}))}_{\minus(y,y)} & \operatorname{Replace}(\pi(1)) \\ \operatorname{Replace}(\pi(1)) \\ \operatorname{Replace}(\pi(1)) \\ \operatorname{Replace}(\pi(1)) \\ \operatorname{Replace}(\pi(1)) \\ \operatorname{Replace}(\pi(3)) \\ \underbrace{\operatorname{TRUE}} & \operatorname{Replace}(\pi(3)) \\ \end{array}$$

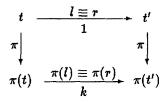
But $\pi(P')$ is not a proof: Although each statement is implied by the statement in the line below, the *justifications* of the inference steps are not valid. E.g. the first *replace*($\pi(1)$)-step is illegal because the *position* of the replacement (the former first argument of F) does not exist in $\pi(C)$. Also the *replace*($\pi(2)$)-step is illegal, as it actually consists of *two* replacements which have to be performed separately at different positions. Finally, the *replace*($\pi(3)$)-step is redundant and should be omitted. Thus $\pi(P')$ has to be *patched* for obtaining a proof of ψ .

Such a machine-found proof can be processed subsequently, e.g. by translating it into natural language to obtain a proof similar to those found in mathematical textbooks [5]. Furthermore proofs can be worked up for planning or synthesis tasks if plans or programs should be extracted form proofs [1]. These applications require a *specific* proof, i.e. it is not enough to know that *some* proof exists.

2 An Algorithm for Patching Proofs

We first illustrate the patching of a single replacement step: Let t be a schematic term (containing function variables) which can be modified by one replacement step with a certain schematic equation $l \equiv r$ at a certain position p (i.e. $t|_p = l$) yielding another schematic term $t' = t[p \leftarrow r]$ as the result. The function call

patch_positions (t, p, π) yields for an arbitrary second-order substitution π a list of positions $[p_1, ..., p_k]$ such that the instance $\pi(t)$ can be modified by a (possibly empty) sequence of k replacement steps with the instantiated equation $\pi(l) \equiv \pi(r)$ at the positions $p_1, ..., p_k$ such that the instance $\pi(t')$ is obtained.



term where special argument variables w_1, \ldots, w_n serve as the formal parameters of V. For instance π replaces the binary function variable D with the function symbol succ, where the first argument w_1 of D is ignored.

function patch_positions (t, p, π) : list of positions in $\pi(t)$ if $p = \epsilon$ then return $[\epsilon]$ else let $p =: ip'; t =: X(t_1, ..., t_n); [p_1, ..., p_k] := patch_positions(t_i, p', \pi)$ if $X \in \operatorname{dom}(\pi)$ then $s := \pi(X); [q_1, ..., q_m] := \{q \in \operatorname{Pos}(s) \mid s|_q = w_i\}$ return $[q_1p_1, ..., q_1p_k, ..., q_mp_1, ..., q_mp_k]$ else return $[ip_1, ..., ip_k]$ fi fi

Theorem 1. [6] Let t, l, r be schematic terms, p a position in t and π a second-order substitution. If $t|_p = l$ then the call patch_positions (t, p, π) terminates yielding a list of positions $[p_1, ..., p_k]$ in $\pi(t)$ such that for $i, j \in \{1, ..., k\}$ 1) if $i \neq j$ then there is no $p \in \mathbb{N}^*$ such that $p_i = p_j p$ or $p_j = p_i p$, 2) $\pi(t)|_{p_j} = \pi(l)$ and $\pi(t)[p_1, ..., p_k \leftarrow \pi(r)] = \pi(t[p \leftarrow r])$.

The goal of a (schematic) proof is a so-called sequent $H \to C$ with a conjunction H of hypotheses each of which is of the form $\forall u^* \ t_1 \equiv t_2$ and a conclusion C of the form $s_1 \equiv s_2$. A proof of $H \to C$ (from a set of axioms AX) is a list $[S_0, j_1, S_1, j_2, \ldots, S_n]$ of sequents S_i (with $S_0 = H \to C$) and justifications j_i , where the latter contain the information how the next sequent is derived. A proof is constructed by applying the following inference rules,² where σ is a first-order substitution, p is a position in C and $m \in \{``AX", ``H"'\}$:

Reflexivity

 $\overline{[H \to t = t]}$

Replacement
$$\begin{array}{c} [H \to C[p \leftarrow \sigma(r)] \mid L] \\ \hline [H \to C[p \leftarrow \sigma(l)], \langle p, \sigma, u^*, l, r, m \rangle, \ H \to C[p \leftarrow \sigma(r)] \mid L] \\ \text{if either } \forall u^* \ l \equiv r \in AX \text{ and } m = ``AX'' \\ \text{or } \forall u^* \ l \equiv r \in H, \ \text{dom}(\sigma) \subseteq u^* \text{ and } m = ``H''. \end{array}$$

function patch_proof (P', π) : proof if $P' = [H \to C]$ then return $[\pi(H) \to \pi(C)]$ else let $P' =: [H \to C, \langle p, \sigma, u^*, l, r, m \rangle, H \to C' | L]$ $P_{\pi} := patch_proof([H \to C' | L], \pi)$ if $\pi(C) \neq \pi(C')$ then $[p_1, ..., p_k] := patch_positions(C, p, \pi)$ $\sigma_{\pi} := \{v/\pi(\sigma(v)) | v \in \operatorname{dom}(\sigma)\}; C_k := \pi(C')$ for j := k downto 1 do $C_{j-1} := C_j[p_j \leftarrow \sigma_{\pi}(\pi(l))]$ $P_{\pi} := [\pi(H) \to C_{j-1}, \langle p_j, \sigma_{\pi}, u^*, \pi(l), \pi(r), m \rangle | P_{\pi}]$ od fi return P_{π} fi

In a replacement step an *instance* $\sigma(l) \equiv \sigma(r)$ of an equation $l \equiv r$ is applied, but in the patched proof only (instances of) the equation $\pi(l) \equiv \pi(r)$ are available. However, we can use the first-order substitution $\sigma_{\pi} := \{v/\pi(\sigma(v)) \mid v \in \operatorname{dom}(\sigma)\}$ in *patch_proof* because $\pi(\sigma(u)) = \sigma_{\pi}(\pi(u))$ holds for each (schematic) term u.

Now we can compute $P_{\pi} := patch_proof(P', \pi)$ to obtain a patched proof for

² Proofs can be extended to deal with arbitrary formulas instead of equations only if we define further inference rules. Then H may also contain additional conditions.

the conjecture $\psi = \pi(\mathbf{H}) \to \pi(\mathbf{C})$ from Section 1:

$\min(y, y)$	Ξ	minus(plus(succ(x), y), plus(succ(x), y))	$\pi(\mathrm{C})$
$\min(y, y)$	=	minus(succ(plus(x,y)),plus(succ(x),y))	Replace $(\pi(2))$
$\min(y, y)$	Ξ	$minus(\overline{succ(plus(x,y))},succ(plus(x,y)))$	Replace $(\pi(2))$
$\min(y, y)$	Ξ	$\min(plus(x, y), plus(x, y))$	Replace $(\pi(1))$
$\min(y, y)$		$\overline{\min(y, y)}$	Replace $(\pi(\mathbf{H}))$
		TRUE	Reflexivity

Compared to the schematic proof P from Section 1, the first replace(1)-step is eliminated while the replace(2)-step is doubled. The test $\pi(C) \neq \pi(C')$ in *patch_proof* is merely an optimization to avoid redundant steps like $replace(\pi(3))$, cf. Section 1.

Theorem 2. [6] Let P' be a proof of the sequent $H \to C$ from the set of axioms AX. Then for each second-order substitution π , the call patch_proof (P', π) terminates and yields a proof P_{π} of $\pi(H) \to \pi(C)$ from $\pi(AX)$.

Summing up, we have presented an algorithm that constructs a proof for the instantiated conjecture from a schematic proof of a schematic conjecture and a second-order substitution. This allows us to exploit the full flexibility of second-order instantiations for the reuse procedure developed in [7]. Thus more conjectures are (formally) similar than by just instantiating function variables with function symbols, i.e. the applicability of a schematic catch is increased. Furthermore the obtained proofs may be more flexible, i.e. the reusability of a schematic catch is increased.

Acknowledgements. This work was supported under grants no. Wa652/4-1,2,3 by the DFG within the focus program "Deduktion". We thank Jürgen Brauburger, Stefan Gerberding, Jürgen Giesl and Martin Protzen for helpful comments and discussions.

References

- 1. J. L. Bates and R. L. Constable. Proofs as Programs. ACM Transactions on Programming Languages and Systems, 7(1):113-136, 1985.
- T. Ellman. Explanation-Based Learning: A Survey of Programs and Perspectives. ACM Computing Surveys, 21(2):163-221, 1989.
- 3. F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial Intelligence, 57:323-389, 1992.
- 4. R. P. Hall. Computational Approaches to Analogical Reasoning: A Comparative Analysis. Artificial Intelligence, 39:39-120, 1989.
- 5. X. Huang. PROVERB: A System Explanining Machine-Found Proofs. In Proc. of 16th Annual Conference of the Cognitive Science Society, Atlanta, Georgia, 1994.
- 6. T. Kolbe and C. Walther. Patching proofs for reuse. Technical report, Technische Hochschule Darmstadt, 1994.
- T. Kolbe and C. Walther. Reusing Proofs. In A. Cohn, editor, Proceedings of the 11th European Conference on Artificial Intelligence, Amsterdam, pages 80-84. John Wiley & Sons, Ltd., 1994.