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1 Introduction 

We investigate the application of machine learning paradigms [2, 4, 3] in auto- 
mated reasoning for improving a theorem prover by reusing previously computed 
proofs [7]. Assume that we have already computed a proof P of a conjecture 

~p := (Vu plus(sum(z), sum(u)) = sum(append(z, u))) 

-~ plus(sum(add(n, z)), sum(v)) _-- sum(appe.d(aad(n, z), V)) 
from a set of axioms AX. The schematic conjecture ~ : -  H --* C : -  

(Vu F(C(z), G(u)) -- G(H(z ,  u))) ~ F(G(D(n, z)), G(y)) = G(H(D(n, z), y)) 

is obtained from ~ via the generalization (plus ~-* F, sum ~-* G, append ~-~ 
H, add ~-~ D} of function symbols plus,sum, ... to function variables F, G, ... 
In the same way a schematic catch, i.e. a set of schematic axioms AX ~ = 
{(1), (2),(3)} is obtained from AX where e.g. (1) stems from the axiom 
sum(add(n, z)) - plus(n, sum(z)). The generalization of P finally yields a sche- 
matic proof P' of �9 in which the G(D(n, z)) 
schematic conclusion C is modified in tt(D(n, z), y) 
a backward chaining style: F(F(z, y), z) 

F(G(D(n, z)), G(y)) =_ G(H(D(n, z), y)) 
F(F(n, G(z)), G(y)) - G(H(D(n, z), y)) 
F(F(n, G(z)), G(y)) = G(D(n, H(z,y))) 
F(F(n, G(z)), G(V)) -- F(n, G(H(z, V))) 
F(F(n, G(z)),  G(y)) =_ F(n, F(G(z), G(y))) 
F(n, F(G(z) ,  G(y))) =_ F(n, F(O(z), G(y))) 

TRUE 

The key idea of our reuse procedure is to inatantiate such a schematic proof with 
a second-order substitution a" obtained by matching ~ with a new conjecture 
which is (formally) similar to ~, i.e. ~ = ~(~). As long as the marcher ~ only 
replaces function variables with function symbols, the instantiated schematic 
proof ~.(pt) is a proof of ~ from the axioms ~r(AX ~) because the structure of 
P~ is preserved. However, the success of the method is limited by such a restric- 
tion. Therefore function variables are also replaced using general second-order 
substitutions 1 like ~r : -  {F/wz, G/minus(w1, wl), H/plus(w1, w2), D/succ(w2)} 
obtained by matching @ with the new conjecture ~ : -  ~-(@) = ~'(H --~ C) = 

A second-order substitution replaces a n-ary function variable V with a (first-order) 

__ F(n ,  C(z)) (1) 
=- D(n, ~ ( . , v ) )  (2) 
- F(z,F(y,z))  (3) 

C 
Replace (1) 
Replace (2) 
Replace (1) 
Replace (H) 
Replace (3) 
Reflexivity 
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(Vu minus(u, u) -- minus(plus(z, u), plus(z, u))) 
--~ minus(y, y) ~ minus(plus(succ(z), y), plus(succ(~), y)). 

A X '  is instantiated yielding the set of axioms ~(AX ' )  -- {~r(1), 7r(2), r(3)}: 

- mi.us( , 

y) - suet(plus(z, y)) 

z - z 

ff the proof P shall be reused for proving ~ from the set of axioms ~r(AX I) by 
instantiating the schematic proof PI with % we obtain 7r(P I) as 

minus(y, y) - minus(plus(succ(z), y), plus(succ(z),y)) It(C) 
minus(y,y) - minus(plus(succ(z),y),plus(succ(z),y)) Replace (~r(1)) 
m i . u s ( y . y )  - Repl e 
minus(y, y) ~ minus(plus(z,y), plus(z, y)) Replace (~v(1)) 
minus(y,y) = miaus(y,y) Replace (~r(H)) 
minus(y,y) _-- minus(y,y) Replace (7r(3)) 

TRUE Reflexivity 

But ~r(P I) is not a proof: Although each statement is implied by the statement 
in the line below, the justifications of the inference steps are not valid. E.g. the 
first replace( r(1) )-step is illegal because the position of the replacement (the 
former first argument of F)  does not exist in r (C) .  Also the replace(r(2))-step 
is iltegal, as it actually consists of two replacements which have to be performed 
separately at different positions. FinaLly, the replace(r(3))-step is redundant and 
should be omitted. Thus r ~) has to be patched for obtaining a proof of r 

Such a machine-found proof can be processed subsequently, e.g. by translat- 
ing it into natural language to obtain a proof similar to those found in math- 
ematical textbooks [5]. Furthermore proofs can be worked up for planning or 
synthesis tasks if plans or programs should be extracted form proofs [1]. These 
applications require a specific proof, i.e. it is not enough to know that some proof 
exists. 

2 A n  A l g o r i t h m  f o r  P a t c h i n g  P r o o f s  

We first illustrate the patching of a single replacement step: Let t be a schematic 
term (containing function variables) which can be modified by one replacement 
step with a certain schematic equation I - r at a certain position p (i.e. tip = I) 
yielding another schematic term t ~ = t ~  ~-- ~'] as the result. The function call 
t~ztch_positions(t, p, lr) yields for an arbitrary 
second-order substitution z" a list of positions t I ~ r .~ t t 
[P1, ...,pk] such that the instance ~(t) can be . 1 / 

modified by a (possibly empty)sequence of k ~'] ~'1 
replacement steps with the instantiated equa- § 

tion w(1) = ~r(r) at the positions Pl, . . . ,Pk such ~r(t) lr(l) =__ ~r(r), r(F) 
that the instance lr(t ~) is obtained, h 

term where special argument variables w l , . . . ,  wn serve as the formal parameters of 
V. For instance 7r replaces the binary function variable D with the function symbol 
suet, where the first argument wx of D is ignored. 
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f u n c t i o n  patch_positions ( t, p, ~) : list o f  positions in ~(t) 
i f p  : e t h e n  r e t u r n  [el 
else  le t  p =: ip'; t : :  X( t l ,  ...,tn); [Pl, ...,Ph] : :  patch_positions(tl,p', iv) 

i f  X E dora(It) t h e n  s := ~'(X); [ql, ..., qm] := {q E Pos(s) I slq :- w d  

r e t u r n  [qlPl, ..., qlPk , ..., q,,,Pl , ..., q,nPk ] 
else r e t u r n  [ipl, ..., ipl,] fi fi 

T h e o r e m  1. [6] Let t, l, r be schematic terms, p a position in t and ~ a second- 
order substitution. I f  tip = l then the call patch_positions(t,p,~r) terminates 
yielding a list o f  positions [Pl,...,pk] in ~r( t) such that for i , j  E {1, .. . ,k} 
1) f f  i # j then there is no p 6 iN* such that Pl = PiP or pj = PiP, 

The goal of a (schematic) proof is a so-called sequent H ~ C with a conjunc- 
tion H of hypotheses each of which is of the form Vu* t l  = t2 and a conclusion 
C of the form sl = s2. A proof of H --* C (from a set of axioms A X )  is a list 
[So, j ~ , S z , j 2 , . . . ,  S,~] of sequents Si (with So = H--*  C) and justifications j~, 
where the latter contain the information how the next sequent is derived. A proof 
is constructed by applying the following inference rules, 2 where ~r is a flrst-order 
substitution, p is a position in C and m E {"AX" ," t I"} :  

Reflexivity 
[H --, t - t] 

IH --, t i p  ,-- , ,( ,)]  I L] 
Replacement 

[~r ~ C ~  ,-- ,r(0], (p, ~, , , ' ,  l, , ,  m), H --. C[p ,-- ~(~)] IL] 

f fe i ther  Yu* l ~ v  6 A X a n d m = " A X "  
or Vu* I - r 6 H, dom(o') C u* and m = "/-2'. 

f u n c t i o n  patch_proof (P', It) : proof  
i f  P'  = [H ~ C] t h e n  r e t u r n  [~(H) ~ ~r(C)] 
else  le t  P '  =:  [/-/--* C, (p, o', u*, I, ~', m), H ---, C'  IL] 

P~- := patch_proof([H --* C' I L], 7r) 
i f  ~-(c) # ~r(C') t h e n  [W, ..., P~] := patch_positions(C, p, ~r) 

~r,~ := {v/~r(o'(v)) Iv E dom(tr)}; CI, := a'(C') 
f o r  j : :  k d o w n t o  1 do  Ci_1 : :  Cj[pj ~-- o'~(~'(1))] 

P~ := [~(~) ~ cj_~, (pc, ~ , ,~ , ,  ~(I), ~(~), m) IP~] od 
r e t u r n  Px fi 

In a replacement step an instance ~(l) = ~(r)  of an equation I = ~" is applied, but 
in the patched proof only (instances of) the equation ~r(1) - ~r(~,) axe available. 
However, we can use the first-order substitution ~ ,  := {v /r (a(v))  I v ~ dom(o')} 
in patch_proof because ~(~(=))  = ~ . (~ ( , , ) )  ho~ds for e = h  (schematic) te ,m ~. 

Now we can compute P,~ := patch_proof(P', ~) to obtain a patched proof for 

Proofs can be extended to deal with arbitrary formulas instead of equations only if 
we define further inference rules. Then H may also contain additional conditions. 
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the conjecture r = ~r(H) ~ ~r(C) from Section 1: 

minus(y, y) ~ minus(plus(succ(z), y), plus(succ(z), y)) r (C) 
minus(y, y) = minus(succ(plus(z, y)), plus(succ(z), y)) Replace (~'(2)) 
minus(y, y) = minus(succ(plus(z, y)),succ(plus(z, y))) Replace (~r(2)) 
minus(y, y) =- minus(plus(z, y), plus(z,y)) Replace (z'(1)) 
minus(y,y) = minus(y,y) Replace (~r(H)) 

TRUE Reflexivity 

Compared to the schematic proof P from Section 1, the first replace(1)-step 
is eliminated while the replace(2)-step is doubled. The test r (C)  # ~'(C') 
in patch_woof is merely an optimization to avoid redundant steps like 
reptace(~(3)), of. Section 1. 

T h e o r e m  2. [6] Let pl be a proof of the sequent H ~ C from the set of  ax- 
ioms AX.  Then for each second-order substitution ~r, the call patch_Froof( P t, r)  
terminates and yields a proof P~ of ~r(H) - .  r (C)  s r ( A X ) .  

Summing up, we have presented an algorithm that constructs a proof for the 
instantiated conjecture from a schematic proof of a schematic conjecture and a 
second-order substitution. This allows us to exploit the full flexibility of second- 
order instantiations for the reuse procedure developed in [7]. Thus more con- 
jectures are (formally) similar than by just instantiating function variables with 
function symbols, i.e. the applicability of a schematic catch is increased. Further- 
more the obtained proofs may be more flexible, i.e. the reusabihty of a schematic 
catch is increased. 
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