
Multiple-Knowledge Representations in 
Concept Learning 

Thierry Van de Merckt & Christine Decaestecker 

IRIDIA, Universit6 Libre de Bruxelles 
Av. Franklin Roosevelt 50, 1050 Brussels, Belgium. 

Phone: +32.2 - 650 31 69 Fax: +32.2 - 650 27 15 
{THVDM, CDECAES @ ULB.AC.BE} 

Abstract. This paper investigates a general framework for learning concepts that allows 
to generate accurate and comprehensible concept representations. It is known that biases 
used in learning algorithms directly affect their performance as well as their 
comprehensibility. A critical problem is that, most of the time, the most "comprehensible" 
representations are not the best performer in terms of classification! In this paper, we argue 
that concept learning systems should employ Multiple-Knowledge Representation: a deep 
knowledge level optimised from recognition (classification task) and a shallow one 
optimised for comprehensibility (description task). Such a model of concept learning 
assumes that the system can use an interpretation function of the deep knowledge level to 
build an approximately correct comprehensible description of it. This approach is 
illustrated through our GEM system which learns concepts in a numerical attribute space 
using a Neural Network representation as the deep knowledge level and symbolic rules as the 
shallow level. 

1.  Introduction 

Concept Learning has much evolve during the last decade. Referring to the goal stated 
by Michalski in 1983 [Michalski 83] Conceptual Inductive Learning "designates a type 
of Inductive Learning whose final products are symbolic descriptions expressed in high 
level, human oriented terms and forms." Besides the implicit goal of inductive 
learning, i.e., to produce a theory that is able to explain observed facts and to make 
correct predictions about unseen cases, Concept Learning also relies on a strong 
cognitive motivation: the system should be able to express the underlying theory (the 
concept) under a human-understandable language, which is by essence symbolic. 
Therefore, concept descriptions have been biased in a way that is close to human way 
of understanding and explicating concepts, that is, by using symbolic descriptions 
under the form of logical-based languages for Nominal attributes or under the form of 
intervals (producing orthogonal hyper-rectangles) for continuous ones. Some well- 
known examples are AQ [Michalski 83], Decision Trees [Quinlan 86a1 and Decision 
Lists [Clark & Niblett 89]. This goal on the representation of induced theories was a 
characteristic that drew a clear frontier between AI Concept Learning and any 
"classifier" algorithm issued from Statistical Inference or Pattern Recognition 
techniques. 

Nowadays many subsymbolic algorithms like Neural Networks [Hertz & al. 91], 
Exemplar-based [Aha & al. 91] and Prototype-based [Kohonen 90; Decaestecker 93] are 
actively investigated by the machine learning community. Concurrently, symbolic 
algorithms make an increasing use of techniques issued from Statistical Inference or 
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Pattern Recognition to improve some aspects of concept recognition: Bayesian Trees 
[Buntine 89] and Flexible Concept Matching [Esposito & al. 91; Bergadano & al. 92; 
Van de Merckt 92] are some examples of this trend. A major problem of these 
algorithms is that it is no longer easy to get the semantic of the knowledge used to 
encode the concept membership function: they use interpretation functions of the 
encoded knowledge under the form of complex matching mechanisms where the 
semantic of the concept is (partially) encoded in real valued parameters. In this case, 
semantic means to have a comprehension on how instances are allocated or not to a 
particular concept. Hence, most of them do not produce a concept description in 
"human-oriented terms and forms" any more. It is clear then that the actual trend of 
many works done in Machine Learning does not reflect the original definition of 
Concept Learning. However, these algorithms were developed to answer some 
important weaknesses of early concept learning systems with respect to classification 
accuracy. From one side, most early symbolic systems produced crisp concept 
descriptions, i.e., descriptions under the form of explicit concept boundaries that 
discriminate classes in the description space (see AQ [Michalski 83], ID3 [Quinlan 
86a] or CN2 [Clark & Niblett 89]). Whilst more difficult learning tasks have been 
attacked, it became clear that these algorithms entailed strong limitations, especially 
regarding graded concepts [Aha & al. 91], noisy and incomplete data [Aha & al. 91; 
Esposito & al. 91; Van de Merckt 92], and complex concepts [Bergadano & al, 91; 
Michalski 90]. From another side, it became clear that the relation between biases 
implemented in the algorithms and their efficiency to infer correct hypothesis is crucial 
[Utgoff 86; Benjamin 90]. Hence, Brodley speaks about "selective superiority" among 
different algorithms and concept domains [Brodley 93], 

A critical problem of concept learning lies in satisfying two conflicting goals. From 
one side, one wants the algorithms to produce simple and human-understandable 
descriptions, which imposes strong (cognitive) constraints. From the other side, one 
wants them to reach high levels of classification accuracy, which requires one to use 
complex (as far as human comprehensibility is concerned) knowledge representations. 
How these two goals can be reconciled? Simply by assuming that an agent might 
possess multiple-knowledge representations on the same problem. In this paper we 
present a new approach to Concept Learning, called the Two-functional Model, which 
is based on this idea. In this framework, we present a system called GEM, which uses 
a Neural Network to optimise a concept representation using a prototype-based 
representation and which produces symbolic descriptions reflecting "its knowledge" of 
the target concept. Section 3 presents our neural-symbolic system. Section 4 presents 
some experimental results using GEM. Section 5 makes a quick review of closer 
related works. Section 6 identifies limitations and future works. 

2. Concept Learning Revisited: the Two-Functional Model 

The basic idea of the TF model is that symbolic descriptions, as far as concepts are 
concerned, is a characteristic of human beings and hence, results from our high 
linguistic skill to communicate what we have in mind. It does not mean however, that 
what we communicate is equivalent to the complex knowledge encoded in our brain. 
Therefore communicating complex concepts, such as friendship, entails some kind of 
reduction in both complexity and efficiency by introducing a human understandable 
language and cognitive description biases, as simplicity, that constitute a common 
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Fig. 1: A flow-chart of the Two-Functional Model of Concept Learning 

semantic ground shared by all people. Therefore we argue that there is no need to 
merge both functions (recognition and description) into one single concept 
representation as it is done by most symbolic approaches. On the contrary, an internal 
concept representation (ICR), based on any knowledge model 1, should be optimised 
regarding recognition efficiency without conflict of its further description which is 
performed by a distinct system that produces a (good) approximation of it. In the Two- 
Functional model (TF) a "Concept Learner" entails two distinct parts (see Fig. 1): 

(i) R e c o g n i t i o n  - It is the "deep knowledge" level which results from an 
inductive learning process whose bias focus on accuracy of the concept 
representation. This bias may include any kind of Background Knowledge that 
helps the system to choose a specific knowledge model regarding the domain (as 
done by [Brodley 93]) or that encodes a priori domain theory that generates 
constraints on the possible concept representations. The resulting representation, 
called the Internal Concept Representation (ICR), is further used by a classifying 
function which aims to recognise instances from non-instances of the concept; 

(ii) C o m m u n i c a t i o n  - It is the "shallow knowledge" level using human- 
oriented descriptions that reflect the concept encoded by the ICR. It results from 
an exploration of the ICR guided by biases focusing on cognitive aspects of the 
descriptions, such as background knowledge that provides preferences and 
constraints on the descriptions or that help the system to choose among possible 
search techniques regarding the type of knowledge model encoded by the ICR. As 
it is the case for human beings, preferences may entail parameters like 

By Knowledge Model we mean the way the knowledge is encoded (prototype, 
examplar, DNF, NN, etc.) and its interpretation function (matching used for 
classification). 
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completeness ("tell me more about it"), consistency ("be more precise") and 
simplicity ("I don't care about the exceptional cases"). Because its bias may be 
very different from those of the ICR, many different descriptions consistent with 
the ICR and the background knowledge might exist and hence, the 
communication function performs an inductive search in a space of possible 
descriptions. 

In early symbolic systems, both parts were merged into one single algorithm where 
the ICR also stood for the human-oriented description. It should be noted that the TF 
model does not provide a framework for generating symbolic descriptions 
independently of the recognition function. On the contrary, the link between the ICR 
and the inductive description engine in Fig. 1 entails an interpretation of the semantic 
content of the ICR (it will be explained in details later) and this interpretation defines 
the class of classifying functions that could be easily implemented within a particular 
implementation of the TF model. 

Although this model is inspired from Cognitive Science, it offers two major 
advantages resulting from the clear separation between recognition and communication. 
The first one is that the classification function may be optimised regarding accuracy by 
using many kinds of powerful techniques that throw off the yoke of cognitive biases 
linked to human-oriented descriptions (in our case we use a Neural Network (NN) for 
that purpose). This allows to get rid of the compromises between accuracy and 
understandability of complex concepts that are always to be chosen in single concept 
representation algorithms [Stepp & Michalski 83; Iba & al. 88]. The second advantage 
is that starting from an optimised ICR and explicitly introducing cognitive biases to 
generate concept descriptions allow to evaluate the cost of introducing these biases. 
Indeed, by looking at the loss of accuracy due to their introduction one may know the 
cost of being explicit and human understandable and hence, to evaluate the adequacy of 
the description bias regarding the target concept. This is not the case of most 
Symbolic and several Neural Net algorithms [Tshichold & al. 92; Goodman & al. 92] 
which directly produce biased class descriptions also used for classification. 

3. The Hybrid Neural-Symbolic GEM System 

GEM has been designed to work in continuous attribute spaces in which cognitive 
biases encoded in symbolic algorithms are especially constraining. Indeed, many 
algorithms (ID3-1ike, AQ's or CN2) produce descriptions under the form of orthogonal 
hyper-rectangles (whose edges are perpendicular to the description axis). It is well 
known that this representation may be inadequate for many domains, leading to poor 
descriptions from a cognitive as well as from a recognition point of view. Many recent 
algorithms using other kinds of knowledge models like Instance-Based Learning [Aha 
& al. 91], Prototypes [Decaestecker 93], Neural Trees [Samkar & Mammone 91; 
Utgoff 88] or Neural Networks [Hertz & al. 91] achieve better results in these 
domains. Therefore, the whole potential of the TF approach may be particularly 
highlighted for such numerical-featured concepts. To illustrate the behaviour of GEM, 
we will use a two-class problem defined in a two-dimension space as shown in Fig. 2, 
named the Diamond problem. The instances are uniformly distributed in a square of 
side 30 and allocated to the classes following the decision surface drawn in the figure. 
A training set of 400 instances has been used. 
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3 . 1  T h e  R e c o g n i t i o n  F u n c t i o n  

In GEM, the recognition function uses a 
Prototype-based Knowledge Model implemented 
through a neural network (a detailed presentation 
may be found in [Decaestecker 93]). 

T h e  K n o w l e d g e  M o d e l -  NNP uses a 
three-layer, fully connected, feedforward net 
(Fig. 3). The hidden layer stands for a set of 
Prototypes whose locations are to be optimised. 
The weights of the input-to-hidden units are the 
prototype vector descriptions (location in the 
pattern space). The hidden-to-output weights are 
binary and fixed: they indicate the class of each 
prototype. Only the weights of the hidden units 
are trained. NNP globally optimises the location 
of prototypes in order to minimise the 
classification error rate. Hence, the vector 
descriptions of prototypes are adapted through a 
gradient procedure which minimises an original 
error function. A deterministic annealing 
procedure is introduced to avoid local minima and 
to distribute the prototypes in each class. The 
whole optimisation process is biased in order to 
minimise the resubstitution error rate with a 
minimum number of prototypes (simplicity 

-5 0 5 10 15 20 25 30 35 

Fig. 2: The Diamond Problem 

c t t t p l t  

input 

Fig. 3: Network architecture 

bias). Hence, redundant prototypes (a prototype is redundant if all its covered instances 
may be correctly classified by other prototypes of the same class) are eliminated. 
Hence, the remaining ones are "forced" to cover the largest area of the instance space. 
At the end of the optimisation, the ICR is constituted by the list of prototypes and its 
interpretation function for doing classification becomes a simple nearest neighbour rule 
applied on their locations. Thus the ICR produces Piecewise-linear decision boundaries. 

Bias  - A major bias of NNP results from the fact that it belongs to Piecewise 
Linear Classifiers. Indeed, each prototype defines implicitly a convex decision surface 
by the means of the nearest neighbour competition (see Fig. 4). The set of all 
individual prototype's decision surface realises a partition of the input space (Voronoi 
Diagram) and hence, the ICR is always complete but may be partially inconsistent. 
Besides this language bias, the inductive search algorithm applies a global 
optimisation process focusing on the minimisation of the resubstitution error rate by 
modifying the prototypes' location. An important bias of NNP is its hill-climbing 
search for generating simple ICR (redundant prototypes elimination): this process 
imposes a greatest generalisation strategy by forcing each prototype to cover the 
largest area in the instance space, allowing the algorithm to better handle noisy data. 
Empirical evaluations of NNP show that it generates highly performing ICR in terms 
of: (i) classification accuracy and simplicity (small number of prototypes); (ii) 
regularity (small standard deviations when tested on many different random training 
sets) and (iii) robustness against noise and domain dependency (even for highly non- 
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linear concepts). For detailed results see 35 
[Decaestecker 93] and [Van de Merckt & 
Decaestecker 94]. 30 
On the Diamond problem, NNP 

2 5 -  
p r o d u c e s  an ICR which consists of 6 
prototypes. In Fig. 4, the classification 20- 
bounda r i e s  resu l t ing  f rom the 
pro to type ' s  location and from the 15 
nearest neighbour competitive process 
is compared to the underlying target ~0- 
concept  boundary. The difference 
between the real frontier and the 5- 
decision surface produced by NNP 0- 
results from the lack of training 
instances in some places of the instance 
space. 

I ~ I I I I I 

• P 2  

P 5  

-5 
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Fig. 4: NNP ICR on the Diamond problem I C R  I n t e r p r e t a t i o n  - It  is 
essential, in the framework of the TF 
model, to have a clear interpretation of the semantic content of the ICR. Indeed, this 
knowledge must be available to the communication function to generate descriptions 
that correctly reflect the knowledge encoded in the ICR. The semantic interpretation of 
the ICR relies upon the identification that each prototype implicifly draws (or covers) a 
convex decision surface in the instance space, called the Prototypical Region (PR). 
Because of NNP's bias for simplicity, we assume that each PR is necessary to 
approximate the concept's class membership function and hence that, regarding their 
instance space convexity, each PR stands for a disjunction of the target concept. 
Therefore, to produce a symbolic description of the concept underlined by the ICR, a 
description of each individual PR will be searched, each of them being the description 
of a disjunct of the concept. 

3 . 2  T h e  C o m m u n i c a t i o n  F u n c t i o n  

The problem of "understanding" a piece of knowledge representation (as a list of 
prototypes' location, symbolic descriptions or a matrix of weighted connections of a 
NN) is related to its interpretation, i.e. the function that gives a protocol on how to 
use the knowledge. For NNP, the interpretation is a nearest neighbour rule that entails 
a competitive process between all prototypes and hence, getting a clear view of the 
encoded concept's shape is a complex calculation problem, as far as human being is 
concemed. 

T h e  F o r m  o f  H u m a n - o r i e n t e d  D e s c r i p t i o n s  - The c o m m u n i c a t i o n  
function identifies the classification boundaries encoded by the ICR and produces a crisp 
description of them. Crisp descriptions have been chosen because they have a "self- 
contained" meaning: they take the form of DNF implication rules where the 
precondition part entails disjunctive sets of conjunctive predicates and where the 
conclusion part specifies the resulting class. 

B i a s  - Each PR of the ICR is approximated by a set of closed geometrical figures. 
There are three basic biases used by GEM in its search for symbolic descriptions: (i) 
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the shape of the crisp geometrical figures used to approximate each PR; (ii) the use of 
a "disjunctive view" instead of a "class view" when searching for descriptions; (iii) the 
assumption that noise has been correctly treated by the recognition function when 
producing the ICR. 

(i) Symbolic language- To approximate a PR drawn by the ICR, GEM uses 
orthogonal hyper-rectangles under the form of intervals defined over the instance 
space. This approach is widely used by Symbolic Learning systems (see for 
example ID3 [Quinlan 86a], AQ [Michalski 83] or Nearest Hyperrectangles 
[Satzberg 91]) because of their natural understanding: an orthogonal box can be 
easily represented by a conjunctive rule where each term tests a cut-point value 
of an attribute. 

(ii) 

(iii) 

A Disjunctive view when searching 35 
for descriptions - The descriptions 3o 
rely on the interpretation given to 
PRs which assumes that each of 25 
them represents a typical disjunct 
of the target concept. It is a 20 
considerable advantage of the 
prototypical approach to produce an 15 
ICR allowing such a nice 

1 0  

interpretation of the distinct areas 
of its decision surface, as shown in s 
Fig. 4. The target concept is 
described by approximating each 0 
PR individually. As a result, the 
inductive search focuses on ~ 
disjunctive terms (the PRs), each 
one being considered as a distinct 
new class (called the ICR_class in 
the algorithms), instead of focusing 

• P 2  

P 3  

i t I t t I t 

o 5 lo ~5 20 z5 30 
Fig. 5: The ICR and the resulting 

discriminant descriptions 

3 5  

on real classes given by the training set (called the Training_class). As a 
consequence, each Training_class represented by n prototypes will be described 
by at least n disjunctive terms, one for each PR (see in Fig. 5). The whole 
concept description is then simply the union of all disjunctive rules. However 
this bias is relaxed when looking at near boundary regions of  two adjacent PRs 
of  the same class. Indeed, prototypes also implicitly draw boundaries separating 
two adjacent PRs of the same class (called adjacent disjunctive PRs) whose 
locations are arbitrary. Therefore, describing the PRs individually accommodates 
a relaxing facility near adjacent disjunctive PR boundaries. 

Noise treatment - A basic assumption of the TF model is that the ICR is better 
optimised regarding classification accuracy than the symbolic descriptions that 
are produced using cognitive biases (as orthogonal concept boundaries) and 
hence, that the optimised ICR avoids noise overfitting. In GEM, noise 
overfitting avoidance is implemented by the simplicity bias described above. 
Therefore, training instances that are covered by a PR of a distinct class 
(inconsistent) are considered to be noisy and are hidden to the description 
inductive search. As a consequence, the symbolic algorithm relies on the 
recognition function for the treatment of noise and hence, will not incorporate 
procedures for taking noise into account. 
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Preference Criteria - Given these considerations, the inputs of the symbolic 
description engine are the ICR and the training set. In order to produce symbolic 
descriptions, a number of other preferences must be decided on: (i) the simplicity of the 
concept description or, in other words, the level of approximation of the ICR's decision 
surface; (ii) the consistency and the completeness of the descriptions. 

(i) Simplicity - Because the language bias differs among the ICR and the 
description (Piecewise linear versus orthogonat boundaries), more than one 
hyper-rectangles might be used to correctly approximate the decision surface 
drawn by one single Prototype. The number of hyper-rectangles needed to 
correctly approximate one single PR depends on the adequacy of the description's 
language bias (orthogonality) regarding the target concept. Thus, the number of 
disjunctive rules describing a single PR depends on a preference criterion for 
simplicity that fixes the maximum number of hyper-rectangles that will be used 
to approximate one single PR. Using this criterion, one may favour the 
simplicity of a concept description (sacrificing its consistency or its 
completeness) or one may ask for complete and consistent descriptions. Once a 
simplicity level has been chosen, consistency or completeness has to be fixed. In 
the current state of GEM implementation, there are two simplicity levels 
available: one box (hyper-rectangle) per prototype and a free number of boxes, 
which results in producing "perfect" approximations of the target concept. 

(ii) Consistency and Completeness - Given a level of simplicity, consistency and 
completeness are related: once a level of consistency for the descriptions has been 
chosen, the level of completeness is given as a result of the inductive search and 
inversely. Descriptions may therefore be oriented towards characteristic (100% 
complete) or discriminant (100% consistent). Any levelbetween 0 and 100% 
may be asked to the system for consistency or completeness. 

Bias Evaluation - Given a level of simplicity and a 100% consistent preference, 
the level of completeness gives information on the adequacy of the symbolic language 
towards the domain. Indeed, a PR is a convex region in the instance space and hence, if 
the concept boundaries are orthogonal, one single hyper-rectangle should adequately 
approximate a PR. If it is not the case, by increasing the complexity of the concept 
description, one may be able to obtain consistent descriptions that are more complete. 
In fact, increasing complexity is a mean to produce "closer" complete and consistent 
descriptions and hence, simplicity is no more a bias to avoid overfitting, as usually in 
symbolic learning, but it stands for adjusting biased descriptions (hyper-rectangles) to 
the underlying shape of  the target concept. 

3 . 3  The Descr ipt ion  Algor i thm 

Two different algorithms have been implemented, one that produces a description with 
a simplicity level of one box per prototype, and another one, based on ID3 [Quinlan 
86a], to produce descriptions of unconstrained complexity (called the free-complexity 
algorithm). Two important processes are common to the two algorithms: the Filtering 
process that implements the bias related to the treatment of noise and the Re-Labelling 
process that implements the Disjunctive view bias. 

The Filtering Procedure - Given the training set, the ICR and its interpretation 
function, this function eliminates from the training all wrongly covered instances with 
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respect to the ICR. It then returns a list of PR-instances organised into clusters, one 
per prototype. These filtered ICR_clusters will be further used to build the symbolic 
description of the target concept. 

The  Re-Label l ing  P rocedure  - This process creates a new attribute for each 
filtered instance, called the ICR_class, that indicates to which PR they belong. 
ICR clusters and ICR_class are used by the algorithm to implement the Disjunctive 
view bias. 
The O n e - c o m p l e x i t y  A l g o r i t h m  - This algorithm follows a bot tom-up 
approach with a least generalisation strategy. A PR may be described by two extreme 
boxes: a complete Hyper-Box (complete-HB) and a discriminant Hyper-Box 
(discriminant-HB). The complete-HB is the smallest hyper-rectangle covering all PR- 
instances (least generalisation strategy) and the discriminant-HB is the largest 
consistent hyper-rectangle included in the complete-HB, i.e., which covers the largest 
part of training examples belonging to the PR-class while covering no training 
examples of another class (greatest generalisation strategy within complete-HBs). Once 
the ICR_clusters have been built, producing a complete-HB for one PR is 
straightforward. It consists in the list of intervals defined by the minimum and 
maximum values observed among PR-instances for each attribute. In case of scarce 
training sets, the least generalisation strategy may produce uncovered instance space 
regions of known class regarding the ICR: the in-between regions of two adjacent 
disjunctive PRs (of same class). Therefore, complete-HBs are slightly extended, in each 
direction, towards the closest instance belonging to an adjacent disjunctive PR if it 
exists (no new negative instances should be included in the box extension). It should 
be noted that complete-HBs may share large overlapping areas and hence that they may 
include instances from another class or 
from an adjacent disjunctive PR, as 
Fig. 6 shows. The complete-HB is the 
starting point of the algorithm. To 
generate an HB of consistency Z, a 
deflation of the current complete-HB is 
done by the Deflate-HB procedure. 
Several HBs included into a Complete- 
HB can be Z-consistent while differing 
by their cover. Hence, the algorithm 
performs a hill climbing search biased 
to maximise the cover in terms of 
completeness and volume (to keep a 
maximum of positive examples as well 
as a maximum of the initial complete- 
HB volume).  Starting f rom the 
c o m p l e t e - H B  and the f i l tered 
ICR_clusters, it iteratively searches to 
shrink the complete-HB along one 
single direction (an attribute generates 2 
directions) to obtain the consistency or 
completeness level asked for. The 
iterative procedure excludes one single 
negative example per step. To choose 
among all possible directions, two 
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Fig. 6: Effect of the deflation process on the 
Diamond problem. Dashed-line boxes are 
complete-HBs where the deflation process 
didn't shrink the box. For P5 and P4, the 
darker boxes (discriminant) compared to the 
lighter ones (complete) show the effect of the 
deflation process. 
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heuristics are used: the direction that minimises the number of positive instances 
excluded is chosen and in case of  equality, the one that minimises the reduction in 
volume is chosen. A positive example, regarding an HB, is an instance which shares 
the same class value (Training-class) than the box (which inherits its class value from 
its associated PR). Therefore, instances belonging to adjacent disjunctive PRs are 
considered as positive by the deflation heuristic, relaxing the Disjunctive view bias at 
near frontier regions. Fig. 6 shows the results of the one-complexity algorithm on the 
Diamond problem: the complete-HBs and 100%-consistent (discriminant-HBs) are 
presented. It shows that the deflation is high in the areas where the orthogonal bias is 
inadequate to approximate the concept boundary: P4 and P5 regions are good examples 
of this. In other regions, like in P2 and P3 where there is (nearly) no contact with the 
Diamond boundary, or like in P6, where the contact involves an orthogonal boundary, 
the bias is adequate and hence, the deflation process had nothing to do, leaving 
discriminant- and complete-HBs being identical. It can be seen from this example that 
discriminant descriptions may leave large uncovered instance space areas in the 
neighbourhood of those inadequate regions (see Fig. 5). In the following description of 
class 2, issued by GEM on this problem, the discriminant description is only about 
60% complete, 40% are lost in the area inside the diamond: 

Characteristic description (simplicity i): 
2 Prototypes 
P5 (x c [5.5 19.0] A y c [0.0 21.5]) (cover 79%; consist 87%) 
P6 (x c [0.0 7.0] ^ y c [0.0 15.0]) (cover 21%; consist 100%) 

Class2 
Discriminant description (simplicity i): 

2 Prototypes 
P5 (x c [5.5 14.7] ^ y c [0.0 15.0]) (cover 40%; consist 100%) 
P6 (x c [0.0 7.0] m y c [0.0 15.0]) (cover 21%; consist 100%) 

Class2 

The Free-complexi ty  Algor i thm - This algorithm can produce complete and 
consistent descriptions of the concept encoded in the ICR (with respect to the training 
of course). It uses a Decision Tree 
technique similar to ID3 [Quinlan 86a] 
but in this case the training set has 
been first Filtered and Re-Labelled. 
Unlike the one-complexity algorithm, 
this one follows a top-down approach 
and uses a greatest generalisation 
strategy. A decision tree is grown on 
the fi l tered instances using the 
ICR_class, that is, a partition of the 
PRs is produced. After this first stage, 
the relaxation of the Disjunctive bias is 
done by a simple pruning mechanism: a 
subtree is pruned if all its children 
nodes are leaves  of  the same 
Training_class. Indeed, due to its top- 
down search strategy, two leaves of the 
same Training class represent  a 
specialisation in a near border region of 
two adjacent disjunctive PRs. As result, 
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Fig. 7: A description of the Diamond problem 
with a free complexity 
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this pruning mechanism merges small hyper-boxes of the same real class value that 
have been separated due to the Disjunctive view bias. Each leaf is viewed as a 
disjunctive rule describing a PR. A rule is the conjunction of the predicates tested at 
each node on the path from the root to the leaf. Fig. 7 shows the result obtained on 
the Diamond problem. It can be seen that most of the consistent boxes found by the 
one-complexity algorithm are also produced by the free-complexity one (P1, P4, P5 
and P6), despite the drastic change in the search method used. This is a result of the 
Disjunctive view bias used in both methods and the small number of dimension of the 
instance space. As a consequence, the main tendency provided by each prototype is 
preserved and represented by the largest box associated with it, while smaller ones are 
specialisations in complex shape regions: it can be seen that P1, P4 and P5 recover the 
"lost" regions due to the deflation process used to generate the discriminant-HBs 
(compare Fig, 6 and Fig. 7). An advantage, illustrated by this example, of the 
Disjunctive view bias in GEM is that we know that each main disjunction (resulting 
from a prototype) is a convex region and therefore that each internal disjunctive rule (in 
a PR) is not a real disjunctive decision region in the instance space but rather is an 
artificial disjunctive term resulting from the inadequacy of the description language 
towards the domain. 

4. Empirical Evaluation 

Experiments did not focus on the efficiency of the recognition function (ICR generated 
by NNP) of GEM. This aspect only concerns the classification part of the system that 
has been largely tested against other algorithms and has proven its high performance 
[Decaestecker 93; Van de Merckt & Decaestecker 94]. Instead, the experiences have 
been done in order to evaluate the claims concerning the advantages of GEM in the 
framework of the TF model. 

The first aspect concerns the treatment of noise through the Filtering process, the 
question being: is the ICR Filtering reliable regarding noise? To evaluate this point, 
we have checked that (i) the ICR does not make noise overfitting and (ii) that the 
Filtering process is more active when noise is present than when it is absent. This 
may be evaluated by looking at the number of prototypes generated in the absence 
versus the presence of noise and the corresponding number of instances filtered out of 
the ICR_clusters. The second aspect concerns the capacity to evaluate the adequacy of 
the description bias regarding the target concept. The key point is the observation of 
the consistency of complete-HBs or its dual aspect, the completeness of discriminant- 
HBs produced by the one-complexity algorithm. A rating that entails this aspect has 
been designed: the Bias Cost is the difference of the resubstitution omission rate 
(computed on the training set) between discriminant-HB and complete-HB. If, at a 
given level of simplicity, this measure is too high, the system could propose to 
increase the complexity level in order to obtain a better approximation of the target 
concept encoded in the ICR. Our tests aim to evaluate the validity of such an analysis. 
The last aspect concerns the evaluation of the quality of the descriptions as a mean to 
communicate the concept encoded in the ICR. To evaluate this point, we used the 
descriptions as classification rules and compared their results to the classification 
performed by the ICR on the same data sets. These tests aim to appreciate how the 
descriptions may represent the central tendencies of the concept and localise "safe" 
classification areas in the instance space. These aspects have been evaluated along three 
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dimensions: (i) domain dependence: seven different data sets are used presenting 
different concept shapes, sometimes adapted (Square data) and sometimes not adapted 
(Geometrical, Wave and Diamond) to the orthogonal bias of symbolic descriptions; (ii) 
noise dependence: each data set has been tested before and after noise addition; (iii) 
scarcity of training sets dependence: tests have been done on small and large training 
sets. The experiments only widely tested the one-complexity algorithm. However, the 
effects of using the free-complexity algorithm will be commented when appropriate. 

4.1 Experimental Set-up 

There are two real world data sets and five artificial ones that have been chosen in order 
to evaluate the TF model against various concept shapes: 

• Ir is:  it contains 3 classes of 50 instances each, where a class refers to a type of Iris 
plant. 

• D i a b e t e s :  it contains 145 records of 3 different diagnostics for Diabetes (the class 
repartition is C1=26,  C2= 35, C3=84 instances) based on 5 numerical attributes 
representing clinical tests. 

• D i a m o n d  D a t a :  it is the two-class problem presented at Fig. 2. 

• W a v e  F o r m s  [Breiman 84]: it is composed of 3 classes, each of them being a linear 
combination of three distinct wave forms. Each instance is composed by a vector of 
21 continuous values. 

• G e o m e t r i c a l  D a t a :  it is a two-class problem defined in a two- 
dimension space. The classes are delimited by two circles (centre: 
(0,0); diameter 20 and 40) entailed in a square (side 60) (see 
Fig. 8). Class 1 is represented by grey areas and class 2 by the 
white ring. Instances are uniformly distributed over the whole 
surface of the square. Fig. 8: 

• G a u s s - S q u a r e  D a t a :  it is a three-class problem shown in Fig. 9. Geometrical 
Instances in each class are artificially generated by 
Gaussian distributions (several by class). The centre of .... .............................. 

each Gaussian is shown by a black triangle in the 
figure; the standard deviations are relatively small. The ,00 
instances are attributed to the class corresponding to the 
nearest centre which have been chosen in order to ~ . ~  
generate orthogonal implicit decision boundaries (black , ~.~.. ~. 40 : ,  , 

lines in Fig. 9). The centre of the Gaussian can be o0i ~ i ~  
considered as optimal prototype's location. -0J ~0 ' ~ ~ ~ ~ J i i ~  

• U n i f o r m - S q u a r e  D a t a :  it is the same as the previous Fig. 9: Square data 
problem where the instances are uniformly distributed 
in the square and allocated to the class following the decision surfaces showed in 
Fig. 9. 

Noise Addition - Each data set was tested before and after noise addition. For 
Diabetes and Iris, a Gaussian noise N(0,t~) on each attribute (with ~ equals to 1/2 the 
standard deviation of the whole population for this attribute) has been artificially added. 
For Geometrical data, noise was introduced by an overlapping between the clusters. 
For Wave Forms, a Gaussian noise N(0,1) on each attribute has been added like in 
[Breiman & al. 84]. The same process has been made on Diamond and Uniform-square. 
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For Gauss-square, each instance has been reallocated following the location of the 
centre of the Gaussian that generated it: this process introduces overlapping between 
the classes. 

Training & Test Sets - For each data set, 10 runs were done with two training 
sets of distinct sizes (small and large). Large sets were built using the small ones by 
adding a number of randomly chosen new instances. Table 1 indicates the number of 
elements in each set. Except for Iris and Diabetes, the test set was generated 
independently. 

Table 1: Sizes of training and test sets. 

Data Set 

Iris 
Diabetes 
Geometrical 
Wave 
Diamond 
Gauss-square 
Uniform-square 

Training 
small 

20% per class 
20% per class 
115 
10 per class 
100 
130 
130 

sets  
!arge 

50% per class 
50% per class 
575 
100 per class 
400 
390 
390 

Test set 

the rest 
the rest 
I000 
5000 
1000 
1000 
1000 

4 . 2  Noise Treatment 

On average, the results obtained from NNP (see [Decaestecker 93]) are: (i) ICR 
complexity (the number of prototypes) increases very little when moving from small 
to large sets and (ii) complexity on noisy versions of the data sets are slightly less 
than on noise-free ones. These results (and others largely analysed in [Van de Merckt & 
Decaestecker 94]) show that the ICR produced by NNP does not cause overfitting. 
Concurrently to this general tendency to produce less complex ICR when noise is 
present, it can be seen in Fig. 10 that the effect of the Filtering procedure works as 
expected: the percentage of training instances provided to the description algorithm 
decreases proportionally to the presence of noise and to the size of the training set. 

4 .3  Evaluation of the Description Bias 

The average Bias Cost over all data for large sets is presented in Fig. 11. In this chart, 
the two first bars present the average Bias Cost on noise-free training and test sets 
respectively and the two last ones present the same figures after noise addition. This 
chart shows that the difference in omission between discriminant versus complete 
descriptions is nearly the same on training and test sets and that this property is 
observed independently of the presence of noise in data. This result has a strong 
practical implication: it means that the adequacy of the description bias and hence, the 
complexity that should be used to correctly approximate the target concept, may be 
validly evaluated on the training set, even in case of noisy data. However, this result 
should not be misinterpreted: it doesn't mean that the observed level of omission on 
the training gives a reliable approximation of its level on the test set. On the 
Geometrical problem, for example, the Bias Cost is about 6% on large noise-free sets, 
meaning that if the system produces a description under the form of discriminant-HBs, 
it "looses" a cover of about 6% on the concept instances, but the level of omission of 
a discriminant description on the test set is about 12% (while complete-HBs omission 
is 6%). The estimation of the real omission rate depends on the statistical 
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representativeness of the training and 
hence, the adequacy of description 100 
bias should be carefully evaluated 
regarding the size of the training 
compared to the dimension of the # 
instance space: the fewer instances ~ 95 
we have, the smaller space covered -~ 
and hence, simple descriptions may 
appear to correctly approximate the 
target concept although they don't. ~. 90 
When using the free-complexity 
algorithm, the adequacy of the 
description bias may be evaluated by 
looking at the number of disjunctive 
rules (leaves) necessary to 
approximate a single PR. 

4.4  Evaluation of the 
Fidelity of the 
Descriptions 

In GEM, a symbolic description 
should "reflect" the concept encoded 
in the ICR. This means that, given a 
level of detail asked by the user 
through the simplicity parameter, a 
description should allow to easily 
identify the major classification areas 
entailed in the recognition function. 
Therefore, the quality of descriptions 
may be evaluated by comparing 
classification results of  the 
descriptions with the ICR's ones on 
the test sets. Fig. 12 presents two 
bar charts for each type of training, 
averaged over all data sets. The first 
bar presents, from bottom to top, the 
percentage of correct classifications, 
the omission rate (no decisions) and 
the error rate (% of incorrect 
classification) of d i s c r i m i n a n t  
descriptions produced by the one- 
complexity algorithm. Three main 
observations may be done from this 
chart: (i) on average (except on small 
noisy ones) simple descriptions 
correctly cover a large part (at least 
70%) of the concept; (ii) the error 

85 

Small No Noise Large No Noise 

F~tering 

Filtering 

Small Noisy Large Noisy 

Small no N. Large no N. Small Noisy Large Noisy 

Irls 9&67 96.27 95,00 89.47 
Diabete 99.66 100.00 91,72 93.38 
Geometrical 99.65 98.73 94,87 88.75 
Wave 100.00 100.00 100.00 94,23 
Diamond 99,40 97.50 97.10 95.35 
Gauss-square 99.54 99.82 9&85 97.82 
Uaif-square 99.08 99.64 98,92 99.23 

Fig. 10: Effect of the Filtering procedure 

I0 

8 

# 
'~ 6 

4 

< 2 

Bias  Cos t  

Train No Noise Tes~ No Noise Train N~y Test Noisy 

Bias Cost Train no N. Test no N. Train Noisy Test Noisy 
(Large sets) I 
Iris I 0.55 1.86 9.7i" 10.27 '"  
Diabete [ 5.92 4.59 7.83 5.10 
Geometrical[ 5.87 6.59 9.51 11.98 
Wave [ 0.00 0.00 23,05 20.09 
Diamond [ 15.87 18.32 14.17 16.13 
Gauss-square 0.16 0.20 2,18 1,84 
Unif-square &2i 0,20 0,98 0.99 

Fig. 11: Effect of deflation on omissions 
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rate of the descriptions is always less than the ICR, particularly on small training sets 
(however, at the cost of high omission rate); (iii) the omission rate depends on the size 
of the training and on the level of noise. 

(i) By "s imple"  concep t  
description, we mean a 100 
description that contains a 
small number of disjunctions 
covering a large number of 80 
concept instances. In this case, 
since one box has been used to 

60 approximate each single PR, 
the description is to most 

Q simple one GEM can produce. ~ 40 
The fact that such simple 
descriptions correctly cover a ~: 
large part of the concept is due 20 
to the Disjunctive view bias of 
GEM. On the Diamond 
problem for example, class 1 0 
could not be correctly described 
with a higher simplicity than 4 Srnall-~N0ise Large'~Noise SmaUNoisy LargeNoisy 
convex regions and hence, the 1 
description algofithmproduces r~ Accuracy ~ Omission I Commission J 
4 h y p e r - r e c t a n g l e s  
approximating these regions. Fig. 12: Average results of 100%- 

(ii) The difference among error consistent HBs 
rates of the I CR and the 
descriptions may be explained by their opposite generalisation strategies. The 
one-complexity algorithm is biased by a least generalisation strategy in order to 
produce "safe" descriptions adversely to the recognition function which uses a 
greatest generalisation strategy. In this latter case, when the concept is only 
partially represented by the training (due to scarce or noisy data) the inductive 
algorithm does not have enough data in some instance space regions and 
performs "best guess" generalisation that mainly relies on its a priori bias 
(Piecewise linear and simplicity), resulting in higher chances to perform errors. 
These results confirm that the descriptions, while being more or less incomplete, 
depending on the size of the training and the level of noise, correctly capture the 
major semantic trend of the concepts. 

(iii) The least generalisation strategy has the "drawback" of producing incomplete 
descriptions, depending on the training size and the level of noise in the data. 
The level of omission is also affected by the adequacy of the description language 
for the target concept. On the Diabetes data, for example, the omission on small 
sets (not noisy) is 49% (error is 1%) while the ICR makes 98% of correct 
recognition. On large training, the level of omission decreases to 29% (error is 
still 1%) while the ICR is 99% accurate. It is clear in this case that the 
description bias is inadequate to approximate the concept boundary with an 
equivalent simplicity as the ICR. Clearly, the Diabetes concept is a good 
candidate for the free-complexity algorithm. 
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In conclusion, the symbolic descriptions correctly reflect the semantic content of the 
concept encoded by the ICR and the level of "correctness" reflects the statistical 
representativeness of the training set and the adequacy of the description language. 

5 .  Related Works 

The idea of coping with accuracy and comprehensibility in the same time is not new. 
Knight & Gil [91] proposed an architecture for problem-solving composed of an 
efficient "reasoner" (the problem-solver), such as a NN, and a "rationalizer" which aims 
to explain the output of the reasoner. However, both modules are completely separated 
and the rationalizer is a tool for convincing a user to accept the solution rather than for 
explaining how its has been reached. The closer work is certainly the one of Towell & 
Shavlik [93]. They use a special NN architecture (Knowledge-Based NN) in order to 
improve knowledge given under the form of a set of rules. After optimisation, a new 
and more accurate set of rules is extracted from the network. Their method differs from 
GEM in many respects: (i) they use KNN which encode horn clauses describing the 
domain whilst we use a prototype-based representation; (ii) their algorithm is restricted 
to discrete (nominal) features whilst GEM is restricted to numerical features; (iii) they 
don't use the training set to guide the interpretation of the knowledge encoded in the 
network whilst GEM makes an intensive use of it to constraint its interpretation. 
However, their algorithm fits the TF model where the recognition function uses a 
KNN whose accuracy has been empirically demonstrated and the communication 
function uses m-of-n type of rules. 

6 .  Conclusions  

We have presented a hybrid Neural-Symbolic Learning algorithm which implements 
the Two-Functional model of Concept Learning. This algorithm uses two different 
inductive engines that use two different knowledge representations: one for building an 
Internal Concept Representation optimised regarding accuracy, and the other for 
producing symbolic concept descriptions optimised for comprehensibility. This 
Multiple-Knowledge Representation schema has shown several advantages over Single- 
Knowledge Representation concept learning algorithms. Firstly, no compromise 
should be made concerning accuracy and/or comprehensibility. From the classification 
point of view, the inductive learning may be optimised without the interference of 
"human-oriented" biases. From the concept description point of view, stronger 
cognitive biases may be used (as accepting omission due to a least generalisation 
strategy). Secondly, the adequacy of biases used to produce concept descriptions may be 
evaluated regarding the target concept. This allows one to know the cost of being 
explicit and human understandable. Thirdly, regarding concept descriptions, 
completeness, consistency and simplicity become "real" preference parameters, since 
they should not be "optimised" to avoid noise overfitting. 

We hope that the TF model approach will provide a framework for integrating many 
different classifier algorithms as well as to help developing new approaches for 
generating comprehensible concept descriptions. Indeed, in GEM we have used simple 
DNF-like rules for describing a concept. However, many different types of descriptions 
could be produced like m-of-n decision rules (like in [Towell & Shavlik 93]) or a mix 
among decision rules and typical examples that could be more understandable to an 
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expert than a set of rules. The advantage of the TF model is that the type of 
descriptions that might be generated could depends on contextual factors such as the 
level of expertise of the user or explicit preferences for one kind of description among 
several available ones. From the recognition side and from a theoretical point of view, 
GEM's TF model implementation could be applied to a whole set of classification 
functions defined by their ability to account for the two essential biases of the system: 
(1) Noise Treatment by a Filtering process and (2) Disjunctive view by a Re-Labelling 
process. However, in practise, GEM benefits from the prototypical knowledge model 
used by the ICR which performs generalisation over the instance space. Using lazy 
learning algorithms like exemplar-based algorithms would cause problems to apply the 
Disjunctive view bias. Other kinds of neural networks, such as those using back- 
propagation, would also cause a problem since these NN creates a single non-linear 
decision surface for each class (although Towell and Shavlik have open promising 
ways for KNN). Therefore, GEM's implementation of the TF model may not be 
applied to any classifier algorithm without extensive work. However, we believe that 
the idea of the TF model, i.e., the separation between the knowledge used for 
prediction and explanation and the "interpretation bridge" between them, could be 
further explored in order to integrate powerful subsymbolic tea~ng algorithms in the 
framework of "comprehensible" concept learning. 

Our close future work will extend the description algorithm to any complexity level 
and will better evaluate the performance of GEM with respect to its capacity to 
communicate the semantic content of the ICR by a closer analysis of the effect of 
gradual increase of noise as well as gradual increase of the complexity of the tested 
domains (by increasing the number of dimensions). In a second stage we will also 
investigate how to extend our approach to mix nominal-numeric attribute spaces as 
well as how to introduce a feature selection process in NNP and/or in the one- 
complexity description algorithm. 
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