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Abstract. Graphical modelling is a powerful framework for reasoning
under uncertainty. We give an overview on the semantical background
and relevant properties of probabilistic and possibilistic networks, re-
spectively, and counsider knowledge representation and independence as
well as evidence propagation and learning such networks from data.
Whereas Bayesian networks and Markov networks are well-known for a
couple of years, we also outline the perspectives of possibilistic networks
as a tool for the efficient information-compressed treatment of uncertain
and imprecise knowledge.

1 Introduction

Due to its simplification of multivariate data analysis, graphical modelling is
being increasingly recognized as an appropriate framework for both knowledge
representation and inference under uncertainty [65]. Applications can be found
in all areas of analysing dependent observations, for example, in regression anal-
ysis, spatial analysis, and expert systems. As a consequence of its primary ori-
gin in multivariate statistics, the most advanced numerical approaches to the
structured handling of uncertain information have been obtained in the field of
probabilistic graphical models [4].

Referred to uncertain reasoning in knowledge-based systems, Bayesian net-
works are established as a powerful tool [40]. They provide a well-founded nor-
mative framework in the presence of uncertain, but precise data. On the other
hand, extending pure probabilistic settings to the treatment of imprecise (multi-
valued) information usually restricts the computational tractability of inference
mechanisms. Since the explicit modelling of imprecise data is more and more
claimed as being necessary for industrial practice, it is reasonable to investigate
graphical models related to alternative uncertainty calculi. Under the aspect of
efficiency, such uncertainty calculi should provide a justified form of information
compression and simplification in order to support reasoning under uncertainty
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and imprecision without essentially affecting the expressive power and correct-
ness of decision making procedures.

Possibility theory [14] seems to be very promising for this purpose. It is a good
choice for systems that accept approzimate instead of crisp reasoning, charac-
terized by a non-significant sensitivity concerning slight changes of information.
From this it follows that possibility theory may grow up to play the same role in
the field of uncertain reasoning in knowledge-based systems as nowadays fuzzy
control as a tool for (information-compressed) interpolation between crisp points
in vague environments in the field of control engineering [33].

Related to the mentioned perspectives, this paper gives a brief comparison of
probabilistic and possibilistic networks: Section 2 addresses the semantic back-
ground and relevant properties of probabilistic networks, and summarizes how
to perform inference in such networks. Furthermore, the problem of inducing
probabilistic networks from a database of sample cases is considered. Section
3 deals with the same topics referred to possibilistic networks. Some additional
remarks in Section 4 conclude the discussion.

2 Probabilistic Networks

Graphical models provide a unified qualitative framework for representing and
reasoning with uncertainty and independencies. The qualitative part of a graph-
ical model is a graphical representation of dependencies between variables, ex-
pressed, for example, by a directed acyclic graph (DAG), an undirected graph
(UG), or a chain graph. Each structure reflects a certain kind of independence
in the way that conditioning on evidence (obtained through instantiation of a
subset of variables) can be realized by efficient local propagation algorithms,
related, for example, to the vertices involved in a hyperedge of a dependency
hypergraph, rather than by inefficient global conditioning procedures. For this
reason, graphical models are always referred to a notion of (conditional} inde-
pendence that has to be specified for the particular uncertainty calculus under
consideration [7, 40].

Let V denote a finite set of variables taking their values w, on attached
domains £2,, v € V. Furthermore, let {2 denote their joint domain, and §24 the
marginal domain of all variables in A C V. Finally, let wa = (wy)yea denote a
possible state in §24, and w = (wy)yev a possible state in £2.

In this paper, we refer to finite domains only, which means that we confine to
the important case of discrete graphical models with V being the underlying set
of vertices.

In pure probabilistic approaches, uncertain knowledge about the quantitative
dependencies between the variables in V are formalized with the aid of a proba-
bility distribution P on {2. Conditional independence, encoded by the qualitative
part of a probabilistic graphical model, is defined as follows:

Let A, B, and C be three disjoint subsets of variables in V.

A is called conditionally indpendent of B given C w.r.i. P, abbr. Ip(A, B|C), iff

P(wauBlwe) = P(walwe) - Pwelwe) (1)
whenever P(wc) > 0, w € £2.



Equation (1) reads as follows: The marginal conditional probability on 24y8,
given any instantiation of the variables in C, equals the product of the marginal
conditional probabilities on 24 and £2g, respectively, referred to the same in-
stantiation of the variables in C.

Given an independence model M, that is, a set of conditional independence

statements about the variables in V', the task is to find a graphical representa-
tion G such that the topology of G reflects the properties of M [40, 56].
A probabilistic graphical model can be equated with the set of probability dis-
tributions on 2 that satisfy the constraints implied by G. Two probabilistic
graphical models are equivalent, if their underlying sets of satisfying probabil-
ity distributions are equivalent, i.e. they constitute the same joint probability
distribution P on §2.

Among the various approaches to probabilistic graphical models, for example,
influence diagrams used to represent decision processes [564, 44, 26], we restrict
ourselves to the special case of Bayesian networks and Markov networks, respec-
tively, which are an advanced and widely discussed framework for knowledge
representation and propagation in probabilistic expert systems.

Bayesian Networks The most popular kind of a probabilistic graphical model
in artificial intelligence is the Bayesian network, also called belief network [40].
A Bayesian network consists of a directed acyclic graph G = (V, E), and a set
of conditional probability distributions Py (wy |wpar(v)), v € V, where par(v) =
{v' € V|(v',v) € F'} denotes the set of all parents of v in G.
Since G is directed, Bayesian networks are appropriate to represent direct causal
dependencies between variables, which in many cases is quite natural for the pur-
pose of knowledge representation in probabilistic expert systems that support,
for example, diagnostic reasoning (abductive inference) in medical applications.

Bayesian networks specify a conditional decomposition of the joint probabil-
ity distribution P on §2:

A strictly positive probability distribution P on §2 factorizes w.r.t. a directed
acyclic graph G = (V, E), if

Pw) = H Plwy|wpar(v))- (2)
veV

In this case, P satisfies the global Markov property, saying that, for any
disjoint subsets A, B, and C of V, such that C separates 4 from B in the moral
graph induced by A, B, and C, we have Ip(4, B|C) [34].

In this sense, a Bayesian network is also a graphical representation of a
Markov chain. Alternatively, the Markov property can be expressed in terms of
the concept of d-separation [62].

It can be shown that P(w) = [],cv Po(wolwpar(v)) constitutes the factoriz-
ing probability distribution of a Bayesian network, where P(w,|wpqer(v)) equals
Py(wy|wpar(v)), whenever P, (Wpar(v)) > 0. For this reason, equation (2) can be
seen as the interpretation of a Bayesian network.



Markov Networks An alternative form of probabilistic graphical models refers
to undirected graphs G = (V, E) and is called Markov network [40]. It represents
Markov random fields, used, for instance, in imaging and spatial reasoning [2]
and stochastic models in neural networks [27].
Similar to Bayesian networks, the aim is to get a decomposition of the joint
probability, but now in terms of a potential representation of P:

A strictly positive probability distribution P on §2 factorizes according to an
undirected graph G = (V, E), if

Pwy= JT  ¢cw), ®3)

Cecliques(G)

with cliques(G) denoting the set of mazimal cligues on G. A maximal clique
on (G is a subgraph of G that is fully connected, but not strictly contained in
other fully connected subgraphs of G. The function ¢¢ depends on w through
we only.
It can be shown that P factorizes, if and only if any variable v € V' is indepen-
dent of V — {v} — neighbours(v), where neighbours(v) = {v'|{v,v'} € E} [24].
The latter condition is called the local G-Markovian property [18].
Similar to DAGs, factorization also implies the global Markovian property, say-
ing that, for any disjoint subsets A, B, and C of V, such that C separates A
from B in G, we have Ip(A, B|C). Equation (3) can therefore be viewed as the
interpretation of a Markov network.

2.1 Reasoning in Probabilistic Networks

DAGs and UGs represent conditional independence relations in fundamentally
different ways. In particular, there are UGs that represent a conditinal indepen-
dence relation that cannot be represented by a single DAG, and vice versa. On
the other hand, every dependence model that is isomorphic to a chordal graph
(&, which means that every cycle in G of at least length four has an edge joining
two nonconsecutive vertices, is also isomorphic to a DAG.

Chordal graphs constitute the class of decomposable models [40], which have
the useful property that the cliques of their Markov networks form a tree.
These special structures supported the development of efficient inference engines
for probabilistic graphical models. Their main purpose is to provide a compu-
tational simple conditioning of P. Simplicity of computation means that due to
the factorization property of the joint probability distribution P considered in
the probabilistic graphical model, conditioning can be performed stepwise on
marginal probability distributions referred to only few variables.

Oriented at the way the human mind reasons, J. Pearl [39] developed a
local propagation algorithm that works in singly connected Bayesian networks.
S. Lauritzen and D. Spiegelhalter [35] approached the same problem from a
pure mathematical point of view. Their proposed method works directly and
efficiently in an arbitrary sparse Bayesian network. It involves the transformation
of the given DAG into a triangulated UG, and the creation of a tree whose



vertices are the cliques of this triangulated graph. To realize the propagation
process, probabilities in the original Bayesian network are updated by message
passing among the vertices of this tree of cliques.
Flexible softwaretools for applying the method are, for example, HUGIN [1, 31]
and BAIES [6].

An alternative technique for local computation in hypertrees in the more
general framework of valuation-based systems (VBS) [47] has been proposed in
[51, 46] and implemented in PULCINELLA [43].

2.2 Learning Probabilistic Networks from Data

For many application fields, the need to specify probabilistic networks is con-
siderable, so that an automatic induction of the qualitative part (the structure)
and the quantitative part (the conditional probability distributions) using un-
derlying background knowledge could alleviate such specification difficulties.
Some modelling problems arise from the fact that various kinds of a priori in-
formation about the network can be available, expert knowledge as well as an
additional database of sample cases, both to be considered in a unified frame-
work for realizing the network induction process.

If we restrict ourselves to a pure data-oriented approach, then the typical as-
sumption is that of a given database D = (Dy, ..., Dr,) of m partial observations
D; C 24, of independent random variables with common distribution P.

The data are complete, if A; = V for all j = 1,...,m, partially incomplete (with
missing values), if V = A; U...U A, and incomplete (with hidden variables),
ifV#AU...UAn.

The network induction process consists of constructing a network within a se-
lected class of networks that best fits the database with respect to a chosen
(information-theoretical) optimality criterion.

Quantilative network induction refers to estimating the joint probability dis-

tribution P from a parametrized family of probability distributions, given a
specific network structure.
A lot of research has been done in this field, referred to basic methods such
as maximum likelihood, maximum penalized likelihood, or fully Bayesian ap-
proaches, involving different computational techniques of probabilistic inference
such as the expectation maximization (EM) algorithm, Gibbs sampling, Laplace
approximation, and Monte Carlo methods. For an overview, see [3, 55].

Qualitative network induction is learning a network structure from a database
of sample cases. In very general terms, the corresponding methods can be clas-
sified in three groups, either based on linearity and normality assumptions [42],
the extensive testing of conditional independence relations (CI tests) [63], or
taking a Bayesian approach [5, 36]. The first group is quite restrictive, CI tests
tend to be unreliable unless the volume of data is enormous, and they become
rapidly computationally infeasible with increasing number of vertices. Bayesian
learning requires debatable a priori assumptions (for example, default uniform
priors on distributions, uniform priors on DAGs) and also tends to be inefficient
unless Greedy search methods are used.



A quite promising forward search Bayesian learning algorithm is K2 [5], which
approximates the most probable structure of a Bayesian network in O(mn2u?r)
time, where r is the maximum cardinality of the considered domains, and u a
presupposed upper bound on the number of parents each vertex may have. K2
has successfully been applied, but needs a pre-ordering of the vertices. For this
reason, hybrid algorithms, combining CI tests (for finding a vertex ordering) and
K2 (for constructing the Bayesian network with respect to this vertex ordering)
have been developed [52]. K2 works with complete and crisp data, i.e. |Dj| =1,
j = 1,...,m, whereas the treatment of missing values and hidden variables is
only clear from a theoretical point of view [5].
An alternative algorithm, using a backward search strategy, is described in [30].
An important topic, namely determining the sample size needed to accept
the result delivered by structure induction algorithms on a chosen statistical
significance level has so far not been considered in a sufficient way. Besides the
problem of measuring distances between structures, an additional problem is
that of evaluating Markov equivalent DAGs, which are indistinguishable from
data alone.

3 Possibilistic Networks

3.1 Possibility Distributions

A possibility distribution 7 on a universe of discourse {2 is a mapping from 2
into the unit interval, i.e. 7 : 2 — [0, 1] [67].

From an intuitive point of view, given a possibility distribution 7 as an imperfect
specification of a state wop € £2, for any w € £2, m(w) quantifies the possibility
degree of truth of w = wg. The case 7(w) = 0 means that w = wy is impos-
sible, m(w) = 1 means that w = wq is possible without any restrictions, and
m(w) € (0,1) means that w = wy is partly possible, since there is evidence that
supports w = wqg as well as evidence that contradicts w = wy.

A possibility distribution 7 induces a partial ordering on the possible states,
which is less informative than a probability distribution on 2, so that the mea-
sure of possibility II( A) of a finite event A C 2 is simply defined as the maximum
of m(w) for all w € A.

Recent years of research provided different proposals for the semantics of a
theory of possibility as a framework for reasoning with uncertain and imprecise
data. Among the numerical approaches, we like to mention possibility distribu-
tions as epistemic interpretation of fuzzy sets [67], the axiomatic view of possibil-
ity theory based on the concept of a possibility measure [14], Spohn’s theory of
epistemic states [58], possibility distributions as one-point coverages of random
sets [38, 28], contour functions of consonant belief functions [45], falling shadows
in set-valued statistics [64], and possibility theory based on likelihoods [13].
The view of a possibility distribution as an information-compressed represen-
tation of an uncertain and imprecise specification of a state wg of interest can
be clarified in a random set framework that generalizes traditional approaches
given in [59, 12, 9}.



Let (C,2¢,P),C = {e1,¢3,... ,cm}, denote a finite probability space, and
v:C — 27 a set-valued mapping. C is interpreted as a set of contexts that are
distinguished for set-valued specifications of wy. The contexts are supposed to
describe different physical and observation-related frame conditions, which are,
for example, formalized by logical propositions.

The relation y(c;) is assumed to be the most specific correct set-valued spec-
ification of wg, implied by the frame conditions that describe ¢;. This says that
wo € ¥(c) is guaranteed to be true for ¥(c), but for no proper subset of y(c). The
quantity P({c;}) is the (subjective) probability of applying ¢; for the specifica-
tion of wy. The resulting random set I' = (v, P) is an imperfect (set-valued and
uncertain) specification of wp. Let 7 denote the one-point coverage of I' (the
possibility distribution induced by I'), defined as

7l'p:.Q—-)[O,l],ﬂ'p(w):P({CECIwE“/(C)}).

In a complete modelling, the contexts in C must be specified in detail, so that
the relationships among all contexts ¢; and their context—dependent specifica-
tions y{c;) of wg are clarified. On the other hand, if the contexts are unknown
or ignored, then mp(w) is the total mass of all contexts ¢ that provide a correct
specification y(c) of wg, and this quantifies the possibility of truth of “w = wy”
[20, 19].

The (information-compressed) imperfect knowledge about wq, represented
by 7r, can be specialized in the way that uncertainty is excluded by stating
a-correctness of I' w.r.t. wy, which means that there exists a subset C' C C of
contexts such that P(C’) > a and V¢’ € C’ : wp € 7(¢’). In this case, the a-cut
[1r]e = {w | 7r(w) > a} of the possibility distribution 7y turns out to be the
most specific correct set-valued specification of wo, given the representation I’
of our background knowledge about wg, and the a-correctness assumption w.r.t.
Wo [21]

Operating on possibility distributions can be performed within the pure ran-
dom set background [9, 28], but has the disadvantage that it is not conform with
the extension principle [66], which from a semantical point of view has been
claimed as the adequate way of generalizing operations from crisp or imprecise
(set-valued) data to the possibilistic setting (15, 33]. For this reason, it seems to
be more convenient to base the interpretation of possibility degrees on the above
mentioned concepts of a-correctness and maximum specificity, strongly oriented
at the meaning of the underlying contexts in C. For an extensive presentation
of this view of possibility theory, we refer to [21, 23]. It verifies the extension
principle not just as a principle, but as a theorem in the underlying formal
and semantical framework. Special aspects of possibility measures for decision
making have been considered in [22].

3.2 Possibilistic Graphical Models

Possibilistic graphical models can be introduced in a similar way as probabilistic
graphical models. The main difference consists in the change from probability
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distributions to possibility distributions, so that there is the need for an appro-
priate concept of possibilistic independence.

Although well-known for a couple of years [29], a unique concept of possibilistic
independence has not been fixed yet. For some recent discussions, see {16, 17]. In
our opinion, the main problem is to recognize that possibility theory is a calculus
for uncertain and imprecise reasoning,.

For comparison, note that using a single probability distribution covers only mod-
elling of uncertain, but precise data. In a corresponding way, relational database
theory applies relations in order to represent imprecise, but certain informa-
tion about dependencies among variables. Due to their restrictions to distin-
guishable kinds of imperfect data, the two frameworks supply different concepts
of independence, which are probabilistic independence and lossless-join decom-
posability. Probabilistic independence may be viewed as an uncertainty-driven
type of independence, whereas lossless-join decomposability [37, 60] reflects an
tmprecision-driven type of independence.

Since possibility theory addresses both kinds of imperfect knowledge, concepts
of possibilistic independence can be uncertainty—driven or imprecision—driven,
so that there are at least two ways of introducing and justifying them.

Concerning the treatment of imperfect information, one should consider two
levels of reasoning, namely the credal level, where all operations on our pieces
of knowledge take place, and the pignistic level, where the final step of decision
making follows [53]. Imprecision-driven possibilistic independence is strongly ori-
ented at the credal level, applying the extension principle as the basic concept of
operating on possibility distributions, and avoiding normalization, which would
change their meaning from quantifying absolute to relative degrees of possibility.
In opposite to this, an uncertainty-driven approach to possibilistic independence
should be referred to the pignistic level, taking decision making aspects into ac-
count and thus quantifying the relative degrees of possibility of events. On this
level, the need of normalization is obvious.

With respect to this consideration, in [8] two definitions of possibilistic in-
dependence have been justified, namely uncertainty-driven possibilistic indepen-
dence based on Dempster’s rule of conditioning [45], specialized to possibility
meagsures, and imprecision-driven possibilistic independence that coincides with
the well-known concept of possibilistic non-interactivity [14], which is a general-
ization of the lossless-join-decomposition property to the possibilistic setting.
Due to its consistency with the extension principle, we confine to possibilistic
non-interactivity. As a concept of possibilistic independence it can be formalized
as follows:

Let A, B, and C be three disjoint subsets of variables in V.

A is called conditionally independent of B given C w.r.t. m, abbr. In(4, B|C), iff

m(wauplwe) = min{m(walwe), 7(wplwe)} (4)
whenever m(wc) > 0, w € 2, with 7(+|-) denoting the non-normalized condi-

tional possibility distribution, i.e.

T(walwe) = maz{r(w o' € 2,0 =ws,we = we}.
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It has to be emphasized that both mentioned types of possibilistic indepen-

dence satisfy the so-called semi-graphoid azioms [41] of symmetry, decomposi-
tion, weak union, and contraction, which were proposed as basic properties that
any concept of conditional independence should have {7, 57, 54].
Possibilistic independence based on Dempster’s rule additionally satisfies the in-
tersection axiom and is therefore a graphoid [17]. But note that the intersection
axiom is related to uncertainty-driven independence as used in probability the-
ory. Hence, relational independence does not satisfy this axiom, and therefore it
cannot be satisfied by possibilistic non-interactivity as its more general type of
imprecision-driven independence.

Factorization of possibility distributions is similar to factorization of proba-
bility distributions by changing the product to the min-operator.

3.3 Reasoning in Possibilistic Networks

The axiomatic framework of valuation-based systems (VBS) [47, 50] is able to
represent various uncertainty calculi such as probability theory, Dempster-Shafer
theory, and possibility theory. Conditional independence in VBSs has been de-
fined in [48] and shown to satisfy the graphoid axioms in [49]. Possibilistic inde-
pendence in VBSs corresponds to uncertainty-driven possibilistic independence
based on Dempster’s rule. Hence, using this type of possibilistic independence,
a local propagation algorithm for hypertrees, developed in the setting of VBSs
[51, 46], can directly be applied to possibilistic networks that have or can be
transformed into this structure (note the correspondence between hypertrees,
Markov trees, and join trees). The general algorithm has been implemented in
the PULCINELLA system [43].

Choosing possibilistic non-interactivity as the appropriate type of possibilis-
tic independence in order to hold consistency with the extension principle, the
VBS approach has to be slightly modified, since no normalization takes place.
The related local propagation algorithms for hypertree structures are considered
in [33] and implemented in the tool POSSINFER [33].

3.4 Learning Possibilistic Networks from Data

Inducing the qualitative part (the structure) and the quantitative part (the con-
ditional possibility distributions) of a possibilistic network from a database of
sample cases has not been studied in much detail yet. A first result concerning
this topic is presented in [23]. It refers to the semantic background of possibility
distributions considered in Section 3.1, and defines a possibilistic interpretation
of a database D of complete, potentially imprecise sample cases, so that, in op-
posite to the methods mentioned in Section 2.4, |D;| > 1 is accepted. Based
on this interpretation, the task is to find a possibilistic network that best fits
D relative to a class of possibilistic networks and a chosen optimality valua-
tion. An obstacle for the corresponding structure induction methods is the fact
that there are already serious complexity problems in the more special case of
structure identification in relational data: If we are given a hypergraph H and
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a relation R, then only in cases where H is tractable (for instance, if H is a
hypertree), one can (tractably) decide whether H induces a lossless join decom-
position of R. On the other hand, the lossless join decomposition of a relation
mto a structure taken from a class of dependency hypergraphs turns out to be a
harder problem, which is presumably intractable even in cases where each indi-
vidual member of the class is tractable [11]. As a consequence, at least from the
viewpoint of efficiency, heuristics for inducing possibilistic networks from data
have to be tolerated.

In our approach, the valuation of a DAG or an UG with respect to a given
database is referred to the amount of information that has to be added to the
network in order to identify any possible state w € {2 as the unknown state wg
of interest, assuming a uniform distribution on £2. Due to the involved handling
of imprecise data, the underlying information measure is Hartley information
[25], generalized to the uncertainty calculus of possibility theory. In [23], we
present the theoretical background and a Greedy search algorithm for inducing
DAG structures of possibilistic networks in O(n?mr) time without any a priori
ordering of the vertices. This algorithm has successfully been applied for recon-
structing a non-singly connected DAG with 22 vertices and 24 arcs, based on
a generated database of 700 samples [23]. The reconstruction is perfect, except
from those dependencies, where a unique directing of arcs is not possible, since
not expressable in a database.

4 Concluding Remarks

In this overview, we discussed various aspects of reasoning and learning related to
probabilistic and possibilistic graphical models. Whereas probabilistic networks
deal with uncertain, but precise information, possibilistic networks — for reasons
of efficiency — accept a well-founded type of information compression, reducing
exact reasoning to only approximate reasoning, which has turned out to be
sufficient for many purposes in practice.

Current research interest concerns the automatic construction of graphical
models from expert knowledge and available databases of sample cases. In more
general terms, this i1s a well-known problem in the field of Machine Learning,
where several techniques of concept learning from examples have been discussed.
On the other hand, the special properties of the considered network structures
and uncertainty calculi restrict the applicability of general machine learning
methods. Within the addressed numerical settings, probably approzimately cor-
rect (PAC) learning [61] seems to be convincing at least with respect to its
underlying probabilistic framework. In PAC learning, there are some nice com-
plexity results [32, 10] that could be of some interest for limiting the number of
sample cases needed in a database in order to guarantee a certain approxima-
tion quality of the obtained network. Nevertheless, pure statistical methods of
learning probability distributions and verifying probabilistic independence seem
to be appropriate. In a similar way, the induction of possibilistic networks from
data can be oriented at the specific properties of possibility theory.
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