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A b s t r a c t .  PVS stands for "Prototype Verification System." It consists 
of a specification language integrated with support  tools and a theorem 
prover. PVS tries to provide the mechanization needed to apply formal 
methods both rigorously and productively. 
This tutorial  serves to introduce PVS and its use in the context of hard- 
ware verification. In the first section, we briefly sketch the purposes for 
which PVS is intended and the rationale behind its design, mention some 
of the uses that  we and others are making of it. We give an overview of 
the PVS specification language and proof checker. The PVS language, 
system, and theorem prover each have their own reference manuals, 1,2,3 
which you will need to study in order to make productive use of the sys- 
tem. A pocket reference card, summarizing all the features of the PVS 
language, system, and prover is also available. 
The purpose of this tutorial is not to describe in detail the features of 
PVS and how to use the system. Rather, its purpose is to introduce 
some of the more unique and powerful capabilities that  are provided by 
PVS and demonstrate how these features can be used in the context of 
hardware verification. We present completely worked out proofs of two 
hardware examples. One of the examples is a pipelined microprocessor 
that  has been used as benchmark for model checkers and the other is a 
parameterized implementation of an N-bit ripple-carry adder. 

1 Introducing PVS 

PVS s t ands  for " P r o t o t y p e  Verif icat ion Sys tem."  I t  consis ts  of  a specif icat ion 
l anguage  i n t eg ra t ed  wi th  suppo r t  tools  and  a t heo rem prover .  PVS tr ies  to  pro-  

vide  the  mechan iza t ion  needed to a p p l y  fo rma l  m e t h o d s  bo th  r igorous ly  and 

produc t ive ly .  
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lease). Computer  Science Laboratory, SRI International, Menlo Park, CA, February 
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ual (Beta Release). Computer  Science Laboratory, SRI International, Menlo Park, 

CA, February 1993. 
3 S. Owre, N. Shankar, and ]. M. Rushby. User Guide for the PVS Specification and 

Verification System (Beta Release). Computer Science Laboratory, SRI International, 

Menlo Park, CA, February 1993. 
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The specification language of PVS is a higher-order logic with a rich type- 
system, and is quite expressive; we have found that  most of the mathematical 
and computational concepts we wish to describe can be formulated very directly 
and naturally in PVS. Its theorem prover, or proof checker (we use either term, 
though the latter is more correct), is both interactive and highly mechanized: 
the user chooses each step that  is to be applied and PVS performs it, displays 
the result, and then waits for the next command. PVS differs from most other 
interactive theorem provers in the power of its basic steps: these can invoke 
decision procedures for arithmetic and equality, a BDD-based propositional sim- 
plifier, efficient hashing-based automatic conditional rewriting, induction, and 
other relatively large units of deduction; it differs from other highly automated 
theorem provers in being directly controlled by the user. We have been able to 
perform some significant new hardware verification exercises quite economically 
using PVS; we have also repeated some verifications first undertaken in other 
systems and have usually been able to complete them in a fraction of the original 
time (of course, these are previously solved problems, which makes them much 
easier for us than for the original developers). 

PVS is the most recent in a line of specification languages, theorem provers, 
and verification systems developed at SRI, dating back over 20 years. That  
line includes the Jovial Verification System [13], the Hierarchical Development 
Methodology (HDM) [25,26], STP [30], and EHDM [22,27]. We call PVS a 
"Prototype Verification System," because it was built partly as a lightweight 
prototype to explore "next generation" technology for EHDM, our main, heavy- 
weight, verification system. Another goal for PVS was that  it should be freely 
available, require no costly licenses, and be relatively easy to install, maintain, 
and use. Development of PVS was funded entirely by SRI International. 

The purpose of this tutorial is not to describe in detail the features of PVS 
and how to use the system. Rather, its purpose is to introduce some of the more 
unique and powerful capabilities that  are provided by PVS and demonstrate how 
these features can be used in the context of hardware verification. We present 
completely worked out proofs of two hardware examples. One of the examples 
is a pipelined microprocessor that has been used as benchmark for testing the 
capacity of model checkers to handle datapath-oriented circuits. While the size of 
the datapath is irrelevant in a theorem proving exercise, we wanted to see if the 
proof would go through just as automatically as in a model checker. The second 
example is one of the circuits supplied as a TPCD benchmark: a parameterized 
implementation of an N-bit ripple-carry adder. The second example illustrates 
proof by induction. 

1.1 Des ign Goals for PVS 

The design of PVS was shaped by our experience in doing or contemplating 
early-lifecycle applications of formal methods. Many of the larger examples we 
have done concern algorithms and architectures for fault-tolerance (see [23] for 
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an overview). We found that  many of the published proofs that we at tempted 
to check were in fact, incorrect, as was one of the important  algorithms. We 
have also found that  many of our own specifications are subtly flawed when first 
written. For these reasons, PVS is designed to help in the detection of errors 
as well as in the confirmation of "correctness." One way it supports early error 
detection is by having a very rich type-system and correspondingly rigorous 
typechecking. A great deal of specification can be embedded in PVS types (for 
example, the invariant to be maintained by a state-machine can be expressed as 
a type constraint), and typechecking can generate proof obligations that amount 
to a very strong consistency check on some aspects of the specification. 

Another way PVS helps eliminate certain kinds of errors is by providing very 
rich mechanisms for conservative extension-- that  is, definitional forms that  are 
guaranteed to preserve consistency. Axiomatic specifications can be very effec- 
tive for certain kinds of problem (e.g., for stating assumptions about the en- 
vironment), but axioms can also introduce inconsistencies--and our experience 
has been that  this does happen rather more often than one would wish. Defini- 
tional constructs avoid this problem, but a limited repertoire of such constructs 
(e.g., requiring everything to be specified as a recursive function) can lead to 
excessively constructive specifications: specifications that say "how" rather than 
"what." PVS provides both the freedom of axiomatic specifications, and the 
safety of a generous collection of definitional and constructive forms, so that  
users may choose the style of specification most appropriate to their problems. 4 

The third way that  PVS supports error detection is by providing an effec- 
tive theorem prover. The design rationale behind the PVS theorem prover was 
to provide automatic support for obvious and tedious parts of a proof while 
giving the user the ability to guide the prover at higher levels of a proof. This 
goal is accomplished by implementing the primitive inference steps of PVS using 
automatic rewriting and efficient decision procedures for arithmetic and propo- 
sitional logic. This approach makes PVS an effective system for hardware verifi- 
cation since most hardware proofs need significant amount of rewriting and case 

analyses. 

Our experience has been that  the act of trying to prove properties about 
specifications is the most effective way to truly understand their content and 
to identify errors. This can come about incidentally, while at tempting to prove 
a "real" theorem, such as that  an algorithm achieves its purpose, or it can be 
done deliberately through the process of "challenging" specifications as part of 
a validation process. A challenge has the form "if this specification is right, then 
the following ought to follow"--i t  is a test case posed as a putative theorem; we 
"execute" the specification by proving theorems about it. 5 

-4 Unlike EHDM, PVS does not provide special facilities for demonstrating the consis- 
tency of axiomatic specifications. We do expect to provide these in a later release, 
but using a different approach than EHDM. 

5 Directly executable specification languages (e.g., [2, 17]) support validation of spec- 
ifications by running conventional test cases. We think there can be merit in this 
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1.2 U s e s  o f  P V S  

PVS has so far been applied to several small demonstration examples, and a 
growing number of significant verifications. The smaller examples include the 
specification and verification of ordered binary tree insertion [28], the Boyer- 
Moore majority algorithm, an abstract pipelined processor, Fischer's real-time 
mutual exclusion protocol, and the Oral Messages protocol for Byzantine agree- 
ment. Examples of this scale can typically be completed within a day. More 
substantial examples include the correspondence between the programmer and 
RTL level of a simple hardware processor [11], the correctness of a real-time 
railroad crossing controller [29], a variant of the SchrSder-Bernstein theorem, 
and the correctness of a distributed agreement protocol for a hybrid fault model 
consisting of Byzantine, symmetric, and crash faults [19]. These harder examples 
can take from several days to a week. 

Currently, PVS is being applied to the requirements specification of selected 
aspects of the control software for NASA's space shuttle project and to verify a 
commercial pipelined microprocessor, AAMP5, being built for avionics applica- 
tions at Rockwell International. 

2 T h e  P V S  L a n g u a g e  

The PVS specification language builds on a classical typed higher-order logic. 
The base types consist of booleans, real numbers, rationals, integers, nat- 
ural numbers, lists, and so forth. The primitive type constructors include 
those for forming function (e.g., [na t  -> n a t ] ) ,  record (e.g., [# a : n a t ,  b 
: l i s t  [nat ]  #]),  and tuple types (e.g., [ i n t ,  l i s t  [na t ]  ]) .  PVS departs from 
simply typed logics by allowing predicate subtypes. A predicate subtype consists 
of exactly those elements of a given type satisfying a given predicate so that,  
for example, the subtype of positive numbers is given by the type {n : na t  I 
n > 0}. Predicate subtypes are used to explicitly constrain the domains and 
ranges of operations in a specification and to define partial functions, e.g., di- 
vision, as total functions on a specified subtype. In general, typechecking with 
predicate subtypes is undecidable. 6 PVS contains a further useful enrichment 
to the type system in the form of dependent function, record, and tuple con- 
structions where the type of one component of a compound value depends on 

approach, but that it should not compromise the effectiveness of the specification 
language as a tool for deductive analysis; we are considering supporting an executable 
subset within PVS. 

6 PVS does have an algorithmic typechecker that checks for type correctness relative to 
the simple types. It generates proof obligations corresponding to predicate subtypes. 
The typical proof obligations can be automatically discharged by the PVS decision 
procedures. The provability of such proof obligations is the only source of undecid- 
ability in the PVS type system so that none of the benefits of decidable typechecking 
are lost. 
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the value of another component. PVS terms include constants, variables, ab- 
stractions (e.g., (LAMBDA ( i  : na t ) :  i * i ) ) ,  applications (e.g., rood(i, 5)), 
record constructions (e.g., (# a := 2, b := cons ( l ,  nu l l )  #)), tuple con- 
structions (e.g., ( -5 ,  cons ( l ,  nu l l ) ) ) ,  function updates (e.g., f WITH [(2) 
:= 7]), and record updates (e.g., r WITH [a := 5, b := cons(3,  b ( r ) ) ] ) .  
PVS specifications are packaged as theories that can be parametric in types 
and constants. Type parametricity (or polymorphism) is used to capture those 
concepts or results that can be stated uniformly for all types. PVS also has 
a facility for automatically generating abstract datatype theories (containing 
recursion and induction schemes) for a class of abstract datatypes [28]. 

3 T h e  P V S  P r o o f  C h e c k e r  

The central design assumptions in PVS are that 

- The purpose of an automated proof checker is not merely to prove theorems 
but also to provide useful feedback from failed and partial proofs by serving 

as a rigorous skeptic. 
- Automation serves to minimize the tedious aspects of formal reasoning while 

maintaining a high level of accuracy in the book-keeping and formal manip- 

ulations. 
- Automation should also be used to capture repetitive patterns of argumen- 

tation. 
- The end product of a proof attempt should be a proof that, with only a small 

amount of work, can be made humanly readable so that it can be subjected 
to the social process of mathematical scrutiny. 

In following these design assumptions, the PVS proof checker is more automated 
than a low-level proof checker such as AUTOMATH [12], LCF [15], Nuprl [7], 
Coq [8], and HOL [16], but provides more user control over the structure of the 
proof than highly automated systems such as Nqthm [3,4] and Otter [21]. We 
feel that the low-level systems over-emphasize the formal correctness of proofs 
at the expense of their cogency, and the highly automated systems emphasize 
theorems at the expense of their proofs. 

What is unusual about PVS is the extent to which aspects of the language, 
the typechecker, and proof checker are intertwined. The typechecker invokes the 
proof checker in order to discharge proof obligations that arise from typechecking 
expressions involving predicate subtypes or dependent types. The proof checker 
also makes heavy use of the typechecker to ensure that all expressions involved in 
a proof are well-typed. This use of the typechecker can also generate proof obli- 
gations that are either discharged automatically or are presented as additional 
subgoals. Several aspects of the language, particularly the type system, are built 
into the proof checker. These include the automatic use of type constraints by the 
decision procedures, the simplifications given by the abstract datatype axioms, 
and forms of beta-reduction and extensionality. 
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Another less unusual aspect of PVS is the extent to which the automatic 
inference and decision procedures involving equalities and linear arithmetic in- 
equalities are employed. ~ The most direct consequence of this is that the trivial, 
obvious, or tedious parts of the proof are often discharged so that the user can 
focus on the intellectually demanding parts of the proof, and the resulting proof 
is also easier to read. PVS also provides an efficient conditional rewriter that  
interacts very closely with its decision procedures to simplify conditions during 
rewriting. More details about the rewriting and the decision procedures used in 
PVS are described in [10]. The capabilities of the inference and decision proce- 
dures, which play a central role in almost all proofs in PVS are made available 
to the user by means of the following primitive inference steps. 

1. Bddsimp performs efficient BDD-based propositional simplification on the 
current goal. 

2. D o - r e w r i t e  performs automatic conditional rewriting on expressions in the 
current goal using rewrite rules stored in the underlying database used by 
the inference procedures. PVS provides several commands for the user to 
make rewrite rules out of definitions, lemmas and axioms and enter them 
in the database. The rewriter invokes the decision procedures to simplify 
conditions of conditional rewrite rules. 

3. Asse r t  invokes the arithmetic and equality decision procedures on the cur- 
rent goal. Besides trying to prove the subgoal using the decision procedures, 
it performs the following tasks 

- it stores the subgoal information in the underlying database, allowing 
automatic use to be made of it later. 

- it simplifies the subgoal using the decision procedures using rewriting as 
well as other simplification techniques. 

In order to learn how to use the PVS proof checker, one must first understand 
the sequent representation used by PVS to represent proof goals, the commands 
used to move around and undo parts of the proof tree, and the commands used 
to get help. One must then understand the syntax and effects of proof commands 
used to build proofs. Many of these commands are extremely powerful even in 
their simplest usage. Several of these commands can be more carefully directed 
by supplying them with one or more optional arguments. The advanced user will 
also need to understand how to define proof strategies that  capture repetitive 
patterns of proof commands, and commands used for displaying, editing, and 
replaying proofs. There are about 20 basic commands and a similar number of 
commonly used high-level strategies. 

7 The Ontic system [20] is a proof checker where decision procedures are ubiquitously 
used. Nqthm [3,4], Eves [24], and IMPS [14] also rely heavily on the use of decision 
procedures. 
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In the following sections we introduce some of the details of PVS system by 
working the complete proof of correctness of two examples. This will introduce 
some of the most useful commands and provide a glimpse into the philosophy 
behind PVS. PVS uses EMACS as its interface by extending EMACS with PVS 
functions, but all the underlying capabilities of EMACS are available. Thus the 
user can read mail and news, edit nonPVS files, or execute commands in a shell 
buffer in the usual way. All PVS commands are entered as extended EMACS 
commands. The proof checker runs as a subprocess inside EMACS. 

5 A Pipe l ined  Microprocessor 

In this section we develop a complete proof of a correctness property of the con- 
troller logic of a simple pipelined processor design described at a register-transfer 
level. The design and the property verified are both based on the processor ex- 
ample given in [5]. The example has been used as a benchmark for evaluating 
how well finite state-enumeration based tools, such as model checkers, can handle 
datapath-oriented circuits with a large number of states by varying the size of 
the datapath.  From the perspective of a theorem prover, the size of the datapath  
is irrelevant because the specification and proof are independent of the datapath  
size. As a theorem proving exercise, the challenge is to see if the proof can be 
done just as automatically as a model checker. As we will see in the following, 
in PVS the proof can be obtained by repeatedly invoking one of its primitive 

commands a s s e r t .  

5.1 I n f o r m a l  D e s c r i p t i o n  

Figure 1 shows a block diagram of the pipeline design. The processor executes 
instructions of the form (opcode s r c l  s rc2  d s t n ) ,  i.e., "destination register 
d s t n  in the register file REGFILE becomes some ALU function determined by 
opcode of the contents of source registers s r c l  and src2.  Every instruction is 
executed in three stages (cycles) by the processor: 

1. Read: Obtain the proper contents of the register file at s r c l  and s r c2  and 
clock them into op reg l  and opreg2,  respectively. 

2. Compute: Perform the ALU operation corresponding to the opcode (remem- 
bered in opcoded) of the instruction and clock the result into wbreg. 

3. Write: Update the register file at the destination register (remembered in 
ds tndd)  of the instruction with the value in wbreg. 

The processor uses a three-stage pipeline to simultaneously execute distinct 
stages of three successive instructions. That  is, the read stage of the current 
instruction is executed along with the compute stage of the previous instruction 
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src2 ~ REGFILE 

o P ~ 6 1 ~ c ' o ~ l ~  d �9 . . 

opreg: 

Fig. 1. A Pipelined Microprocessor 

and the write stage of the previous-to-previous instruction. Since the REGFILE is 
not updated with the results of the previous and previous-to-previous instruc- 
tions while a read is being performed for the current instruction, the controller 
"bypasses" REGFILE, if necessary, to get the correct values for the read. The pro- 
cessor can abort, i.e., treat as NOP, the instruction in the read stage by asserting 
the s t a l l  signal true. An instruction is aborted by inhibiting its write stage by 
remembering the s t a l l  signal until the write stage via the registers s t a l l d  and 
s t a l l dd .  We verify that an instruction entering the pipeline at any time gets 
completed correctly, i.e., will write the correct result into the register file, three 
cycles later, provided the instruction is not aborted. 

5.2 Formal Specification 

PVS specifications consist of a number of files, each of which contains one or 
more theories. A theory is a collection of declarations: types, constants (including 
functions), axioms that express properties about the constants, and theorems 
and lemmas to be proved. Theories may import other theories; Every entity 
used in a theory must be either declared in an imported theory or be part of the 
prelude (the standard collection of theories built-in to PVS). 

The microprocessor specification is organized into three theories, selected 
parts of which are shown in Figures 2 and 3. (The complete specification can be 
found in [31].) The theory pipe (Figure 2) contains a specification of the design 
and a statement of the correctness property to be proved. The theories s igna l  
and time (Figure 3) imported by pipe declares the types s igna l  and time used 
in pipe. 

The theory pipe is parameterized with respect to the types of the register 
address, data, and the opcode field of the instructions. A theory parameter in 
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pipe[addr: TYPE, data: TYPE, opcodes: TYPE]: THEORY 
BEGIN 
IMPORTING signal, time 

ASSUMING 
addr_nonempty: ASSUMPTION (EXISTS Ca: addr): TRUE) 
data_nonempty: ASSUMPTION (EXISTS (d: data): TRUE) 
opcodes_nonempty: ASSUMPTION (EXISTS Go: opcodes): TRUE) 

ENDASSUMING 

t :  VAR time 

~X Signal declarations 
opcode: signal[opcodes] 
s r c l ,  src2, dstn: s ignal[addr]  
stall: signal[bool] 
aluout: signal[data] 
regfile: signal[[addr -> data]] 

~ Specification of constraints on the signals 
dstnd_ax: AXIOM dstnd(t+l) = dstn(t) 
dstndd_ax: AXIOM dstndd(t41)= dstnd(t) 

resffile.ax: AXIOM regfile(t+l) = 
IF stalldd(t) THEN regfile(t) 
ELSE r e V i l e ( z )  

WITH [(dstndd(t)) := wbreg(t)] 
ENDIF 

opregl.ax: AXIOM opregl(t+l) = 
IF src1(t) ffi dstnd(t) ~ NOT stalld(t) 

THEN aluout(t) 
ELSIF srcl(t) = dstndd(t) ~ NOT stalldd(t) 

THEN .breg( t )  
ELSE r s g f i l e ( t ) ( s r c l ( t ) )  ENDIF 

opreg2.ax: AXIOM . . .  

aluop: [opcodes, data, data -> data] 
ALU_ax: AXIOM aluout(t) = aluop(opcoded(t), opreg1(t), 

opreg2(t)) 
correctness: THEOREM (FORALL t: 

NOT(stall(t)) IMPLIES regfile(t§ = 
aluop(opcode(t), regfile(t§ 

regfile(t§ ) 

END pipe 

Fig. 2. Microprocessor Specification 

PVS can be either a type parameter or a parameter belonging to a particular 
type, such as na t .  Since p ipe  does not impose any restriction on its parame- 
ters, other than the requirement that  they be nonempty, which is stated in the 
ASSUMING part of the theory, one can instantiate them with any type. Every en- 
t i ty declared in a parameterized theory is implicitly parameterized with respect 
to the parameters of the theory. For example, the type s i g n a l  declared in the 
parameterized theory s i g n a l  is a parametric type denoting a function that  maps 
t ime (a synonym for na t )  to the type parameter T. (The type s i g n a l  is used to 
model the wires in our design.) By importing the theory s i g n a l  uninstantiated 
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s igna l [va l :  TYPE]: THEORY 
BEGIN 

signal: TYPE = [time -> val ]  
END signal 

time: THEORY 
BEGIN 
time: TYPE nat 

END signal 

Fig. 3. Signal Specification 

in pipe, we have the freedom to create any desired instances of the type signal. 

In this tutorial, we use a functional style of specification to model register- 
transfer-level digital hardware in logic. In this style, the inputs to the design 
and the outputs of every component in the design are modeled as signals. Every 
signal that  is an output of a component is specified as a function of the signals 
appearing at the inputs to the component. 

This style should be contrasted with a predicative style, which is commonly 
used in most HOL applications. In the predicative style every hardware com- 
ponent is specified as a predicate relating the input and output signals of the 
component and a design is specified as a conjunction of the component predi- 
cates, with all the internal signals used to connect the components hidden by 
existential quantification. A proof of correctness for a predicative style specifica- 
tion usually involves executing a few additional steps at the start of the proof to 
essentially transform the predictative specification into an equivalent functional 
style. After that, the proof proceeds similar to that  of a proof in a functional 
specification. The additional proof steps required for a predicative specification 
essentially unwind the component predicates using their definitions and then ap- 
propriately instantiate the existentially quantified variables. An automatic way 
of performing this translation is discussed in [31], which illustrates more exam- 
ples of hardware design verification using PVS. 

Getting back to our example, the microprocessor specification in p ipe  con- 
sists of two parts. The first part declares all the signals used in the design--the 
inputs to the design and the internal wires that  denote the outputs of compo- 
nents. The composite state of REGFILE, which is represented as a function from 
addr to data ,  is modeled by the signal regfile. The signals are declared as un- 
interpreted constants of appropriate types. The second part consists of a set of 
AXIOMs that specify the the values of the signals over time. (To conserve space, 
we have only shown the specification of a subset of the signals in the design.) 
For example, the signal value at the output of the register ds tnd  at time t + l  is 
defined to be that of its input a cycle earlier. The output of the ALU, which is 
a combinational component, is defined in terms of the inputs at the same time 
instant. 

In PVS, one can use a descriptive style of definition, as illustrated in this ex- 
ample, by selectively introducing properties of the constants declared in a theory 
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as AXIOMs. Or, one can use the definitional forms provided by the language to 
define the constants. An advantage of using the definitions is that  a specification 
is guaranteed to be consistent, although it might be overspecified. An advantage 
of the descriptive style is that  it gives better control over the degree to which one 
wants to define an entity. For example, one could have specified d s tnd  prescrip- 
tively by using the conventional function definition mechanism of PVS. PVS's 
function definition mechanism would have forced us to specify the value of the 
signal at time t = 0 to ensure that  the function is total. In the descriptive style 
used, we have left the value of the signal at 0 unspecified. 

In the present example, the specifications of the signals opreg l  and opreg2 
are the most interesting of all. They have to check for any register collisions 
that  might exist between the instruction in the read stage and the instructions 
in the later stages and bypass reading from the register file in case of collisions. 
The r e g f i l e  signal specification is recursive since the register file state remains 
the same as its previous state except, possibly, at a single register location. The 
WITH expression is an abbreviation for the result of updating a function at a 
given point in the domain value with a new value. Note that  the function a luop 
that  denotes the operation ALU performs for a given opcode is left completely 
unspecified since it is irrelevant to the controller logic. 

The theorem c o r r e c t n e s s  to be proved states a correctness property about 
the execution of the instruction that  enters the pipeline at t ,  provided the in- 
struction is not aborted, i.e., s t a l l ( t )  is not true. The equation in the conclusion 
of the implication compares the actual value (left hand side) in the destination 
register three cycles later, when the result of the instruction would be in place, 
with the expected value. The expected value is the result of applying the a luop 
corresponding to the opcode of the instruction to the values at the source field 
registers in the register file at t+2. We use the state of the register file at t+2 
rather than t to allow for the results of the two previous instructions in the 

pipeline to be completed. 

5.3 P r o o f  of  C o r r e c t n e s s  

The next step is to typecheck the file, which parses and checks for semantic 
errors, such as undeclared names and ambiguous types. Typechecking may build 
new files or internal structures such as type correctness conditions (TCCs). The 
TCCs represent proof obligations that  must be discharged before the p ipe  theory 
can be considered typechecked. The typechecker does not generate any TCCs in 
the present example. If, for example, one of the assumptions, say for addr, in 
the ASSUMING part of the theory was missing, the typechecker would generate 
the following TCC to show that the addr type is nonempty. The declaration of 
the signal s r e l  forces generation of this TCC because a function is nonexistent 

if its range is empty. 
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Z Existence TCC generated (line 17) for srcl: signal[addr] 
Z May need to add an assuming clause to prove this. 

Z unproved 
srcl_TCCl: 0BLIGATION (EXISTS (xl: signal[addr]): TRUE); 

The PVS proof checker runs as a subprocess of Emacs. Once invoked on a 
theorem to be proved, it accepts commands directly from the user. The basic 
objective of developing a proof in PVS as in other subgoal-directed proof checkers 
(e.g., HOL), is to generate a proof tree in which all of the leaves are trivially 
true. The nodes of the proof tree are sequents, and while in the prover you will 
always be looking at an unproved leaf of the tree. The current branch of a proof 
is the branch leading back to the root from the current sequent. When a given 
branch is complete (i.e., ends in a true leaf), the prover automatically moves on 
to the next unproved branch, or, if there are no more unproven branches, notifies 
you that the proof is complete. 

The primitive inference steps in PVS are a lot more powerful than in HOL. 
So, it is not necessary to build complex tactics to handle tedious lower level 
proofs in PVS. A user knowledgeable in the ways of PVS can typically get 
proofs to go through mostly automatically by making a few critical decisions at 
the start of the proof. However, PVS does provide the user with the equivalent 
of HOL's tacticals, called strategies, and other features to control the desired 
level of automation in a proof. 

"The proof of the microprocessor property shown below follows a certain gen- 
eral pattern that works successfully for most hardware proofs. This general proof 
pattern, variants of which have been used in other verification exercises [1, 18], 
consists of the following sequence of general proof tasks. 

Quant i f ier  e l iminat ion:  Since the decision procedures work on ground formu- 
las, the user must eliminate the relevant universal quantifiers by skolemiza- 
tion or selecting variables on which to induct and existential quantifiers by 
suitable instantiation. 

Unfold ing  definitions: The user may have t~o simplify selected expressions and 
defined function symbols in the goal by rewriting using definitions, axioms 
or lemmas. The user may also have to decide the level to which the function 
symbols have to rewritten. 

Case analysis:  The user may have to split the proof based on selected boolean 
expressions in the current goal and simplify the resulting goals further. 

Each of the above tasks can be accomplished automatically using a short 
sequence of primitive PVS proof commands. The complete proof of the theorem 
is shown below. Selected parts of the proof session is reproduced below as we 
describe the proof. 
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1: ( ~ h e . *  (skosimp) 
2: (auto-rewri te- theory  " p i p e ' '  :always? t)  
3: (repeat (do-rewri te))  
4: (apply (then* (repeat ( l i f t - i f ) )  
5: (bddsimp) 
6: (assert)))) 

In the proof, the names of strategies are shown in italics and the primitive 
inference steps in t y p e - w r i t e r  font .  (We have numbered the lines in the proof 
for reference.) Then* applies the first command in the list that follows to the 
current goal; the rest of the commands in the list are then applied to each of 
the subgoals generated by the first command application. The apply command 
used in line 5 makes the application of a compound proof step implemented by 
a strategy behave as an atomic step. 

The first goal in the proof session is shown below. It consists of a single 
formula (labeled {1}) under a dashed line. This is a sequent; formulas above the 
dashed lines are called antecedents and those below are called succedents. The 
interpretation of a sequent is that the conjunction of the antecedents implies the 
disjunction of the succedents. 

correctness : 

I . . . . . . .  

{1} (FORALL t :  NOT ( s t a l l ( t ) )  
IMPLIES r e g f i l e ( t  + 3 ) (ds tn ( t ) )  = 

aluop(opcode(t) ,  r e g f i l e ( t  + 2 ) ( s r c l ( t ) ) ,  
r e g f i l e ( t  + 2 ) ( s r c 2 ( t ) ) ) )  

The quantifier elimination task of the proof is accomplished by the command 
skosimp, which skolemizes all the universally quantified variables in a formula 
and flattens the sequent resulting in the following goal. Note that s t a l l ( t  !1) 
has been moved to the succedent in the sequent because PVS displays every 
atomic formula in its positive form. 

Rule? (skosimp) 
Skolemizingand flattening, this simplifies to: 

correctness : 

I . . . . . . .  

{i} (stan(t!i)) 
{2} regfile(t!i + 3)(dstn(t!l)) 

= 

aluop(opcode(t!l), regfile(t!l + 2)(srcl(t!1)), 
regfile(t!l + 2)(src2(t!l))) 
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The next task--unfolding definitions--is performed by the commands in lines 
2 through 3. PVS provides a number of ways of unfolding definitions ranging from 
unfolding one step at a time to automatic rewriting that performs unfolding in 
a brute-force fashion. Brute-force rewriting usually results in larger expressions 
than controlled unfolding and, hence, potentially larger number of cases to con- 
sider. If a system provides automatic and efficient rewriting and case analysis 
facilities, then one can dare to use the automatic approach, as we do here. In 
PVS automatic rewriting is performed by first entering the definitions and AX- 
IOMs that  one wants to be used for unfolding as rewrite rules. Once entered, 
the commands, such as do-rewrite and assert, that  perform rewriting as part 
of their repertoire repeatedly apply the rewrite rules until none of the rules is 
applicable. To control the size of the expression resulting from rewriting and the 
potential for looping, the rewriter uses the following restriction for stopping a 
rewrite: If the right-hand-side of a rewrite is a conditional expression, then the 
rule is applied only if the condition simplifies to true or false. 

Here our aim is to unfold every signal in the sequent so that  every signal ex- 
pression contains only the start t ime t ! 1. So, we make a rewrite rule out of every 
AXIOM in the theory p ipe  by means of the command a u t o - r e w r i t e - t h e o r y  
on line 2. We also force an over-ride of the default restriction for stopping rewrit- 
ing by setting the tag s a lways? to true in the a u t o - r e w r i t e - t h e o r y  command 
and embed d o - r e w r i t e  inside a r e p e a t  loop to force maximum rewriting. In 
the present example, the rewriting is guaranteed to terminate because every 
feedback loop is cut by a sequential component. 

At the end of automatic rewriting, the succedent we are trying to prove is in 
the form of an equation on two deeply nested conditional expressions as shown 
below in an abbreviated fashion. The various cases in conditional expression 
shown above arise as a result of the different possible conflicts between instruc- 
tions in the pipeline. The equation we are trying to prove contains two distinct, 
but equivalent conditional expressions, as in IF a THEN b ELSE c ENDIF = IF 
NOT a THEN c ELSE b ENDIF, that  can only be proved to be equal by perform- 
ing a case-split on one or more of the conditions. While a s s e r t  simplifies the 
leaves of a conditional expression assuming every condition along the path to the 
leaves holds, it does not split propositions. One way to perform the case-splitting 
task automatically is to "lift" all the IF-THEN-ELSEs to the top so that the equa- 
tion is transformed into a propositional formula with unconditional equalities as 
atomic predicates. After performing such a lifting, one can try to reduce the 
resulting proposition to true using the propositional simplification command 
bddsimp. If bddsimp does not simplify the proposition to true, then it is most 
likely the case that  equations at one or more of the leaves of the proposition 
need to be further simplified, by a s s e r t ,  for instance, using the conditions along 
the path. If the propositional formula does not reduce to true or false, bddsimp 

-~ Tags are one of the ways in which PVS permits the user to modify the functionality 
of proof commands. 
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produces a set of subgoals to be proved. In the present case, each of these goals 
can be discharged by a s s e r t .  The compound proof step appearing on lines 4 
through 6 of the proof accomplishes the case-splitting task. 

correctness : 

I . . . . . . .  

[1] ( s t a l l ( t ! l ) )  
{2} a luop(opcode( t ! l ) ,  

IF s r c l ( t ! l )  = d s t n d ( t ! l )  & NOT s t a l l d ( t ! l )  
THEN aluop(opcoded( t ! l ) ,  o p r e g l ( t ! l ) ,  op reg2( t ! l ) )  

ELSIF srcl(t!l) = dstndd(t!l) & N0T stalldd(t!l) 

THEN wbreg(t!l) 

ELSE regfile(t!l)(srcl(t!l)) ENDIF, 

~  

ENDIF) 

= aluop(opcode(t!l), 

IF stalld(t!l) THEN IF stalldd(t!l) THEN regfile(t!l) 

ELSE regfile(t!l) WITH [(dstndd(t!l)) := wbreg(t!l)] 

ENDIF 

ELSE ... 

ENDIF(srcl(t!l)), 
IF stalld(t!l) THEN IF stalldd(t!l) THEN regfile(t!l) 

ELSE ... E~DIF 

ELSE .,. 

ENDIF(src2(t!l))) 

We have found that the sequence of steps shown above works successfully 
for proving safety properties of finite s ta te  machines that  relate states of the 
machine that  are finite distance apart. If the strategy does not succeed then the 
most likely cause is tha t  either the property is not true or that  a certain property 
about some of the functions in the specification unknown to the prover need to 
be proved as a lemma. In either case, the unproven goals remaining at the end 
of the proof should give information about the probable cause. 

6 An N-bi t  Ripple-Carry  Adder  

The second example we consider is the verification of a parametrized N-bit ripple- 
carry adder circuit. The theory adder,  shown in Figure 4, specifies a ripple-carry 
adder circuit and a statement of correctness for the circuit. 

The theory is parameterized with respect to the length of the bit-vectors. It 
imports the theories (not shown here) f u l l _ a d d e r ,  which contains a specification 
of a full adder circuit ( fa_cout  and fa_sum), and by, which specifies the bit- 
vector type (bvec [N]) and functions. An N-bit bit-vector is represented as an 
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adder[N: posnat] : THEORY 

BEGIN 
IMPORTING by[N], full_adder 

n:  VAR below[N] 
by,  b v l ,  by2:  VAR bvec 

c i n :  VAR boo l  

nth_cin(n, cin, bvl, by2): RECURSIVE bool = 

IF n = O THEN cin 
ELSE fa.cout(nth_cin(n - I, cin, bvl, by2), bv1(n - I), bv2(n - I)) 

ENDIF 
MEASURE n 

bv_sum(cin, bvl, by2): bvec = 
(LAMBDA n: fa.sum(bvt(n), bvR(n), nth_cin(n, cin, bvl, by2))) 

bv.cout(n, cin, bvl, by2): beel= 
fa_cout(nth_cin(n, cin, bvl, by2), bvl(n), bvR(n)) 

adder_correct=n: LEMNA 
bvec2nat_rec(n, bvl) § bvecRnat_rec(n, by2) § bool2bit(cin) 

= exp2(u § i) * bool2bit(bv_couZ(n, cin, bvl, by2)) 
§ bvec2nat.rec(n, bv_sum(cin, bvl, by2)) 

adder_correct: THEOREM 
bvec2nat(bvl) § bvec2nat(bv2) § bool2bit(cin) 

= exp2(N) * beol2bit(bv_cout(N - I, cin, bvl, by2)) 
§ bvec2nat(bv_sum(cin, bvl, by2)) 

END adder 

Fig. 4. Adder Specification 

array, i.e., a function, from the the type below[N],  a subtype of n a t  ranging 
from 0 through N-l ,  to bool ;  the index 0 denotes the least significant bit. Note 
that  the parameter  N is constrained to be a lgosnat since we do not permit  bit 
vectors of length 0. The adde r  theory contains several declarations including 
a set of variable declarations in the beginning. PVS allows logical variables to 
be declared globally within a theory so tha t  the variables can be used later in 
function definitions and quantified formulas. 

The carry bit that  ripples through the full adder is specified recursively by 
means of the function n th_cin .  Associated with this definition is a m e a s u r e  

function, following the MEASURE keyword, which will be explained below. The 
function bv_cout  and by_sum define the carry output  and the bit-vector sum of 
the adder, respectively. The theorem a d d e r _ c o r r e c t  expresses the conventional 
correctness s tatement  of an adder circuit using bvec2na t ,  which returns the 
natural  number  equivalent of an N-bit bit-vector. Note that  variables that  are left 
free in a formula are assumed to be universally quantified. We state and prove a 
more general l emma adder_cor rec t_ . rec  of which a d d e r _ c o r r e c t  is an instance. 
For a given n < N, bvec2na t_ rec  returns the natural  number  equivalent of the 
least significant n-bits of a given bit-vector and b o o l 2 b i t  converts the boolean 
constants TRUE and FALSE into the natural  numbers 1 and 0, respectively. 
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6.1 Typechecking  

The typechecker generates several TCCs (shown in Figure 5 below) for adder. 
These TCCs represent proof obligations that must be discharged before the adder 
theory can be considered typechecked. The proofs of the TCCs may be postponed 
until it is convenient to prove them, though it is a good idea to view them to 
see if they are provable. 

I 
X Subtype TCC genera ted  ( l i ne  13) f o r  n - 1 

unproved 
nth.cin.TCCl: OBLIGATION (FORALL n: NOT n = 0 IMPLIES n - I >= 0 AND n - 1 < N) 

Subtype TCC generated (line 31) for N 1 

unproved 
adder.correct_TCCl: OBLIGATION N - 1 ~= 0 

Fig. 5. TCCs for Theory adder 

The first TCC is due to the fact that the first argument to nth_cin is of 
type below[N], but the type of the argument (n-i) in the recursive call to 
nth_cin is integer, since below[N] is not closed under subtraction. Note that 
the TCC includes the condition N0T rt = 0, which holds in the branch of the 
IF-THEN-ELSE in which the expression n - 1 occurs. A TCC identical to the 
this one is generated for each of the two other occurrences of the expression n-1 
because bvl and bv2 also expect arguments of type below[N]. These TCCs are 
not retained because they are subsumed by the first one. 

The second TCC is generated by the expression N-1 in the definition of the 
theorem adder_correct  because the first argument to by_tout is expected to 
be the subtype below[N]. 

There is yet another TCC that is internally generated by PVS but is not 
even included in the TCCs file because it can be discharged trivially by the type- 
checker, which calls the prover to perform simple normalizations of expressions. 
This TCC is generated to ensure that the recursive definition of nth_cin ter- 
minates. PVS does not directly support partial functions, although its powerful 
subtyping mechanism allows PVS to express many operations that are tradi- 
tionally regarded as partial. The measure function is used to show that recursive 
definitions are total by requiring the measure to decrease with each reeursive 
call. For the definition of nth_cin, this entMls showing n - i  < n, which the type- 

checker trivially deduces. 
In the present case, all the remaining TCCs are simple, and in fact can be 

discharged automatically by using the typecheck-prove command, which at- 
tempts to prove all TCCs that have been generated using a predefined proof 

strategy called tce.  
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6.2 P r o o f  o f  A d d e r _ c o r r e c t m  

The proof of the lemma uses the same core strategy as in the microprocessor 
proof except for the quantifier elimination step. Since the specification is re- 
cursive in the length of the bit-vector, we need to perform induction on the 
variable n. The user invokes an inductive proof in PVS by means of the com- 
mand induc t  with the variable to induct on (n) and the induction scheme to 
be used (below_s as arguments. The induction used in this case is 
defined in the PVS prelude and is parameterized, as is the type below IN], with 
respect to the upper limit of the subrauge. 

This command generates two subgoals: the subgoal corresponding to the base 
case, which is the first goal presented to prove, is shown in Figure 6. 

adder_correct.l : 

[ . . . . . . .  

(N > 0 

IMPLIES 
(FORALL 
(bvl: bvec[N], by2: bvec[N], cin: bool): 

bvec2nat_rec(O, bvl) § bvec2nat=rec(O, by2) 
§ bool2bit(cin) 
= exp2(O + i) * bool2bit(bv_cout(O, cin, bvl, by2)) 

§ bvec2nat.rec(O, bv=sum(cin, bvl, by2)))) 

Fig. 6. Base Step 

The goal corresponding to the inductive case is shown below. 

The remaining siblings are: 
addsr_correct.n.2 : 

{i} (FORALL (r: below[N]}: 
r<N-I 

AND (FORALL (bvl, by2: bvec[N]), (cin: boo1): 
bvec2nat_rec(r, bvl) § bvec2nat.rec(r, by2) 

§ bool2bit(cin) 

= exp2(r + i) * boo12bit(bv.cout(r, cin, bvl, by2)) 
§ bvec2nat.rec(r, by sum(cin, bvl, by2))) 

IMPLIES (FORALL (bvl, by2: bvec[N]), (cin: bool): 
bvec2nat_rec(r + I, bvl) 

+ bvec2nat_rec(r + I, by2) 
+ bool2bir(cin) 
= exp2(r + I �9 I) 

�9 boo12bit(bv_cout(r + I, cin, bvl, by2)) 
r 

bvec2nat.rec(r § 1, 
bv_sum(cin, bvl, by2)))) 

Fig. 7. Inductive Step 
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The base and the inductive steps can be proved automatically using essen- 
tially the same strategy used in the microprocessor proof. A complete proof of 
adder_correet_n is shown in Figure 7. 

1: ( spread (induct " n ' '  1 " b e l o w _ i n d u c t i o n [ N ] " )  
2: ( ( then* (skosimp*) 
3: (auto-rewri te-defs  :always? t)  
4: (do-rewrite) 
5: ( repeat (lift-if)) 
6: ( apply ( then* (bddsimp)(assert)))) 
7: ( then~ (skosimp*) 
8: (ins%?) 
9: (auto-rewrite-defs :always? t) 

I0: (do-rewrite) 
11: ( repeat  (lift-if)) 
12: ( apply ( ~hen* (bddsimp)(asser t ) ) ) ) ) )  

The strategy spread used on line 1 applies the first proof step (induct) and 
then applies the i th element of the list of commands that follow to the i th subgoal 
resulting from the application of the first prof step. Thus, the proof steps listed 
on lines 2 through 6 prove the base case of induction, the steps on lines 7 through 
12 pro,~e the inductive case, and the p~oof step on line 13 t~kes care of the third 

TCC subgoal. 
Let us consider the base case first. The induct  command has already in- 

stantiated the variable n to 0. The remaining variables are skolemized away by 
skosimp*. To unfold the definitions in the resulting goal, we use the command 
au to - r ewr i t e -de f s ,  which makes rewrite rules out of the definition of every 
function either directly or indirectly used in the given formula. The rest of the 
proof proceeds exactly as for the microprocessor. 

The proof of the inductive step follows exactly the same pattern except that 
we need to instantiate the induction hypothesis and use it in the process of 
unfolding and case-analysis. PVS provides a command i n s t ?  that tries to find 
instantiations for existential-strength variables in a formuluby searching for pos- 
sible matches between terms involving these variables with ground terms inside 
formulas in the rest of the sequent. This command finds the desired instantia- 
tions in the present case. The rest of the proof proceeds as in the basis case. 

Since the inductive proof pattern shown above is applicable to any iteratively 
generated hardware designs we have packaged it into a general proof strategy 
called name-• The strategy is parameterized with re- 
spect to induction scheme to be used ~nd the set of rewrite rules to be used for 
unfolding. We have used the strategy to prove an N-bit ALU [6] that executes 
12 microoperations by cascading N 1-bit ALU slices. 
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7 Summary 

This tutorial gives an overview of some of the unique and important  capabil- 
ities of PVS. PVS is built to combine a very expressive specification language 
with effective theorem proving to produce a system to apply formal methods 
productively. PVS does pay a performance penalty because of the need for the 
prover to invoke the typechecker more often than in other provers that  support 
a less expressive type system. We are working on reducing the amount  of type 
information that  the prover needs to generate and maintain during a proof and 
also on further optimizing some of our inference procedures. These optimizations 
should be available with future releases of PVS. In the following, we summarize 
some of the language and system features that  were not covered in the tutorial. 

PVS provides a fairly extensive set of commands for determining the status of 
specification elements such as theories and formulas. For example, the user can 
inquire whether a theory has been typechecked or a proof has been completed 
and if the proof is current. It has commands that  perform proof chain analysis 
to see the proof status of all the lemmas that  a theorem is dependent on. 

When a formal specification and verification is complete, it is usually de- 
sirable to present it to others in as readable a form as possible. PVS provides 
commands for generating Latex versions of the specifications and proofs that  can 
be included in typeset documents. The output  produced can be controlled by 
user-supplied tables so that mathematical  notation, including infix and mis-fix 
symbols and sub and superscripts can be created easily. 

An important  language feature that  we haven't illustrated here is the abstract 
data  type feature. This feature is similar to the definitional principle supported 
by the Boyer-Moore theorem prover, but is generalized to abstract data  types 
with arbitrary constructors. The system provides facility for automatically gen- 
erating abstract data  type theories (containing recursion and induction schemes) 
from a syntactic definition of the operations of the data type. 

7.1 Gett ing and Using PVS 

At the moment,  PVS is readily available only for Sun SPARC workstations, 
although versions of the system do exist for the IBM Risc 6000 (under AIX) 
and DECSystems (under Ultrix). PVS is implemented in Common Lisp (with 
CLOS), and has been ported to Lucid and Allegro. All versions of PVS require 
GNU EMACS, which must be obtained separately. 

PVS requires about 30 megabytes of disk space. In addition, any system on 
which it is to be run should have a minimum of 100 megabytes of swap space 
and 32 megabytes of real memory (more is better). 

To obtain the PVS system, send a request to p v s - r e q u e s t ~ c s l ,  s r i . com,  
and we will provide further instructions for obtaining a tape or for getting the 
system by FTP. All installations of PVS must be licensed by SRI. A nominal 
distribution fee is charged for tapes; there is no charge for obtaining PVS by 
FTP. 
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