
A Tutorial on Using PVS for Hardware Verification

S. Owre, 1 J. M. Rushby, 1 N. Shankar 1 and M. K. Srivas

{owre, rnshby, shankar , sr ivas}@csl .sr i .com

Computer Science Laboratory, SRI International, Menlo Park CA 94025 USA

A b s t r a c t . PVS stands for "Prototype Verification System." It consists
of a specification language integrated with support tools and a theorem
prover. PVS tries to provide the mechanization needed to apply formal
methods both rigorously and productively.
This tutorial serves to introduce PVS and its use in the context of hard-
ware verification. In the first section, we briefly sketch the purposes for
which PVS is intended and the rationale behind its design, mention some
of the uses that we and others are making of it. We give an overview of
the PVS specification language and proof checker. The PVS language,
system, and theorem prover each have their own reference manuals, 1,2,3
which you will need to study in order to make productive use of the sys-
tem. A pocket reference card, summarizing all the features of the PVS
language, system, and prover is also available.
The purpose of this tutorial is not to describe in detail the features of
PVS and how to use the system. Rather, its purpose is to introduce
some of the more unique and powerful capabilities that are provided by
PVS and demonstrate how these features can be used in the context of
hardware verification. We present completely worked out proofs of two
hardware examples. One of the examples is a pipelined microprocessor
that has been used as benchmark for model checkers and the other is a
parameterized implementation of an N-bit ripple-carry adder.

1 Introducing PVS

PVS s t ands for " P r o t o t y p e Verif icat ion Sys tem." I t consis ts of a specif icat ion
l anguage i n t eg ra t ed wi th suppo r t tools and a t heo rem prover . PVS tr ies to pro-

vide the mechan iza t ion needed to a p p l y fo rma l m e t h o d s bo th r igorous ly and

produc t ive ly .

1 S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification Language (Beta Re-
lease). Computer Science Laboratory, SRI International, Menlo Park, CA, February

1993.
2 N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker: A Reference Man-

ual (Beta Release). Computer Science Laboratory, SRI International, Menlo Park,

CA, February 1993.
3 S. Owre, N. Shankar, and]. M. Rushby. User Guide for the PVS Specification and

Verification System (Beta Release). Computer Science Laboratory, SRI International,

Menlo Park, CA, February 1993.

259

The specification language of PVS is a higher-order logic with a rich type-
system, and is quite expressive; we have found that most of the mathematical
and computational concepts we wish to describe can be formulated very directly
and naturally in PVS. Its theorem prover, or proof checker (we use either term,
though the latter is more correct), is both interactive and highly mechanized:
the user chooses each step that is to be applied and PVS performs it, displays
the result, and then waits for the next command. PVS differs from most other
interactive theorem provers in the power of its basic steps: these can invoke
decision procedures for arithmetic and equality, a BDD-based propositional sim-
plifier, efficient hashing-based automatic conditional rewriting, induction, and
other relatively large units of deduction; it differs from other highly automated
theorem provers in being directly controlled by the user. We have been able to
perform some significant new hardware verification exercises quite economically
using PVS; we have also repeated some verifications first undertaken in other
systems and have usually been able to complete them in a fraction of the original
time (of course, these are previously solved problems, which makes them much
easier for us than for the original developers).

PVS is the most recent in a line of specification languages, theorem provers,
and verification systems developed at SRI, dating back over 20 years. That
line includes the Jovial Verification System [13], the Hierarchical Development
Methodology (HDM) [25,26], STP [30], and EHDM [22,27]. We call PVS a
"Prototype Verification System," because it was built partly as a lightweight
prototype to explore "next generation" technology for EHDM, our main, heavy-
weight, verification system. Another goal for PVS was that it should be freely
available, require no costly licenses, and be relatively easy to install, maintain,
and use. Development of PVS was funded entirely by SRI International.

The purpose of this tutorial is not to describe in detail the features of PVS
and how to use the system. Rather, its purpose is to introduce some of the more
unique and powerful capabilities that are provided by PVS and demonstrate how
these features can be used in the context of hardware verification. We present
completely worked out proofs of two hardware examples. One of the examples
is a pipelined microprocessor that has been used as benchmark for testing the
capacity of model checkers to handle datapath-oriented circuits. While the size of
the datapath is irrelevant in a theorem proving exercise, we wanted to see if the
proof would go through just as automatically as in a model checker. The second
example is one of the circuits supplied as a TPCD benchmark: a parameterized
implementation of an N-bit ripple-carry adder. The second example illustrates
proof by induction.

1.1 Des ign Goals for PVS

The design of PVS was shaped by our experience in doing or contemplating
early-lifecycle applications of formal methods. Many of the larger examples we
have done concern algorithms and architectures for fault-tolerance (see [23] for

260

an overview). We found that many of the published proofs that we at tempted
to check were in fact, incorrect, as was one of the important algorithms. We
have also found that many of our own specifications are subtly flawed when first
written. For these reasons, PVS is designed to help in the detection of errors
as well as in the confirmation of "correctness." One way it supports early error
detection is by having a very rich type-system and correspondingly rigorous
typechecking. A great deal of specification can be embedded in PVS types (for
example, the invariant to be maintained by a state-machine can be expressed as
a type constraint), and typechecking can generate proof obligations that amount
to a very strong consistency check on some aspects of the specification.

Another way PVS helps eliminate certain kinds of errors is by providing very
rich mechanisms for conservative extension-- that is, definitional forms that are
guaranteed to preserve consistency. Axiomatic specifications can be very effec-
tive for certain kinds of problem (e.g., for stating assumptions about the en-
vironment), but axioms can also introduce inconsistencies--and our experience
has been that this does happen rather more often than one would wish. Defini-
tional constructs avoid this problem, but a limited repertoire of such constructs
(e.g., requiring everything to be specified as a recursive function) can lead to
excessively constructive specifications: specifications that say "how" rather than
"what." PVS provides both the freedom of axiomatic specifications, and the
safety of a generous collection of definitional and constructive forms, so that
users may choose the style of specification most appropriate to their problems. 4

The third way that PVS supports error detection is by providing an effec-
tive theorem prover. The design rationale behind the PVS theorem prover was
to provide automatic support for obvious and tedious parts of a proof while
giving the user the ability to guide the prover at higher levels of a proof. This
goal is accomplished by implementing the primitive inference steps of PVS using
automatic rewriting and efficient decision procedures for arithmetic and propo-
sitional logic. This approach makes PVS an effective system for hardware verifi-
cation since most hardware proofs need significant amount of rewriting and case

analyses.

Our experience has been that the act of trying to prove properties about
specifications is the most effective way to truly understand their content and
to identify errors. This can come about incidentally, while at tempting to prove
a "real" theorem, such as that an algorithm achieves its purpose, or it can be
done deliberately through the process of "challenging" specifications as part of
a validation process. A challenge has the form "if this specification is right, then
the following ought to follow"--i t is a test case posed as a putative theorem; we
"execute" the specification by proving theorems about it. 5

-4 Unlike EHDM, PVS does not provide special facilities for demonstrating the consis-
tency of axiomatic specifications. We do expect to provide these in a later release,
but using a different approach than EHDM.

5 Directly executable specification languages (e.g., [2, 17]) support validation of spec-
ifications by running conventional test cases. We think there can be merit in this

261

1.2 U s e s o f P V S

PVS has so far been applied to several small demonstration examples, and a
growing number of significant verifications. The smaller examples include the
specification and verification of ordered binary tree insertion [28], the Boyer-
Moore majority algorithm, an abstract pipelined processor, Fischer's real-time
mutual exclusion protocol, and the Oral Messages protocol for Byzantine agree-
ment. Examples of this scale can typically be completed within a day. More
substantial examples include the correspondence between the programmer and
RTL level of a simple hardware processor [11], the correctness of a real-time
railroad crossing controller [29], a variant of the SchrSder-Bernstein theorem,
and the correctness of a distributed agreement protocol for a hybrid fault model
consisting of Byzantine, symmetric, and crash faults [19]. These harder examples
can take from several days to a week.

Currently, PVS is being applied to the requirements specification of selected
aspects of the control software for NASA's space shuttle project and to verify a
commercial pipelined microprocessor, AAMP5, being built for avionics applica-
tions at Rockwell International.

2 T h e P V S L a n g u a g e

The PVS specification language builds on a classical typed higher-order logic.
The base types consist of booleans, real numbers, rationals, integers, nat-
ural numbers, lists, and so forth. The primitive type constructors include
those for forming function (e.g., [na t -> n a t]) , record (e.g., [# a : n a t , b
: l i s t [nat] #]), and tuple types (e.g., [i n t , l i s t [na t]]) . PVS departs from
simply typed logics by allowing predicate subtypes. A predicate subtype consists
of exactly those elements of a given type satisfying a given predicate so that,
for example, the subtype of positive numbers is given by the type {n : na t I
n > 0}. Predicate subtypes are used to explicitly constrain the domains and
ranges of operations in a specification and to define partial functions, e.g., di-
vision, as total functions on a specified subtype. In general, typechecking with
predicate subtypes is undecidable. 6 PVS contains a further useful enrichment
to the type system in the form of dependent function, record, and tuple con-
structions where the type of one component of a compound value depends on

approach, but that it should not compromise the effectiveness of the specification
language as a tool for deductive analysis; we are considering supporting an executable
subset within PVS.

6 PVS does have an algorithmic typechecker that checks for type correctness relative to
the simple types. It generates proof obligations corresponding to predicate subtypes.
The typical proof obligations can be automatically discharged by the PVS decision
procedures. The provability of such proof obligations is the only source of undecid-
ability in the PVS type system so that none of the benefits of decidable typechecking
are lost.

262

the value of another component. PVS terms include constants, variables, ab-
stractions (e.g., (LAMBDA (i : na t) : i * i)) , applications (e.g., rood(i, 5)),
record constructions (e.g., (# a := 2, b := cons (l , nu l l) #)), tuple con-
structions (e.g., (-5 , cons (l , nu l l))) , function updates (e.g., f WITH [(2)
:= 7]), and record updates (e.g., r WITH [a := 5, b := cons(3, b (r))]) .
PVS specifications are packaged as theories that can be parametric in types
and constants. Type parametricity (or polymorphism) is used to capture those
concepts or results that can be stated uniformly for all types. PVS also has
a facility for automatically generating abstract datatype theories (containing
recursion and induction schemes) for a class of abstract datatypes [28].

3 T h e P V S P r o o f C h e c k e r

The central design assumptions in PVS are that

- The purpose of an automated proof checker is not merely to prove theorems
but also to provide useful feedback from failed and partial proofs by serving

as a rigorous skeptic.
- Automation serves to minimize the tedious aspects of formal reasoning while

maintaining a high level of accuracy in the book-keeping and formal manip-

ulations.
- Automation should also be used to capture repetitive patterns of argumen-

tation.
- The end product of a proof attempt should be a proof that, with only a small

amount of work, can be made humanly readable so that it can be subjected
to the social process of mathematical scrutiny.

In following these design assumptions, the PVS proof checker is more automated
than a low-level proof checker such as AUTOMATH [12], LCF [15], Nuprl [7],
Coq [8], and HOL [16], but provides more user control over the structure of the
proof than highly automated systems such as Nqthm [3,4] and Otter [21]. We
feel that the low-level systems over-emphasize the formal correctness of proofs
at the expense of their cogency, and the highly automated systems emphasize
theorems at the expense of their proofs.

What is unusual about PVS is the extent to which aspects of the language,
the typechecker, and proof checker are intertwined. The typechecker invokes the
proof checker in order to discharge proof obligations that arise from typechecking
expressions involving predicate subtypes or dependent types. The proof checker
also makes heavy use of the typechecker to ensure that all expressions involved in
a proof are well-typed. This use of the typechecker can also generate proof obli-
gations that are either discharged automatically or are presented as additional
subgoals. Several aspects of the language, particularly the type system, are built
into the proof checker. These include the automatic use of type constraints by the
decision procedures, the simplifications given by the abstract datatype axioms,
and forms of beta-reduction and extensionality.

263

Another less unusual aspect of PVS is the extent to which the automatic
inference and decision procedures involving equalities and linear arithmetic in-
equalities are employed. ~ The most direct consequence of this is that the trivial,
obvious, or tedious parts of the proof are often discharged so that the user can
focus on the intellectually demanding parts of the proof, and the resulting proof
is also easier to read. PVS also provides an efficient conditional rewriter that
interacts very closely with its decision procedures to simplify conditions during
rewriting. More details about the rewriting and the decision procedures used in
PVS are described in [10]. The capabilities of the inference and decision proce-
dures, which play a central role in almost all proofs in PVS are made available
to the user by means of the following primitive inference steps.

1. Bddsimp performs efficient BDD-based propositional simplification on the
current goal.

2. D o - r e w r i t e performs automatic conditional rewriting on expressions in the
current goal using rewrite rules stored in the underlying database used by
the inference procedures. PVS provides several commands for the user to
make rewrite rules out of definitions, lemmas and axioms and enter them
in the database. The rewriter invokes the decision procedures to simplify
conditions of conditional rewrite rules.

3. Asse r t invokes the arithmetic and equality decision procedures on the cur-
rent goal. Besides trying to prove the subgoal using the decision procedures,
it performs the following tasks

- it stores the subgoal information in the underlying database, allowing
automatic use to be made of it later.

- it simplifies the subgoal using the decision procedures using rewriting as
well as other simplification techniques.

In order to learn how to use the PVS proof checker, one must first understand
the sequent representation used by PVS to represent proof goals, the commands
used to move around and undo parts of the proof tree, and the commands used
to get help. One must then understand the syntax and effects of proof commands
used to build proofs. Many of these commands are extremely powerful even in
their simplest usage. Several of these commands can be more carefully directed
by supplying them with one or more optional arguments. The advanced user will
also need to understand how to define proof strategies that capture repetitive
patterns of proof commands, and commands used for displaying, editing, and
replaying proofs. There are about 20 basic commands and a similar number of
commonly used high-level strategies.

7 The Ontic system [20] is a proof checker where decision procedures are ubiquitously
used. Nqthm [3,4], Eves [24], and IMPS [14] also rely heavily on the use of decision
procedures.

4 Rest of the Tutorial

264

In the following sections we introduce some of the details of PVS system by
working the complete proof of correctness of two examples. This will introduce
some of the most useful commands and provide a glimpse into the philosophy
behind PVS. PVS uses EMACS as its interface by extending EMACS with PVS
functions, but all the underlying capabilities of EMACS are available. Thus the
user can read mail and news, edit nonPVS files, or execute commands in a shell
buffer in the usual way. All PVS commands are entered as extended EMACS
commands. The proof checker runs as a subprocess inside EMACS.

5 A Pipe l ined Microprocessor

In this section we develop a complete proof of a correctness property of the con-
troller logic of a simple pipelined processor design described at a register-transfer
level. The design and the property verified are both based on the processor ex-
ample given in [5]. The example has been used as a benchmark for evaluating
how well finite state-enumeration based tools, such as model checkers, can handle
datapath-oriented circuits with a large number of states by varying the size of
the datapath. From the perspective of a theorem prover, the size of the datapath
is irrelevant because the specification and proof are independent of the datapath
size. As a theorem proving exercise, the challenge is to see if the proof can be
done just as automatically as a model checker. As we will see in the following,
in PVS the proof can be obtained by repeatedly invoking one of its primitive

commands a s s e r t .

5.1 I n f o r m a l D e s c r i p t i o n

Figure 1 shows a block diagram of the pipeline design. The processor executes
instructions of the form (opcode s r c l s rc2 d s t n) , i.e., "destination register
d s t n in the register file REGFILE becomes some ALU function determined by
opcode of the contents of source registers s r c l and src2. Every instruction is
executed in three stages (cycles) by the processor:

1. Read: Obtain the proper contents of the register file at s r c l and s r c2 and
clock them into op reg l and opreg2, respectively.

2. Compute: Perform the ALU operation corresponding to the opcode (remem-
bered in opcoded) of the instruction and clock the result into wbreg.

3. Write: Update the register file at the destination register (remembered in
ds tndd) of the instruction with the value in wbreg.

The processor uses a three-stage pipeline to simultaneously execute distinct
stages of three successive instructions. That is, the read stage of the current
instruction is executed along with the compute stage of the previous instruction

265

src2 ~ REGFILE

o P ~ 6 1 ~ c ' o ~ l ~ d �9 . .

opreg:

Fig. 1. A Pipelined Microprocessor

and the write stage of the previous-to-previous instruction. Since the REGFILE is
not updated with the results of the previous and previous-to-previous instruc-
tions while a read is being performed for the current instruction, the controller
"bypasses" REGFILE, if necessary, to get the correct values for the read. The pro-
cessor can abort, i.e., treat as NOP, the instruction in the read stage by asserting
the s t a l l signal true. An instruction is aborted by inhibiting its write stage by
remembering the s t a l l signal until the write stage via the registers s t a l l d and
s t a l l dd . We verify that an instruction entering the pipeline at any time gets
completed correctly, i.e., will write the correct result into the register file, three
cycles later, provided the instruction is not aborted.

5.2 Formal Specification

PVS specifications consist of a number of files, each of which contains one or
more theories. A theory is a collection of declarations: types, constants (including
functions), axioms that express properties about the constants, and theorems
and lemmas to be proved. Theories may import other theories; Every entity
used in a theory must be either declared in an imported theory or be part of the
prelude (the standard collection of theories built-in to PVS).

The microprocessor specification is organized into three theories, selected
parts of which are shown in Figures 2 and 3. (The complete specification can be
found in [31].) The theory pipe (Figure 2) contains a specification of the design
and a statement of the correctness property to be proved. The theories s igna l
and time (Figure 3) imported by pipe declares the types s igna l and time used
in pipe.

The theory pipe is parameterized with respect to the types of the register
address, data, and the opcode field of the instructions. A theory parameter in

266

pipe[addr: TYPE, data: TYPE, opcodes: TYPE]: THEORY
BEGIN
IMPORTING signal, time

ASSUMING
addr_nonempty: ASSUMPTION (EXISTS Ca: addr): TRUE)
data_nonempty: ASSUMPTION (EXISTS (d: data): TRUE)
opcodes_nonempty: ASSUMPTION (EXISTS Go: opcodes): TRUE)

ENDASSUMING

t : VAR time

~X Signal declarations
opcode: signal[opcodes]
s r c l , src2, dstn: s ignal[addr]
stall: signal[bool]
aluout: signal[data]
regfile: signal[[addr -> data]]

~ Specification of constraints on the signals
dstnd_ax: AXIOM dstnd(t+l) = dstn(t)
dstndd_ax: AXIOM dstndd(t41)= dstnd(t)

resffile.ax: AXIOM regfile(t+l) =
IF stalldd(t) THEN regfile(t)
ELSE r e V i l e (z)

WITH [(dstndd(t)) := wbreg(t)]
ENDIF

opregl.ax: AXIOM opregl(t+l) =
IF src1(t) ffi dstnd(t) ~ NOT stalld(t)

THEN aluout(t)
ELSIF srcl(t) = dstndd(t) ~ NOT stalldd(t)

THEN .breg(t)
ELSE r s g f i l e (t) (s r c l (t)) ENDIF

opreg2.ax: AXIOM . . .

aluop: [opcodes, data, data -> data]
ALU_ax: AXIOM aluout(t) = aluop(opcoded(t), opreg1(t),

opreg2(t))
correctness: THEOREM (FORALL t:

NOT(stall(t)) IMPLIES regfile(t§ =
aluop(opcode(t), regfile(t§

regfile(t§)

END pipe

Fig. 2. Microprocessor Specification

PVS can be either a type parameter or a parameter belonging to a particular
type, such as na t . Since p ipe does not impose any restriction on its parame-
ters, other than the requirement that they be nonempty, which is stated in the
ASSUMING part of the theory, one can instantiate them with any type. Every en-
t i ty declared in a parameterized theory is implicitly parameterized with respect
to the parameters of the theory. For example, the type s i g n a l declared in the
parameterized theory s i g n a l is a parametric type denoting a function that maps
t ime (a synonym for na t) to the type parameter T. (The type s i g n a l is used to
model the wires in our design.) By importing the theory s i g n a l uninstantiated

267

s igna l [va l : TYPE]: THEORY
BEGIN

signal: TYPE = [time -> val]
END signal

time: THEORY
BEGIN
time: TYPE nat

END signal

Fig. 3. Signal Specification

in pipe, we have the freedom to create any desired instances of the type signal.

In this tutorial, we use a functional style of specification to model register-
transfer-level digital hardware in logic. In this style, the inputs to the design
and the outputs of every component in the design are modeled as signals. Every
signal that is an output of a component is specified as a function of the signals
appearing at the inputs to the component.

This style should be contrasted with a predicative style, which is commonly
used in most HOL applications. In the predicative style every hardware com-
ponent is specified as a predicate relating the input and output signals of the
component and a design is specified as a conjunction of the component predi-
cates, with all the internal signals used to connect the components hidden by
existential quantification. A proof of correctness for a predicative style specifica-
tion usually involves executing a few additional steps at the start of the proof to
essentially transform the predictative specification into an equivalent functional
style. After that, the proof proceeds similar to that of a proof in a functional
specification. The additional proof steps required for a predicative specification
essentially unwind the component predicates using their definitions and then ap-
propriately instantiate the existentially quantified variables. An automatic way
of performing this translation is discussed in [31], which illustrates more exam-
ples of hardware design verification using PVS.

Getting back to our example, the microprocessor specification in p ipe con-
sists of two parts. The first part declares all the signals used in the design--the
inputs to the design and the internal wires that denote the outputs of compo-
nents. The composite state of REGFILE, which is represented as a function from
addr to data , is modeled by the signal regfile. The signals are declared as un-
interpreted constants of appropriate types. The second part consists of a set of
AXIOMs that specify the the values of the signals over time. (To conserve space,
we have only shown the specification of a subset of the signals in the design.)
For example, the signal value at the output of the register ds tnd at time t + l is
defined to be that of its input a cycle earlier. The output of the ALU, which is
a combinational component, is defined in terms of the inputs at the same time
instant.

In PVS, one can use a descriptive style of definition, as illustrated in this ex-
ample, by selectively introducing properties of the constants declared in a theory

268

as AXIOMs. Or, one can use the definitional forms provided by the language to
define the constants. An advantage of using the definitions is that a specification
is guaranteed to be consistent, although it might be overspecified. An advantage
of the descriptive style is that it gives better control over the degree to which one
wants to define an entity. For example, one could have specified d s tnd prescrip-
tively by using the conventional function definition mechanism of PVS. PVS's
function definition mechanism would have forced us to specify the value of the
signal at time t = 0 to ensure that the function is total. In the descriptive style
used, we have left the value of the signal at 0 unspecified.

In the present example, the specifications of the signals opreg l and opreg2
are the most interesting of all. They have to check for any register collisions
that might exist between the instruction in the read stage and the instructions
in the later stages and bypass reading from the register file in case of collisions.
The r e g f i l e signal specification is recursive since the register file state remains
the same as its previous state except, possibly, at a single register location. The
WITH expression is an abbreviation for the result of updating a function at a
given point in the domain value with a new value. Note that the function a luop
that denotes the operation ALU performs for a given opcode is left completely
unspecified since it is irrelevant to the controller logic.

The theorem c o r r e c t n e s s to be proved states a correctness property about
the execution of the instruction that enters the pipeline at t , provided the in-
struction is not aborted, i.e., s t a l l (t) is not true. The equation in the conclusion
of the implication compares the actual value (left hand side) in the destination
register three cycles later, when the result of the instruction would be in place,
with the expected value. The expected value is the result of applying the a luop
corresponding to the opcode of the instruction to the values at the source field
registers in the register file at t+2. We use the state of the register file at t+2
rather than t to allow for the results of the two previous instructions in the

pipeline to be completed.

5.3 P r o o f of C o r r e c t n e s s

The next step is to typecheck the file, which parses and checks for semantic
errors, such as undeclared names and ambiguous types. Typechecking may build
new files or internal structures such as type correctness conditions (TCCs). The
TCCs represent proof obligations that must be discharged before the p ipe theory
can be considered typechecked. The typechecker does not generate any TCCs in
the present example. If, for example, one of the assumptions, say for addr, in
the ASSUMING part of the theory was missing, the typechecker would generate
the following TCC to show that the addr type is nonempty. The declaration of
the signal s r e l forces generation of this TCC because a function is nonexistent

if its range is empty.

269

Z Existence TCC generated (line 17) for srcl: signal[addr]
Z May need to add an assuming clause to prove this.

Z unproved
srcl_TCCl: 0BLIGATION (EXISTS (xl: signal[addr]): TRUE);

The PVS proof checker runs as a subprocess of Emacs. Once invoked on a
theorem to be proved, it accepts commands directly from the user. The basic
objective of developing a proof in PVS as in other subgoal-directed proof checkers
(e.g., HOL), is to generate a proof tree in which all of the leaves are trivially
true. The nodes of the proof tree are sequents, and while in the prover you will
always be looking at an unproved leaf of the tree. The current branch of a proof
is the branch leading back to the root from the current sequent. When a given
branch is complete (i.e., ends in a true leaf), the prover automatically moves on
to the next unproved branch, or, if there are no more unproven branches, notifies
you that the proof is complete.

The primitive inference steps in PVS are a lot more powerful than in HOL.
So, it is not necessary to build complex tactics to handle tedious lower level
proofs in PVS. A user knowledgeable in the ways of PVS can typically get
proofs to go through mostly automatically by making a few critical decisions at
the start of the proof. However, PVS does provide the user with the equivalent
of HOL's tacticals, called strategies, and other features to control the desired
level of automation in a proof.

"The proof of the microprocessor property shown below follows a certain gen-
eral pattern that works successfully for most hardware proofs. This general proof
pattern, variants of which have been used in other verification exercises [1, 18],
consists of the following sequence of general proof tasks.

Quant i f ier e l iminat ion: Since the decision procedures work on ground formu-
las, the user must eliminate the relevant universal quantifiers by skolemiza-
tion or selecting variables on which to induct and existential quantifiers by
suitable instantiation.

Unfold ing definitions: The user may have t~o simplify selected expressions and
defined function symbols in the goal by rewriting using definitions, axioms
or lemmas. The user may also have to decide the level to which the function
symbols have to rewritten.

Case analysis: The user may have to split the proof based on selected boolean
expressions in the current goal and simplify the resulting goals further.

Each of the above tasks can be accomplished automatically using a short
sequence of primitive PVS proof commands. The complete proof of the theorem
is shown below. Selected parts of the proof session is reproduced below as we
describe the proof.

270

1: (~ h e . * (skosimp)
2: (auto-rewri te- theory " p i p e ' ' :always? t)
3: (repeat (do-rewri te))
4: (apply (then* (repeat (l i f t - i f))
5: (bddsimp)
6: (assert))))

In the proof, the names of strategies are shown in italics and the primitive
inference steps in t y p e - w r i t e r font . (We have numbered the lines in the proof
for reference.) Then* applies the first command in the list that follows to the
current goal; the rest of the commands in the list are then applied to each of
the subgoals generated by the first command application. The apply command
used in line 5 makes the application of a compound proof step implemented by
a strategy behave as an atomic step.

The first goal in the proof session is shown below. It consists of a single
formula (labeled {1}) under a dashed line. This is a sequent; formulas above the
dashed lines are called antecedents and those below are called succedents. The
interpretation of a sequent is that the conjunction of the antecedents implies the
disjunction of the succedents.

correctness :

I

{1} (FORALL t : NOT (s t a l l (t))
IMPLIES r e g f i l e (t + 3) (ds tn (t)) =

aluop(opcode(t) , r e g f i l e (t + 2) (s r c l (t)) ,
r e g f i l e (t + 2) (s r c 2 (t))))

The quantifier elimination task of the proof is accomplished by the command
skosimp, which skolemizes all the universally quantified variables in a formula
and flattens the sequent resulting in the following goal. Note that s t a l l (t !1)
has been moved to the succedent in the sequent because PVS displays every
atomic formula in its positive form.

Rule? (skosimp)
Skolemizingand flattening, this simplifies to:

correctness :

I

{i} (stan(t!i))
{2} regfile(t!i + 3)(dstn(t!l))

=

aluop(opcode(t!l), regfile(t!l + 2)(srcl(t!1)),
regfile(t!l + 2)(src2(t!l)))

271

The next task--unfolding definitions--is performed by the commands in lines
2 through 3. PVS provides a number of ways of unfolding definitions ranging from
unfolding one step at a time to automatic rewriting that performs unfolding in
a brute-force fashion. Brute-force rewriting usually results in larger expressions
than controlled unfolding and, hence, potentially larger number of cases to con-
sider. If a system provides automatic and efficient rewriting and case analysis
facilities, then one can dare to use the automatic approach, as we do here. In
PVS automatic rewriting is performed by first entering the definitions and AX-
IOMs that one wants to be used for unfolding as rewrite rules. Once entered,
the commands, such as do-rewrite and assert, that perform rewriting as part
of their repertoire repeatedly apply the rewrite rules until none of the rules is
applicable. To control the size of the expression resulting from rewriting and the
potential for looping, the rewriter uses the following restriction for stopping a
rewrite: If the right-hand-side of a rewrite is a conditional expression, then the
rule is applied only if the condition simplifies to true or false.

Here our aim is to unfold every signal in the sequent so that every signal ex-
pression contains only the start t ime t ! 1. So, we make a rewrite rule out of every
AXIOM in the theory p ipe by means of the command a u t o - r e w r i t e - t h e o r y
on line 2. We also force an over-ride of the default restriction for stopping rewrit-
ing by setting the tag s a lways? to true in the a u t o - r e w r i t e - t h e o r y command
and embed d o - r e w r i t e inside a r e p e a t loop to force maximum rewriting. In
the present example, the rewriting is guaranteed to terminate because every
feedback loop is cut by a sequential component.

At the end of automatic rewriting, the succedent we are trying to prove is in
the form of an equation on two deeply nested conditional expressions as shown
below in an abbreviated fashion. The various cases in conditional expression
shown above arise as a result of the different possible conflicts between instruc-
tions in the pipeline. The equation we are trying to prove contains two distinct,
but equivalent conditional expressions, as in IF a THEN b ELSE c ENDIF = IF
NOT a THEN c ELSE b ENDIF, that can only be proved to be equal by perform-
ing a case-split on one or more of the conditions. While a s s e r t simplifies the
leaves of a conditional expression assuming every condition along the path to the
leaves holds, it does not split propositions. One way to perform the case-splitting
task automatically is to "lift" all the IF-THEN-ELSEs to the top so that the equa-
tion is transformed into a propositional formula with unconditional equalities as
atomic predicates. After performing such a lifting, one can try to reduce the
resulting proposition to true using the propositional simplification command
bddsimp. If bddsimp does not simplify the proposition to true, then it is most
likely the case that equations at one or more of the leaves of the proposition
need to be further simplified, by a s s e r t , for instance, using the conditions along
the path. If the propositional formula does not reduce to true or false, bddsimp

-~ Tags are one of the ways in which PVS permits the user to modify the functionality
of proof commands.

272

produces a set of subgoals to be proved. In the present case, each of these goals
can be discharged by a s s e r t . The compound proof step appearing on lines 4
through 6 of the proof accomplishes the case-splitting task.

correctness :

I

[1] (s t a l l (t ! l))
{2} a luop(opcode(t ! l) ,

IF s r c l (t ! l) = d s t n d (t ! l) & NOT s t a l l d (t ! l)
THEN aluop(opcoded(t ! l) , o p r e g l (t ! l) , op reg2(t ! l))

ELSIF srcl(t!l) = dstndd(t!l) & N0T stalldd(t!l)

THEN wbreg(t!l)

ELSE regfile(t!l)(srcl(t!l)) ENDIF,

~

ENDIF)

= aluop(opcode(t!l),

IF stalld(t!l) THEN IF stalldd(t!l) THEN regfile(t!l)

ELSE regfile(t!l) WITH [(dstndd(t!l)) := wbreg(t!l)]

ENDIF

ELSE ...

ENDIF(srcl(t!l)),
IF stalld(t!l) THEN IF stalldd(t!l) THEN regfile(t!l)

ELSE ... E~DIF

ELSE .,.

ENDIF(src2(t!l)))

We have found that the sequence of steps shown above works successfully
for proving safety properties of finite s ta te machines that relate states of the
machine that are finite distance apart. If the strategy does not succeed then the
most likely cause is tha t either the property is not true or that a certain property
about some of the functions in the specification unknown to the prover need to
be proved as a lemma. In either case, the unproven goals remaining at the end
of the proof should give information about the probable cause.

6 An N-bi t Ripple-Carry Adder

The second example we consider is the verification of a parametrized N-bit ripple-
carry adder circuit. The theory adder, shown in Figure 4, specifies a ripple-carry
adder circuit and a statement of correctness for the circuit.

The theory is parameterized with respect to the length of the bit-vectors. It
imports the theories (not shown here) f u l l _ a d d e r , which contains a specification
of a full adder circuit (fa_cout and fa_sum), and by, which specifies the bit-
vector type (bvec [N]) and functions. An N-bit bit-vector is represented as an

273

adder[N: posnat] : THEORY

BEGIN
IMPORTING by[N], full_adder

n: VAR below[N]
by, b v l , by2: VAR bvec

c i n : VAR boo l

nth_cin(n, cin, bvl, by2): RECURSIVE bool =

IF n = O THEN cin
ELSE fa.cout(nth_cin(n - I, cin, bvl, by2), bv1(n - I), bv2(n - I))

ENDIF
MEASURE n

bv_sum(cin, bvl, by2): bvec =
(LAMBDA n: fa.sum(bvt(n), bvR(n), nth_cin(n, cin, bvl, by2)))

bv.cout(n, cin, bvl, by2): beel=
fa_cout(nth_cin(n, cin, bvl, by2), bvl(n), bvR(n))

adder_correct=n: LEMNA
bvec2nat_rec(n, bvl) § bvecRnat_rec(n, by2) § bool2bit(cin)

= exp2(u § i) * bool2bit(bv_couZ(n, cin, bvl, by2))
§ bvec2nat.rec(n, bv_sum(cin, bvl, by2))

adder_correct: THEOREM
bvec2nat(bvl) § bvec2nat(bv2) § bool2bit(cin)

= exp2(N) * beol2bit(bv_cout(N - I, cin, bvl, by2))
§ bvec2nat(bv_sum(cin, bvl, by2))

END adder

Fig. 4. Adder Specification

array, i.e., a function, from the the type below[N], a subtype of n a t ranging
from 0 through N-l , to bool ; the index 0 denotes the least significant bit. Note
that the parameter N is constrained to be a lgosnat since we do not permit bit
vectors of length 0. The adde r theory contains several declarations including
a set of variable declarations in the beginning. PVS allows logical variables to
be declared globally within a theory so tha t the variables can be used later in
function definitions and quantified formulas.

The carry bit that ripples through the full adder is specified recursively by
means of the function n th_cin . Associated with this definition is a m e a s u r e

function, following the MEASURE keyword, which will be explained below. The
function bv_cout and by_sum define the carry output and the bit-vector sum of
the adder, respectively. The theorem a d d e r _ c o r r e c t expresses the conventional
correctness s tatement of an adder circuit using bvec2na t , which returns the
natural number equivalent of an N-bit bit-vector. Note that variables that are left
free in a formula are assumed to be universally quantified. We state and prove a
more general l emma adder_cor rec t_ . rec of which a d d e r _ c o r r e c t is an instance.
For a given n < N, bvec2na t_ rec returns the natural number equivalent of the
least significant n-bits of a given bit-vector and b o o l 2 b i t converts the boolean
constants TRUE and FALSE into the natural numbers 1 and 0, respectively.

274

6.1 Typechecking

The typechecker generates several TCCs (shown in Figure 5 below) for adder.
These TCCs represent proof obligations that must be discharged before the adder
theory can be considered typechecked. The proofs of the TCCs may be postponed
until it is convenient to prove them, though it is a good idea to view them to
see if they are provable.

I
X Subtype TCC genera ted (l i ne 13) f o r n - 1

unproved
nth.cin.TCCl: OBLIGATION (FORALL n: NOT n = 0 IMPLIES n - I >= 0 AND n - 1 < N)

Subtype TCC generated (line 31) for N 1

unproved
adder.correct_TCCl: OBLIGATION N - 1 ~= 0

Fig. 5. TCCs for Theory adder

The first TCC is due to the fact that the first argument to nth_cin is of
type below[N], but the type of the argument (n-i) in the recursive call to
nth_cin is integer, since below[N] is not closed under subtraction. Note that
the TCC includes the condition N0T rt = 0, which holds in the branch of the
IF-THEN-ELSE in which the expression n - 1 occurs. A TCC identical to the
this one is generated for each of the two other occurrences of the expression n-1
because bvl and bv2 also expect arguments of type below[N]. These TCCs are
not retained because they are subsumed by the first one.

The second TCC is generated by the expression N-1 in the definition of the
theorem adder_correct because the first argument to by_tout is expected to
be the subtype below[N].

There is yet another TCC that is internally generated by PVS but is not
even included in the TCCs file because it can be discharged trivially by the type-
checker, which calls the prover to perform simple normalizations of expressions.
This TCC is generated to ensure that the recursive definition of nth_cin ter-
minates. PVS does not directly support partial functions, although its powerful
subtyping mechanism allows PVS to express many operations that are tradi-
tionally regarded as partial. The measure function is used to show that recursive
definitions are total by requiring the measure to decrease with each reeursive
call. For the definition of nth_cin, this entMls showing n - i < n, which the type-

checker trivially deduces.
In the present case, all the remaining TCCs are simple, and in fact can be

discharged automatically by using the typecheck-prove command, which at-
tempts to prove all TCCs that have been generated using a predefined proof

strategy called tce.

275

6.2 P r o o f o f A d d e r _ c o r r e c t m

The proof of the lemma uses the same core strategy as in the microprocessor
proof except for the quantifier elimination step. Since the specification is re-
cursive in the length of the bit-vector, we need to perform induction on the
variable n. The user invokes an inductive proof in PVS by means of the com-
mand induc t with the variable to induct on (n) and the induction scheme to
be used (below_s as arguments. The induction used in this case is
defined in the PVS prelude and is parameterized, as is the type below IN], with
respect to the upper limit of the subrauge.

This command generates two subgoals: the subgoal corresponding to the base
case, which is the first goal presented to prove, is shown in Figure 6.

adder_correct.l :

[.

(N > 0

IMPLIES
(FORALL
(bvl: bvec[N], by2: bvec[N], cin: bool):

bvec2nat_rec(O, bvl) § bvec2nat=rec(O, by2)
§ bool2bit(cin)
= exp2(O + i) * bool2bit(bv_cout(O, cin, bvl, by2))

§ bvec2nat.rec(O, bv=sum(cin, bvl, by2))))

Fig. 6. Base Step

The goal corresponding to the inductive case is shown below.

The remaining siblings are:
addsr_correct.n.2 :

{i} (FORALL (r: below[N]}:
r<N-I

AND (FORALL (bvl, by2: bvec[N]), (cin: boo1):
bvec2nat_rec(r, bvl) § bvec2nat.rec(r, by2)

§ bool2bit(cin)

= exp2(r + i) * boo12bit(bv.cout(r, cin, bvl, by2))
§ bvec2nat.rec(r, by sum(cin, bvl, by2)))

IMPLIES (FORALL (bvl, by2: bvec[N]), (cin: bool):
bvec2nat_rec(r + I, bvl)

+ bvec2nat_rec(r + I, by2)
+ bool2bir(cin)
= exp2(r + I �9 I)

�9 boo12bit(bv_cout(r + I, cin, bvl, by2))
r

bvec2nat.rec(r § 1,
bv_sum(cin, bvl, by2))))

Fig. 7. Inductive Step

276

The base and the inductive steps can be proved automatically using essen-
tially the same strategy used in the microprocessor proof. A complete proof of
adder_correet_n is shown in Figure 7.

1: (spread (induct " n ' ' 1 " b e l o w _ i n d u c t i o n [N] ")
2: ((then* (skosimp*)
3: (auto-rewri te-defs :always? t)
4: (do-rewrite)
5: (repeat (lift-if))
6: (apply (then* (bddsimp)(assert))))
7: (then~ (skosimp*)
8: (ins%?)
9: (auto-rewrite-defs :always? t)

I0: (do-rewrite)
11: (repeat (lift-if))
12: (apply (~hen* (bddsimp)(asser t))))))

The strategy spread used on line 1 applies the first proof step (induct) and
then applies the i th element of the list of commands that follow to the i th subgoal
resulting from the application of the first prof step. Thus, the proof steps listed
on lines 2 through 6 prove the base case of induction, the steps on lines 7 through
12 pro,~e the inductive case, and the p~oof step on line 13 t~kes care of the third

TCC subgoal.
Let us consider the base case first. The induct command has already in-

stantiated the variable n to 0. The remaining variables are skolemized away by
skosimp*. To unfold the definitions in the resulting goal, we use the command
au to - r ewr i t e -de f s , which makes rewrite rules out of the definition of every
function either directly or indirectly used in the given formula. The rest of the
proof proceeds exactly as for the microprocessor.

The proof of the inductive step follows exactly the same pattern except that
we need to instantiate the induction hypothesis and use it in the process of
unfolding and case-analysis. PVS provides a command i n s t ? that tries to find
instantiations for existential-strength variables in a formuluby searching for pos-
sible matches between terms involving these variables with ground terms inside
formulas in the rest of the sequent. This command finds the desired instantia-
tions in the present case. The rest of the proof proceeds as in the basis case.

Since the inductive proof pattern shown above is applicable to any iteratively
generated hardware designs we have packaged it into a general proof strategy
called name-• The strategy is parameterized with re-
spect to induction scheme to be used ~nd the set of rewrite rules to be used for
unfolding. We have used the strategy to prove an N-bit ALU [6] that executes
12 microoperations by cascading N 1-bit ALU slices.

277

7 Summary

This tutorial gives an overview of some of the unique and important capabil-
ities of PVS. PVS is built to combine a very expressive specification language
with effective theorem proving to produce a system to apply formal methods
productively. PVS does pay a performance penalty because of the need for the
prover to invoke the typechecker more often than in other provers that support
a less expressive type system. We are working on reducing the amount of type
information that the prover needs to generate and maintain during a proof and
also on further optimizing some of our inference procedures. These optimizations
should be available with future releases of PVS. In the following, we summarize
some of the language and system features that were not covered in the tutorial.

PVS provides a fairly extensive set of commands for determining the status of
specification elements such as theories and formulas. For example, the user can
inquire whether a theory has been typechecked or a proof has been completed
and if the proof is current. It has commands that perform proof chain analysis
to see the proof status of all the lemmas that a theorem is dependent on.

When a formal specification and verification is complete, it is usually de-
sirable to present it to others in as readable a form as possible. PVS provides
commands for generating Latex versions of the specifications and proofs that can
be included in typeset documents. The output produced can be controlled by
user-supplied tables so that mathematical notation, including infix and mis-fix
symbols and sub and superscripts can be created easily.

An important language feature that we haven't illustrated here is the abstract
data type feature. This feature is similar to the definitional principle supported
by the Boyer-Moore theorem prover, but is generalized to abstract data types
with arbitrary constructors. The system provides facility for automatically gen-
erating abstract data type theories (containing recursion and induction schemes)
from a syntactic definition of the operations of the data type.

7.1 Gett ing and Using PVS

At the moment, PVS is readily available only for Sun SPARC workstations,
although versions of the system do exist for the IBM Risc 6000 (under AIX)
and DECSystems (under Ultrix). PVS is implemented in Common Lisp (with
CLOS), and has been ported to Lucid and Allegro. All versions of PVS require
GNU EMACS, which must be obtained separately.

PVS requires about 30 megabytes of disk space. In addition, any system on
which it is to be run should have a minimum of 100 megabytes of swap space
and 32 megabytes of real memory (more is better).

To obtain the PVS system, send a request to p v s - r e q u e s t ~ c s l , s r i . com,
and we will provide further instructions for obtaining a tape or for getting the
system by FTP. All installations of PVS must be licensed by SRI. A nominal
distribution fee is charged for tapes; there is no charge for obtaining PVS by
FTP.

278

References

1. Mark D. Aagard, Miriam E. Leeser, and Phillip J. Windley. Toward a super duper
hardware tactic. In Proceedings o] the HOL User's Group Workshop, pages 401-
414, 1993.

2. Heather Alexander and Val Jones. Software Design and Prototyping using me too.
Prentice Hall International, Hemel Hempstead, UK, 1990.

3. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York,
NY, 1979.

4. R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press,
New York, NY, 1988.

5. 3. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 220 states and beyond. In 5th Annual IEEE Symposium on Logic
in Computer Science, pages 428-439, Philadelphia, PA, June 1990. IEEE Computer
Society.

6. F. J. Cantu. Verifying an n-bit arithmetic logic unit. Blue book note 935, Univer-
sity of Edinburgh, June 1994.

7. R. L. Constable, et al. Implementing Mathematics with the Nuprl. Prentice-Hall,
New Jersey, 1986.

8. T. Coquand and G. P. Huet. Constructions: A higher order proof system for mech-
anizing mathematics. In Proceedings of EUROCAL 85, Linz (Austria), Berlin,
1985. Springer-Verlag.

9. Costas Courcoubetis, editor. Computer-Aided Verification, CAV '93, volume 697
of Lecture Notes in Computer Science, Elounda, Greece, June/July 1993. Springer-
Verlag.

10. D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem proving for
hardware verification. In Ramayya Kumar and Thomas Kropf, editors, Preliminary
Proceedings of the Second Conference on Theorem Provers in Circuit Design, pages
287-305, Bad Herrenalb (Blackforest), Germany, September 1994. Forschungszen-
trum Informatik an der Universits Karlsruhe, FZI Publication 4/94.

11. David Cyrluk. Microprocessor verification in PVS: A methodology and simple
example. Technical Report SRI-CSL-93-12, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1993.

12. N. G. de Bruijn. A survey of the project Automath. In To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages 589-606. Academic
Press, 1980.

13. B. Elspas, M. Green, M. Moriconi, and R. Shostak. A JOVIAL verifier. Technical
report, Computer Science Laboratory, SRI International, January 1979.

14. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive mathe-
matical proof system. Technical Report M90-19, Mitre Corporation, 1991.

15. M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag,
1979.

16. M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specification, Verification
and Synthesis, pages 73-128. Kluwer, Dordrecht, The Netherlands, 1988.

17. Sharam Hekmatpour and Darrel Ince. Software Prototyping, Formal Methods,
and VDM. International Computer Science Series. Addison-Wesley, Wokingham,
England, 1988.

279

18. R. Kumar, K. Schneider, and T. Kropf. Structuring and automating hardware
proofs in a higher-order therem proving environment. Formal Methods in System
Design, 2(2):165-223, 1993.

19. Patrick Lincoln and John Rushby. Formal verification of an algorithm for interac-
tive consistency under a hybrid fault model. In Courcoubetis [9], pages 292-304.

20. D. A. McAllester. ONTIC: A Knowledge Representation System for Mathematics.
MIT Press, 1989.

21. W. McCune. OTTER 2.0 users guide. Technical Report ANL-90/9, Argonne Na-
tional Laboratory, 1990.

22. P. Michael Melliar-Smith and John Rushby. The Enhanced HDM system for spec-
ification and verification. In Proc. VerkShop III, pages 41-43, Watsonville, CA,
February 1985. Published as ACM Software Engineering Notes, Vol. 10, No. 4,
Aug. 85.

23. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. For-
mal verification for fault-tolerant architectures: Some lessons learned. In J. C. P.
Woodcock and P. G. Larsen, editors, FME '93: Industrial-Strength Formal Meth-
ods, pages 482-500, Odense, Denmark, April 1993. Volume 670 of Lecture Notes in
Computer Science, Springer-Verlag.

24. W. Pase and M. Saaltink. Formal verification in m-EVES. In G. Birtwistle and
P. A. Subrahmanyam, editors, Current Trends in Hardware Verification and The-
orem Proving, pages 268-302, New York, NY, 1989. Springer-Verlag.

25. L. Robinson, K. N. Levitt, and B. A. Silverberg. The HDM Handbook. Computer
Science Laboratory, SRI International, Menlo Park, CA, June 1979. Three Vol-
umes.

26. Lawrence Robinson and Karl N. Levitt. Proof techniques for hierarchically struc-
tured programs. Communications of the ACM, 20(4):271-283, April 1976.

27. John Rushby, Friedrich von Henke, and Sam Owre. An introduction to formal spec-
ification and verification using EHDM. Technical Report SRI-CSL-91-2, Computer
Science Laboratory, SRI International, Menlo Park, CA, February 1991.

28. N. Shankar. Abstract datatypes in PVS. Technical Report SRI-CSL-93-9, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, December 1993.

29. Natarajan Shankar. Verification of real-time systems using PVS. In Courcoubetis
[9], pages 280-291.

30. R. E. Shostak, R. Schwartz, and P. M. Melliar-Smith. STP: A mechanized logic for
specification and verification. In D. Loveland, editor, 6th International Conference
on Automated Deduction (CADE), New York, NY, 1982. Volume 138 of Lecture
Notes in Computer Science, Springer-Verlag.

31. M.K. Srivas, et. al. Hardware verification using pvs: A tutorial. Technical re-
port, Computer Science Laboratory, SRI International, Menlo Park, CA, 1994. A
Forthcoming Technical Report.

