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Abs t r ac t .  This paper describes a mechanized approach to verifying 
that one concrete design is a refinement of another abstract design. A 
widely used notion of refinement is trace inclusion, which implies that 
each externally visible behavior of the concrete design can also be caused 
by the abstract design. In some cases this is too restrictive and the veri- 
fication technique proposed here is based on a more liberal notion where 
information about the environment is exploited. A verification technique 
is presented for designs written in the design language SYNCHRONIZBD 
TRANSITIONS. The verification technique is supported by a prototype 
tool for mechanizing 1) the axiomati~.ation of the design descriptions in 
the logic of an existing theorem prover~ and 2) the generation of proof 
obligations. Based on the axiomatization of the design descriptions, the 
proof obligations can be discharged using the theorem prover. 

1 I n t r o d u c t i o n  

This paper describes a mechanized approach to verifying that  one concrete design 
is a refinement of another abstract  design. For mechanized verification to be 
practical it is important  to find verification techniques which break the proof 
into a number of independent steps of  modest complexity. The main contribution 
of this work is a notion of refinement which is both powerful enough to allow 
interesting designs to be verified and yet simple enough to make mechanization 
feasible. 

Several approaches exists for formal verification of refinement, for example 
[1, 5, 7, 8]. [5, 8] use forward and backward simulation, whereas [1, 7] use re- 
finement mappings and prophecy variables. In the field of hardware verification, 
two very different approaches are [2] and [4]. In [4] the hardware is described in 
higher order logic and within this logic refinement corresponds to equivalence 
or implication. Bryant  [2] uses a simulator to prove refinement. Common for all 
of the approaches is that  they use trace inclusion as the fundamental  notion of 
equivalence. 

Trace inclusion means that  each externally visible behavior of the concrete 
design can also be caused by the abstract  design. However, in some cases trace 
inclusion is too restrictive. Consider, for example, an abstract  description of a 
multiplier that  performs the multiplication of two positive integers in a single 
operation, i.e., if two inputs z, y are provided, the result s (=  z , y) is avail- 
able immediately afterwards. Following an example in [4], the multiplier can be 
realized by accumulating y in s z times. In this case a number of intermediate 
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results (y, 2 * y , . . . ,  (z - 1 ) ,  y) are observed, before the right value of s (~ �9 y) 
is observed. Consequently, the notion of trace inclusion does not apply to this 
example. In ease of the multiplier, it would be useful to be able to disregard s 
during the computat ion and only to focus on the final value. 

This paper proposes a notion of refinement that  allows for temporari ly leaving 
s out of consideration by taking the environment into account. Based on informa- 
tion about  the environment, the notion of refinement ensures that  the concrete 
design can correctly replace the abstract  in the environment, even though the 
concrete design does not refine the abstract  according to trace inclusion. The 
notion of refinement is based on trace inclusion, but extended to take the en- 
vironment into account. A prototype tool is developed for verifying that  one 
design refines another according to this notion of refinement. 

Section 2 defines the model of a design. Section 3 explains how the environ- 
ment is taken into account. Section 4 defines the notion of refinement in terms 
of the model. To verify that  one design is a refinement of another, section 5 
provides a verification technique for designs written in the design language SYN- 
CHRONIZ~,,D TRANSITIONS. The verification technique is developed in preparat ion 
for using a theorem prover. In section 6, the verification technique is applied to 
part  of the Tamarack  microprocessor [6]. 

2 Computational Model 

Above, the terms design and environment have been used informally. Below, 
designs and environments are described as cells. The computat ional  model of a 
cell, C, is a transition system identified by (1) the state space, 5c ,  spanned by 
state variables in ~c ,  (2) the set of initial states, I c ,  and (3) the set of state 
transitions, To. These components are described below. 

A cell, C, operates on a set of typed state variables, ]?c. Some of the state 
variables are hidden from the environment, they are called local variables, ~;c. 
The rest of the state variables are accessible for the environment, they are called 
interface variables, Ec. Communication between cells takes place by means of 
shared interface variables. The state space of C, determined by the state variables 
and their corresponding types is denoted 3c .  For v C ~ c  and w E So,  v.w denotes 
the value of v in ~r. A state in which z has the value 5 and y has the value 2 is 
written {z = 5, y = 2}. For x C r c ,  let val(~) denote the set of values tha t  �9 can 
have according to its type. For v E val(z), ~[v/~] denotes the state ~ where the 
value of �9 is replaced by the value v, and the values of the rest of the variables 

are unchanged. 
In order to compare parts of states, projection is defined. Let cr E 5r  m C 

~c .  r $ m is the state containing variables in m only, where the values of the 
variables in m are the same in ~ and o- $ m .  For example 

: 5, y : 2 , ,  : 0} y} : = 5, v :  2} 

(5r  ~ denotes the set of infinite sequences of states of C. Let t denote the 
sequence < ~r0, c r ~ , . . . , ~ i , . . .  >. Element i in t, is denoted t[i], i.e. t[i] : ~ .  
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Projection is extended to apply to sequences and sets of states, i.e. 

< 0"0,0"1,... > S i n  = < 0"0 $ m ,  0"1 S i n , . . .  > 

{0"0, 0"1, . . . }  m : (0"0 m,  0"1 J, m , . . . }  

A cell, C, defines a set of initial states called Zo,  and a set of state transitions, 
called To. Each state transition is a pair (o', o #) meaning that  C can perform a 
state change from 0" to 0"~. Returning to the multiplier, the pair ({z = 3, y = 
2, s = 0}, {z = 3, y = 2, s = 6}) belongs to T. 

A cell determines a computation, represented by a trace < 0"0, 0"I, 0",,... >, 
i.e., an infinite sequence of states. Each state belongs to ~qo. 0"o belongs to Zo, 
and for each pair of succeeding states (0"1,0"~+I), 

(0", 0"+1) E TO V 0"i : O'+1 

In section 4.1 it is explained why repetitions (0"i : 0"i+1) are allowed. The set of 
traces, 130, that  a computation of a cell, C, can determine is defined by 

13c = {s e (-.qo)'~ �9 Zo ^ Vi _> 0:  (s[i], , [ i  + 1]) E To V s[i] = s[i + 1]} 

The states present in any trace of 130 are referred to as the reachable states. 

2.1 C o m p o s i t i o n  

Above, the set of traces of one cell is defined. Often designs are composed of 
several cells. Below, composition of cells is defined. 

For two cells, C and D, composition is denoted C[[D. In order to avoid 
renaming, it is assumed that  interface variables of C and D are identically named 
and typed, and that local variable names of C and D are not overlapping. This 
means that -qc[[/) is identified by PcUVD as explained above. ZCIID is the set of 
states from SolID such that  the variables of C and D are initialized according 
to the states in Zo and Z/), respectively. TCI[D is the set of pairs of states from 
801IDXSOIID such that  for each pair (0", o'l), the variables of Pc  are changed 
according to To and the variables of s are unchanged, or vice versa. 

3 I n t e r f a c e  P r o t o c o l s  

The interface protocol is an important  part of the interface description (together 
with the types of the interface variables, etc.). The interface protocol documents 
the communication pattern of the cell and the environment. If  the communica- 
tion pattern is formalized, it can be used for reasoning about cells, for example ,  
for refinement purposes. 

Informally, the information about the communication is stated as a condi- 
tion for each interface variable. The condition indicates whether the value of the 
variable can be used by the environment in a given state. For each state, this 
defines a subset of the interface variables containing variables that  the environ- 
ment may use. This subset is referred to as the obaervable part  of the interface. 
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Instead of focusing on the whole interface, the notion of refinement defined below 
is only concerned with the observable part of the interface. Recall, for example, 
the multiplier where the aim is to disregard s until s has reached the value of 
z * y. Following the outline given here, s is kept out of the observable part of 
the interface until the correct value (z * 9) has been reached, whereupon s is 
included in the observable part of the interface. 

Below, interface protocols are defined, and it is described what it means for 
an environment to respect an interface protocol. 

3.1 Definition 

A condition, V(z), is associated with each interface variable z. The condition 
is an assertion on the interface variables. The collection of interface conditions 
constitute the interface protocol. The variable z is defined to be in the observable 
part  of the interface in a state ~ iff V(z)  evaluates to true in ~, written V(z).~. 

Example. Consider again the multiplier. The interface of the multiplier con- 
tains the variables z, 9, s and ~'dy. In the multiplier, ~'d9 is set true to indicate 
that the computation of 8 has finished. Therefore the environment should not use 
the value of s unless rdy is true. This is formalized using the interface protocol 

v(8) = ,29 

Consider the state ~ -- {z = 4, 9 = 2, s = 4, rd9 = F}. The observable part of 
~r is {z = 4, 9 = 2, rdy = F}. This is also the case for o" = {z = 4, y = 2, s = 
0, rdy = F}. Consequently, cr and ~' can be treated identically when arguing 
about the states from the environments point of view. This is exploited in the 

definition of refinement given below. 
End of  example 

For an interface variable z, V(z) is expressed by means of operators and other 
interface variables. The variable y appears in V(z) if 9 is among the interface 
variables that  are used to express V(z). Since V(z).cr is supposed to determine 
whether the environment is allowed to observe z all the variables that  appear 
in the predicate V(z)  should be observable. To avoid circular dependencies, for 

example 

v(,) = y = 

it is sufficient to require that  if 9 appears in V(z),  then V(y) must be the constant 
true. V(z) defaults to true, i.e. leaving out V(z) implies that  z always belongs 

to the observable part of the interface. 
The possibility of exploiting the interface protocol relies on the cell and the 

environment to have the same understanding of which part of the interface is 
observable in a given state. This is dealt with next. 
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3.2 Respect ing  an Interface Protoco l  

Let ns(~) denote the set of next states that  the environment can cause by per- 
forming one state transition from TE started in ~. 

Informally, the environment depends on a variable, y, in a state, o 5 if the value 
of y influences the changes of other variables caused by the environment. This 
is denoted dep(y, ~). Let .~ denote the set VE \ {y}. 

dev(y, ~) = 3~ e ~a/(y) : ns(~) + ~ r n,(~[~/y]) $ 

Consider any cell, C, with an interface protocol, V, and environment, E.  Let 
(~, ~ )  denote any state transition that  E can perform. The environment is not 
allowed to depend on a variable y in r when V(y).~ is false. This leads to the 
following condition, N D  (no dependency) 

N D  Vy e s : dep(y, ~) ==~ Y(y).~ 

Furthermore, the environment must not turn V(y) true or change the value of 
unobservable interface variables. This results in the condition N C  (no change): 

N C  vy ~ CE : -~V(y).~ ~ -~V(y).~' ^ -~V(y).~' ~ y.~ = ~.~' 

When these two conditions are fulfilled, E is said to respect V. 

4 R e f i n e m e n t  

The notion of refinement described below is based on the information about the 
environment, captured by interface protocols. 

4.1 Definit ion of  Ref inement  

Let C denote the concrete and A the abstract design. Let V denote the interface 
protocol of A and C, and let E denote an environment that respects V. Refine- 
ment as defined below ensures that for any trace of C IIE there is a similar trace 
of A[IE , where similar means that  there are no differences with respect to the 
observable variables. 

The aim is to compare only the observable part  of the traces. This is obtained 
using Sv that  projects away state variables that  are not observable. Given a cell  
C and er ESo 

+v = ~ + { ~ ~ co I v(v) .~ } 

Applying Sv to a trace corresponds to applying Sv to each of the states in the 
trace. 
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Example: M u l t i p l i e r  ( c o n t i n u e d ) .  Below, each column denotes a state, and 
the succeeding columns make up a part  of a trace, t. In the presence of the 
interface protocol V ( s )  = rdy,  t J~v is the par t  of  the trace between the two 
lines. 

s - . .  2 2 1 2  0 3 6 9 1 2 1 1 2  
r d y  . . .  T T F F F F F F T 

z -.. 1 4 4 4 4 4 4 4 4 

y - . .  2 3 3 3 3 3 3 3 3 

0 ~ a 

* * *  

I b W 

E n d  o f  example 

Having projected away the parts  of the traces that  are not observable, leaves 
the traces with adjacent duplicates, where the original traces only differ on non 
observable state variables. Between two observable state changes the abstract  
and the concrete designs might make a different number  of state transitions. In 
the definition below this is compensated for by allowing traces to have duplicates 
(section 2). This leads to the following definition of refinement: 

D e f i n i t i o n  1. Let A and C denote cells with the same interface protocol, V, 
and E an environment, such that  E respects V. C refines A in E iff 

V t '  6 BCllS, 9 t  E BAIIE : t '  Sv = t Sv 

Note that  this definition is a generalization of trace inclusion, since leaving 
out interface protocols implies that  Sv only projects away local variables. 

E x a m p l e :  M u l t i p l i e r  ( c o n t i n u e d ) .  Let A and C denote the abstract  and the 
concrete multiplier, respectively. Let E denote an environment. Consider the two 

traces t G BAnE and t ~ E BelIE. 

t: 

s . . .  2 5 1 2  2 2 2 2 2 J 1 2  . . .  

r d y  . . .  T T F F F F F F T . . .  

z . . .  1 4 4 4 4 4 4 4 4 . . .  
y . . .  2 3 3 3 3 3 3 3 3 ---  

t ' :  

s . . .  2 2 1 2  0 3 6 9 1 2 1 1 5  . .  

r d y  . "  T T F F F F F F T . ."  
z ... 1 4 4 4 4 4 4 4 4 -.. 

y . . -  2 3 3. 3 3 3 3 3 3 . . .  

While the computat ion of s takes place, ~,dy is false and the interface protocol 
V ( s )  = ~dy ensures tha t  s is projected away from the traces. This means that  
when r d y  is false, there is no difference between t ~ ~v and t Sv. When s has 
reached the value of z * y, r d y  is set true, and s is again included in the traces. 
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Still no difference is found between t '  Sv and t Sv, since now s has the same 
value in both the concrete and the abstract trace. This illustrates the advantage 
of considering only the observable part of the interface. 
E n d  o f  e x a m p l e  

5 V e r i f i c a t i o n  

The definition of refinement given in the previous section is not directly useful 
for formal verification, since it is concerned with infinite traces. This section 
provides a verification technique that is suitable for mechanizing the verification 
of refinement. Below, the verification is carried out using a theorem prover. 
Often when theorem provers are used, the designs are specified directly in the 
logic of the theorem prover. In the present work another approach is taken. In 
order to avoid obscuring the descriptions with theorem prover specific details, 
SYNCHRONIZED TRANSITIONS [11] is chosen as description language. 

5.1 SYNCHRONIZED TRANSITIONS 

A subset of SYNCHRONIZED TRANSITIONS is used. In SYNCHRONIZED TRANSI- 
TIONS, a cell, C, consists of (1) declarations of the local and interface variables, 
(2) an initialization, Ini t (C),  (3) a set of transitions, Tr(C), (4) an invariant, 
Inv(C),  and (5) an interface protocol, V. 

The variable declarations state the name and type of the variables, thereby 
identifying the set of states, So.  

The initialization is a predicate on the state variables. It determines the 
initial values of state variables. The initialization has the form: 

vl = vall A v2 = val2 A vs = vals A . . .  

where Vl, v2, v3 are variables and vai l ,  val2, val3 are suitably typed values. Any 
state in 5c  that  fulfills this predicate can be an initial state. The initialization 
is related to the underlying transition system in the following way 

Zo  = { ~ ~ S c  I In i t (C)xr  } 

Transitions describe the state changes that  the cell can perform. Each tran- 
sition consists of a precondition, p, and a multi assignment. A precondition is a 
boolean typed expression. The multi assignment consists of a list of variables and 
an equally long list of expressions. If p is true in a state, the multi assignment 
can be executed in that state. Executing the multi assignment, simultaneously 
assigns the value of the expressions e t , e 2 , . . . , a n  to the variables I t ,12, . . . , I ,~ .  
Syntactically, a transition looks like this: 

<< P -+ l l ,  12, . . . ,  In := el, e2, . . . ,  e,~ >> 

Given a transition, t, exprs(t) denotes the list of expressions < p, et, e2 , . . . ,  en >, 
and exprs(t).~ denotes the list of values ( pxr, el.~r, e2 .~ , . . . ,  en.~ >. Given states 
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cr, a t and transi t ion t,  a ---~ a j denotes tha t  the precondit ion evaluates to true in 
or, and tha t  executing the multi  assignment in a results in a t. This is referred to 
as executing the transition, a and a '  are referred to as the pre and post  states, 
respectively, for the execution of  t: Given a state: ~, several transit ions may  
have a precondit ion tha t  evaluates to true in a.  In this case, the transi t ion to be 
executed is selected nondeterministically. This means tha t  the set, Tc,  used to 
define the underlying transi t ion system is defined by 

rc = { (a, a') e (Sc • sc)  ] at T (C) : a a' } 

An invariant,  Inv (C) ,  is a predicate on the state variables. It  holds in any 
state of  any trace of  C. In 5.3 the use of invar iants  in the verification is explained. 

E x a m p l e :  M u l t i p l i e r .  An  abs t rac t  and a concrete multiplier wri t ten in SYN- 
CHRONIZED TRANSITIONS are listed below. 

Since transit ions are selected nondeterministically,  no assumptions  can be 
made in advance about  the order of  the execution of  transitions. In case of  
the multiplier, this is handled in the following way: W h e n  the environment  has 
supplied the cell with the a rguments  z and y, r d y  is set false to make the 
computa t ion  start ,  and when the  computa t ion  has finished, the cell notifies this 

by sett ing rdv  true. 

CELL m u l t ( z ,  y, s : I N T E G E R  ; rd  v : B O O L E A N  ) 
I N T E R F A C E  P R O T O C O L  V(s)  = r d y  
I N V A R I A N T  z >__ 0 A y __ 0 
B E G I N  

<<-~rdy --+ s, r d y  := z * y, T R U E  >> 

E N D  muir  

This abs t rac t  design states tha t  s is assigned the value o f  z * y in one state 
transition. To implement  multiplication a number  of  finer grained operat ions  

are combined:  s is set to  0, and y is added  to s z times. 

CELL m u l t ( z ,  y, s : I N T E G E R  ; rdy  : B O O L E A N  ) 
I N T E R F A C E  P R O T O C O L  V ( s )  = vdy  

I N V A R I A N T  z > (I A y > 0 
STATE 

comp : B O O L E A N  
zl, s '  : I N T E G E R  

I N I T I A L L Y  comp = FALSE 
B E G I N  

<<-~rdy A -~comp --+ comp,  s, z l ,  s t :=  T R U E  , 0, z, s>> 

<<comp A z l  > 0 --~ z l ,  s :=  z l  -- 1, s + y>> 
<<comp A zl  = 0 --+ vdy,  comp  : =  T R U E ,  FALSE >> 

END m u l t  

f f  vdy  and comp are false, the computa t ion  can be s tar ted by the first t ransit ion:  
s is set to  0, zl  gets the value of  z and comp gets true. comp being t rue denotes 
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that  the computation is in progress. In the second transition, zl is decremented 
each time s is increased by y. The third transition deals with the situation where 
the computation of s has finished ( z / =  0). This is notified by setting rdy true. 
s ~ has no influence on the computation. It is included for verification purposes. 
This is explained in 5.5. 
E n d  o f  e x a m p l e  

5.2 Stepwise Verification 

As explained previously, the definition of refinement is expressed in terms of 
infinite traces. In order to avoid arguing about infinite traces, stepwise verifi- 
cation is used. Stepwise verification breaks the verification task into a number 
of independent steps. This is done by focusing on the parts of the design that  
determine the traces, namely the initialization and the transitions. Informally, 
the stepwise verification of refinement consists of 

1. Proving that  the abstract and the concrete designs have corresponding ini- 
tializations. 

2. Proving that  each state change caused by the concrete design can be ex- 
plained in terms of the abstract design. 

Stepwise verification is used in for example [1, 5, 7, 11], however, due to differ- 
ences in the view of the interface, their proof obligation for each concrete state 
transition, differ from the proof obligation given below. 

Stepwise verification differ from the approach in [6] and the work on tem- 
poral abstraction in [9] in the following way: In their work, the concrete state 
transitions are not considered one at a time; instead sequences of concrete state 
transitions corresponding to one abstract state transition are considered. 

5.3 Exp lo i t i ng  I n v a r i a n t s  in  S tepwise  Ver i f ica t ion  

Considering transitions one at a time, it is not possible to utilize information 
about the history of previously executed transitions. This implies that when 
a transition is considered, the state in which the transition is executed, is only 
identified by the precondition being true in that  state. This means that  unreach- 
able states are also considered. Consequently, a verification could fail because 
the property that is at tempted verified could be violated from an unreachable 
state. 

Unreachable states can be excluded from consideration by establishing an in- 
variant that  rules out these states. States axe only considered in the verification 
if they fulfill this invariant. Below, it is assumed that  given a cell and its envi- 
ronment, it has been verified that  neither the cell nor the environment violates 
the invariant of the cell. In [10] it is described how this is verified. 
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E x a m p l e :  M u l t i p l i e r  ( c o n t i n u e d ) .  In the concrete multiplier the following 
invariant holds: 

comp ~ (-~rdy A s + z l  �9 y =- z * y) 

Consider for example the execution of the second transition, t2, of the concrete 
multiplier: 

<<comp A z l  > 0 --+ zl ,  s := zl  -- 1, s + y>> 

Looking at t~. in isolation, it is impossible to tell the value of ~'dy in states where 
t2 can be executed. Taking the invariant into account, it is easy to conclude that  
rdy  is false in states where t2 can be executed. Below, invariants are used to 
provide this kind of information. 
End of  example 

5.4 R e f i n e m e n t  M a p p i n g s  

The verification technique ensures that  the changes of the observable part of the 
interface caused by concrete transitions can also be caused by the abstract tran- 
sitions. When a transition makes changes to the observable part  of the interface, 
the changes might be based on local variables. Consider for example the abstract 
transition, ta, <<i := la>> and the concrete transition, re, <~i := lc>>. Assume 
that  i is an observable interface variable, and la and lc are local variables. It is 
not possible to conclude that  the execution of te corresponds to the execution 
of ta unless it is known that  la and Ic have corresponding values. This implies 
that  a mechanism is needed for relating the variables of the two designs. For this 
purpose refinement mappings [i, 7] are used. 

A refinement mapping, R, is a mapping from the state space of the concrete 
design to the state space of the abstract design. 

R : S c ~ S a  

Refinement mappings as described in [1, 7] are the identity on interface vari- 
ables. This requirement can be relaxed by using interface protocols: It is only 
required that R is the identity on an interface variable, z ,  in states where V ( z )  

holds. 
The relaxed requirement to R is used to hide changes of unobservable inter- 

face variables. For each interface variable, v, with V(v)  # TRUE a verification 
variable, v' is introduced, v' is used to hold the last observable value of v while v 
is unobservable. The part  of the refinement mapping concerning v is constructed 

in the following way. 

v.R(o') = IF cond.r THEN v'.~ ELSE v.~r 

cond is a boolean valued expression, and is expressed in terms of local variables 
of C. The refinement mapping states that  the abstract value of v is interpreted 
as the value of v ~ if cond is true and as the value of the concrete v if  cond is false. 
For this to be sound it is required that  when the interface protocol for v is true, 
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R is the identity on v. As explained in 5.3 the requirements to R can be further 
relaxed by considering only states where the invariant holds. This results in the 
following requirement to R. 

R C  Vv E s  Vo, E Sc  : Inv(C).~r A V(v).cr ~ v.q = v .R(a)  

This property is exploited in the verification technique stated below. 

E x a m p l e :  M u l t i p l i e r  ( c o n t i n u e d ) .  The refinement mapping for the multi- 
plier is: 

�9 = 

= 

s.R(~r) = IF comp.o" THEN sl.~ ELSE s.e 
rdy.R(cr) = rdy.o" 

When the computation of s starts, cornp gets true and s ~ gets the value of s. This 
causes s.R((r) to remain unchanged. This means that the refinement mapping 
hides the changes of s until the computation of s has finished. By then, comp 
gets false, and the value of s.~ (= z.~r,  y.~,) is mapped to s.R(cr). 

For z, y, and rdy, R C  holds trivially. In the presence of the interface protocol 
V(s)  = rdy and the invariant comp ~ ~rdy,  the proof obligation for s is 

((comp.o" ~ -~rdy.o') A vdy.o') ::r s.(r = s.R(o') 

This is easily proved. 
End o f  example 

5.5 Ver i fy ing  Refinement 

This section presents a verification technique that ensures the notion of refine- 
ment in definition 1. It is important  to note that  the verification technique is 
intended for mechanized verification. 

The part of the verification technique concerning the initialization is called 
I N I T  

I N I T  V~r E S c :  In i t (C) .~  =r (Init(A).R(~r) A Vv E s  v.~r = v .R(~))  

This ensures that  all initial states of the concrete design, when mapped to the 
state space of the abstract design, fulfill the initialization predicate of the ab- 
stract design, and that  initially nothing is hidden by the refinement mapping. 

The part of the verification technique concerning the transitions is called 
S T E P  

Vtc E ~ ( C ) ,  v, ~' E Sc  : 
S T E P  Inv(C) .~ A o" ~ t o  ~' 

= v e H A ) :  

This ensures that  any execution of a concrete transition can be explained either 
as the execution of an abstract transition (3 tA. . . )  or as though no change has 
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taken place (R(o-) = R(e')).  I N I T  and S T E P  can be combined to verify 
that  two ceils are in accordance with definition 1 using the following verification 
technique: 

Verification technique: Let A and C denote cells with the same interface 
protocol, V, and E any environment, such that E respects V. Verifying I N I T  
and S T E P  ensures that C refines A in E. 

As mentioned in 5.3, it is assumed that  both C and E mat~ttain the invariant of 
C. Consequently this assumption does not appear explicitly in the verification 
technique. 

A soundness proof for the verification technique has been carried out, how- 
ever, it is not given here. 

At first glance, the verification technique does not seem only to be concerned 
with the observable part of the interface. This concern, however, is taken care of 
by the refinement mapping. When a change of a non observable interface variable 
is made, the refinement mapping can hide the change. This is illustrated by the 
following example. 

E x a m p l e :  M u l t i p l i e r  ( c o n t i n u e d ) .  For the multiplier, the verification tech- 
nique identifies four proof obligations; one for the initialization, and one for each 
concrete transition. 

No initialization is present in the abstract multiplier. This ensures that 
Init(C).~ ~ Init(A).R(~) in any initial state, ~. For z, y and rdy, the refine- 
ment mapping is the identity. In the concrete design camp is initially false. This 
ensures that  s.~ = s.R(~) in all initial states. 

When the first transition, t l ,  is executed, s is changed. Since camp gets true 
and s ~ gets the previous value of s, the change of s is hidden by the refinement 
mapping from the previous example. Consequently, the execution of tl  is justified 
by the clause R(~) = R(~') in S T E P .  

Each time the second transition, t2, is executed, the change of s is still hidden 
by the refinement mapping, since camp and s ~ are unchanged. This means that  
each execution of t2 is justified by the clause R(~) = R(e') in S T E P .  

When the third transition, t3, is executed, camp gets false. This means that  
the refinement mapping no longer hides the change of s. The invariant (from 
the example in 5.3) ensures that when zI = 0, s equals z * y. Consequently, the 
execution of t3 corresponds to the execution of the transition in the abstract 

design. 
End of example 

5.6 R e s p e c t i n g  t h e  I n t e r f a c e  P r o t o c o l  

In section 3.2, respecting the interface protocol is defined. In this definition the 
environment is represented by the set of state transitions that  it can make. 
Respecting the interface protocol is stated in terms of this representation. Given 
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the SYNCHRONIZED TRANSITIONS description, a condition is stated below to 
ensure that  the interface protocol is respected. 

Considering the execution of a transition, t, ~r -+t ~ ,  condition N C  can be 
applied directly to ~ and ~ .  However, condition N D  must be rephrased. 

A transition, t is dependent on a variable y in ~ if the value of y influences 
any expression of t, i.e. 

dep(t, y, . )  = ~v �9 val(y) : exprs(0 . .  r exm(0.~[v/V] 

Consequently, the resulting proof obligation is 

V t E � 9  Tr(E), ~, ~,' �9 SE : ~ --~t~ ~' 
Vv �9 s  : (dep(tB,  v, or) V V ( v ) . ~ ' )  ::~ V(v).cr A - V ( v ) . r  =~ v.cr = v .* '  

Note that  respecting the interface protocol is preserved during refinement. 
This means that  if the environment is refined, it still respects the interface proto- 
col. Note also that the verification technique for respecting the interface protocol 
is independent of the refinement mapping, R. This means that  if the concrete de- 
sign is further refined, probably with a new refinement mapping, R ~. ff  R ~ does 
not violate R G ,  the environment still respects the interface protocol. Conse- 
quently, it is only necessary to verify that  the environment respects the interface 
protocol once, namely at the most abstract level. 

A M o d u l a r  A p p r o a c h .  In SYNCHRONIZED TRANSITIONS, the designs can be 
described in a modular way using cells. The modularity can be exploited when 
proving that the environment maintains the interface protocol. The condition 
for ensuring that  the environment respects an interface protocol quantifies over 
all transitions. When the environment is extensive, and when several interface 
protocols are present, it can be laborious to verify that  all transitions in the envi- 
ronment respects each of the interface protocols. In [10], an approach is described 
for verifying certain safety properties. The approach exploits the modularity of 
the designs to reduce the number of proof obligations. The approach can be 
generalized to verify that the environment respects an interface protocol. 

5.7 P r e s e r v a t i o n  o f  Sa fe ty  Properties 

In the preceding sections it has been explained how refinement using interface 
protocols can be used to justify replacing one abstract cell by another concrete 
cell in an environment. The correctness of this follows from the soundness proof 
mentioned in section 5.5. Though the correctness focuses on safety properties, 
the preservation of these is further illustrated below. 

Assume that the abstract cell maintains a safety property that  is vital for the 
environment. For example that  an arbiter does not grant a privilege to two clients 
at the same time. ff  the notion of refinement is trace inclusion on the externally 
visible behaviors this safety property is also maintained by the concrete design. 

ff  the notion of refinement includes the use of interface protocols as described 
previously, the concrete cell might cause externally visible behaviors that  cannot 
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be caused by the abstract design. However, the refinement using interface proto- 
cols implies trace inclusion for the observable part of the interface. For environ- 
ments that  respects the interface protocol, it follows from the proof mentioned 
in 5.5 that  trace inclusion for the observable part of the interface is sufficient. 
Below, this is illustrated by the multiplier example. 

If the multiplier is always provided with non-zero arguments, the safety prop- 
erty s r 0 holds for the abstract multiplier. For the concrete multiplier, this is 
not the case. Consider a transition, t, that  placed in the environment of the 
multiplier can detect the difference between the abstract and the concrete mul- 
tiplier. 

<<s -- 0 --+ e r ro r  := TRUE >> 

If t is found in the environment of the abstract multiplier, e r ro r  will never be 
true, while in the environment of the concrete multiplier, e r ro r  might become 
true. However, t does not respect the interface protocol, so the violation of the 
safety property does not indicate a lack of soundness in the use of interface 

protocols. 
This illustrates that  i ra  safety property is not preserved, it is too strong for an 

environment that  relies on the safety property to respect the interface protocol. 
This means that  all safety properties that  are relevant for the environment are 

preserved. 

5.8 Mechanization 

Using the verification technique introduced above, it can be proved that  one 
design refines another. A prototype tool is developed that  turns SYNCHRONIZED 
TRANSITIONS descriptions into an axiomatization in the logic of the theorem 
prover LP, The Larch Prover [3]. The tool is based on a translator written for 
proving invariants for SYNCHRONIZED TRANSITIONS [10]. Each of the constituent 
parts of the designs (i.e. transitions~ invariants, initializations, variable declara- 
tions, etc.) are translated into corresponding LP constructs. The tool also gen- 
erates proof obligations for proving refinement. The multiplier used as example 
in this section and a number of examples from [11] have been verified using the 

tool and the theorem prover. 
The verification technique stated above turns out to be suitable for a theorem 

prover. The proof is by cases on the concrete transitions. This means that  the 
proof consists of several limited subproofs. Each of these subproofs assumes 
that  one concrete transition has been executed. At any stage of the proof, it is 
therefore straightforward to relate the current stage of the proof to a specific 
transition in the concrete design. Consequently, it is easy to interact if manual 
assistance is needed. Furthermore, changes in a few transitions allow for most of 

the proof to be reused. 
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6 E x a m p l e  - T h e  T a m a r a c k  M i c r o p r o c e s s o r  

The verification of an implementation of a simple microprocessor is described in 
[6]. This verification has been redone using the translator and theorem prover 
described in the previous section. 

Below, a part of the verification is described. Part ly to illustrate the appli- 
cability of the verification technique of the previous section, partly to illustrate 
the differences between the present approach and the approach in [6]. 

6.1 Abstract  Descript ion 

The CPU executes instructions located in a memory (mere ) .  A program counter 
(pc) points out the next instruction to be executed. The instructions include 
addition, subtraction, (conditional) jumping, and loading and storing data  in 
the memory. Below, focus is on the execution of a store instruction. 

When pc points out a store instruction, the store instruction identifies the 
location to be changed. The value to be stored in this location is contained in the 
register ace. Let S T  denote a function that given pc, ace and m e r e  as arguments 
returns the updated m e r e  where the location pointed out by the store instruction 
contains the value of ace and the rest of the locations are unchanged. While mere 
is updated, pc is incremented to point out the next instruction to be executed. 
This means that the abstract description of the store instruction is the following: 

~ m e m ,  pc  :---- S T ( p c ,  ace, m e m  ), pc  + 1>> 

6.2 Concrete  Descript ion 

The concrete design describes a microcode implementation of the CPU. In the 
microcode implementation, it is not possible to update the memory and to in- 
crement the program counter in the same state transition. Consequently, mere 
is updated first, and afterwards pc is incremented. In order to emphasize on con- 
cerns relevant to the use of interface protocols, the part of the concrete design, 
concerning the store instruction, is less detailed than the original description in 
[6]. 

<<mpc  = 17 -+ mere ,  rapc := S T ( p c ,  ace, mera), 18>> 
<<mpc = 18 -~ Pc, mpc := pc + 1, 5>> 

mpc denotes the microcode program counter. It ensures the correct order of the 
update of m e m  and Pc. The net result of first updating m e m  and afterwards Pc 
is the same as executing the abstract transition shown above. 

6.3 T h e  Problem 

The crucial difference between the abstract and the concrete descriptions is that 
the changes of r a e m  and pc in the concrete design do not happen in the same 
state transition, mera and pc are both interface variables. This means that  the 
environment might observe different values on the interface of the concrete and 
the abstract design. 
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T h e  S o l u t i o n  Us ing  I n t e r f a c e  P r o t o c o l s .  In the present approach this is 
handled by including a flag, ready, in the interface of both descriptions, ready is 
set false when rnem is updated and set true when pc is incremented. An interface 
protocol 

V( me m)  = ready 

is introduced. This prevents the environment from reading mere before pc is 
incremented. 

A refinement mapping, R, is constructed. It hides the change of mere until pc 
is incremented. When ready gets false, the value of mere is assigned to a variable, 
mere ~, and mpc is incremented. Using the refinement mapping described below, 
this makes mem.R(~r) unchanged. When pc is incremented, mpc is set to 5 and 
ready gets true. At the abstract level it appears as though mere and pc are 
changed in the same state transition. 

a c c . R ( r  = a c c . ~  

ready.R( o') = ready.or 

p c . R ( ~ )  = pc . r  
mem.R(~)  = IF mpc.~ = 18 THEN memO.or ELSE rnem.~ 

Given R and V ( m e m )  = ready, the problem degenerates to proving refinement 

between the following cells: 

CELL A(pc, ace : INTEGER ; mere : MEMORY; ready : BOOLEAN ) 
INTERFACE PROTOCOL V ( m e m )  -~ ready 

BEGIN 
<<mere, pc, ready : :  ST(pc, ace, mere), pc + 1, TRUE >> 
<<ready := FALSE >> 

END A 

CELL C(pc, ace : INTEGER ; mem : MEMORY; ready : BOOLEAN ) 
INTERFACE PROTOCOL V(mem)  ~ ready 

STATE 
mere ~ : MEMORY 
mpc : INTEGER 

INVARIANT 
(mpc = 17 ==~ ready)A 
(mpc = 18 ~ (rnem = ST(pc, ace, mere') A -~ready)) 

BEGIN 
~< rape -=- 17 --4 

mere, mpc, ready, mern ~ := ST(pc, ace, mere), 18, FALSE,  mere>> 
<< mpc = 18 -+ PC, ready, mpc := pc + 1, TRUE , 5>> 

END C 

The proof is carried out using the tools described in the previous section. 
Note that  the variable rnem' is a verification variable; after the verification 

has been completed it can be removed since it has no influence on the design (it 

is never read). 
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S o l u t i o n  in  [6]. In contrast to the asynchronous descriptions above, the de- 
scriptions in [6] are synchronous. For both the abstract and the concrete de- 
scriptions, the values of the variables are described as functions of time. In 
the abstract description, the execution of one instruction takes one time unit, 
whereas in the concrete design several time units are necessary to complete one 
instruction. This means that  the abstract time scale is more coarse grained than 
the concrete. This is dealt with using temporal abstraction, which is described 
in more detail in [9]. 

The concrete design is augmented with a boolean variable, ready. The notion 
of refinement ensures that at points of concrete time where ready is true, the 
concrete design is in a state that could also be caused by the abstract design. The 
concrete CPU cannot be used directly instead of the abstract CPU. To be able 
to replace the abstract CPU with the concrete in an environment, it is necessary 
to ensure that  the environment only depends on the interface variables of the 
CPU when ready is true. This issue of composition is not explicitly dealt with 
in [6]. 

7 Conc lus ion  

This paper has reported an a t tempt  to generalize the notion of trace inclusion 
to a more liberal notion of refinement by taking the environment into account. 

A verification technique has been stated for proving refinement for designs 
written in SYNCHRONIZED TRANSITIONS. A prototype tool has been developed 
for translating SYNCHRONIZED TRANSITIONS descriptions into the logic of an 
existing theorem prover, and for generating proof obligations for refinement. 

Experience with a number of examples has shown the usefulness of both the 
liberal notion of refinement and the tools for mechanizing the verification. 
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