
M e c h a n i z e d Verif ication of Ref inement

Niels Marett i

Department of Computer Science, Technical University of Denmark,
DK-2800 Lyngby, Denmark. e-mail: nbm~id.dtu.dk

Abs t r ac t . This paper describes a mechanized approach to verifying
that one concrete design is a refinement of another abstract design. A
widely used notion of refinement is trace inclusion, which implies that
each externally visible behavior of the concrete design can also be caused
by the abstract design. In some cases this is too restrictive and the veri-
fication technique proposed here is based on a more liberal notion where
information about the environment is exploited. A verification technique
is presented for designs written in the design language SYNCHRONIZBD
TRANSITIONS. The verification technique is supported by a prototype
tool for mechanizing 1) the axiomati~.ation of the design descriptions in
the logic of an existing theorem prover~ and 2) the generation of proof
obligations. Based on the axiomatization of the design descriptions, the
proof obligations can be discharged using the theorem prover.

1 I n t r o d u c t i o n

This paper describes a mechanized approach to verifying that one concrete design
is a refinement of another abstract design. For mechanized verification to be
practical it is important to find verification techniques which break the proof
into a number of independent steps of modest complexity. The main contribution
of this work is a notion of refinement which is both powerful enough to allow
interesting designs to be verified and yet simple enough to make mechanization
feasible.

Several approaches exists for formal verification of refinement, for example
[1, 5, 7, 8]. [5, 8] use forward and backward simulation, whereas [1, 7] use re-
finement mappings and prophecy variables. In the field of hardware verification,
two very different approaches are [2] and [4]. In [4] the hardware is described in
higher order logic and within this logic refinement corresponds to equivalence
or implication. Bryant [2] uses a simulator to prove refinement. Common for all
of the approaches is that they use trace inclusion as the fundamental notion of
equivalence.

Trace inclusion means that each externally visible behavior of the concrete
design can also be caused by the abstract design. However, in some cases trace
inclusion is too restrictive. Consider, for example, an abstract description of a
multiplier that performs the multiplication of two positive integers in a single
operation, i.e., if two inputs z, y are provided, the result s (= z , y) is avail-
able immediately afterwards. Following an example in [4], the multiplier can be
realized by accumulating y in s z times. In this case a number of intermediate

186

results (y, 2 * y , . . . , (z - 1) , y) are observed, before the right value of s (~ �9 y)
is observed. Consequently, the notion of trace inclusion does not apply to this
example. In ease of the multiplier, it would be useful to be able to disregard s
during the computat ion and only to focus on the final value.

This paper proposes a notion of refinement that allows for temporari ly leaving
s out of consideration by taking the environment into account. Based on informa-
tion about the environment, the notion of refinement ensures that the concrete
design can correctly replace the abstract in the environment, even though the
concrete design does not refine the abstract according to trace inclusion. The
notion of refinement is based on trace inclusion, but extended to take the en-
vironment into account. A prototype tool is developed for verifying that one
design refines another according to this notion of refinement.

Section 2 defines the model of a design. Section 3 explains how the environ-
ment is taken into account. Section 4 defines the notion of refinement in terms
of the model. To verify that one design is a refinement of another, section 5
provides a verification technique for designs written in the design language SYN-
CHRONIZ~,,D TRANSITIONS. The verification technique is developed in preparat ion
for using a theorem prover. In section 6, the verification technique is applied to
part of the Tamarack microprocessor [6].

2 Computational Model

Above, the terms design and environment have been used informally. Below,
designs and environments are described as cells. The computat ional model of a
cell, C, is a transition system identified by (1) the state space, 5c , spanned by
state variables in ~c , (2) the set of initial states, I c , and (3) the set of state
transitions, To. These components are described below.

A cell, C, operates on a set of typed state variables,]?c. Some of the state
variables are hidden from the environment, they are called local variables, ~;c.
The rest of the state variables are accessible for the environment, they are called
interface variables, Ec. Communication between cells takes place by means of
shared interface variables. The state space of C, determined by the state variables
and their corresponding types is denoted 3c . For v C ~ c and w E So, v.w denotes
the value of v in ~r. A state in which z has the value 5 and y has the value 2 is
written {z = 5, y = 2}. For x C r c , let val(~) denote the set of values tha t �9 can
have according to its type. For v E val(z), ~[v/~] denotes the state ~ where the
value of �9 is replaced by the value v, and the values of the rest of the variables

are unchanged.
In order to compare parts of states, projection is defined. Let cr E 5r m C

~c . r $ m is the state containing variables in m only, where the values of the
variables in m are the same in ~ and o- $ m . For example

: 5, y : 2 , , : 0} y} : = 5, v : 2}

(5r ~ denotes the set of infinite sequences of states of C. Let t denote the
sequence < ~r0, c r ~ , . . . , ~ i , . . . >. Element i in t, is denoted t[i], i.e. t[i] : ~ .

187

Projection is extended to apply to sequences and sets of states, i.e.

< 0"0,0"1,... > S i n = < 0"0 $ m , 0"1 S i n , . . . >

{0"0, 0"1, . . . } m : (0"0 m, 0"1 J, m , . . . }

A cell, C, defines a set of initial states called Zo, and a set of state transitions,
called To. Each state transition is a pair (o', o #) meaning that C can perform a
state change from 0" to 0"~. Returning to the multiplier, the pair ({z = 3, y =
2, s = 0}, {z = 3, y = 2, s = 6}) belongs to T.

A cell determines a computation, represented by a trace < 0"0, 0"I, 0",,... >,
i.e., an infinite sequence of states. Each state belongs to ~qo. 0"o belongs to Zo,
and for each pair of succeeding states (0"1,0"~+I),

(0", 0"+1) E TO V 0"i : O'+1

In section 4.1 it is explained why repetitions (0"i : 0"i+1) are allowed. The set of
traces, 130, that a computation of a cell, C, can determine is defined by

13c = {s e (-.qo)'~ �9 Zo ^ Vi _> 0: (s[i], , [i + 1]) E To V s[i] = s[i + 1]}

The states present in any trace of 130 are referred to as the reachable states.

2.1 C o m p o s i t i o n

Above, the set of traces of one cell is defined. Often designs are composed of
several cells. Below, composition of cells is defined.

For two cells, C and D, composition is denoted C[[D. In order to avoid
renaming, it is assumed that interface variables of C and D are identically named
and typed, and that local variable names of C and D are not overlapping. This
means that -qc[[/) is identified by PcUVD as explained above. ZCIID is the set of
states from SolID such that the variables of C and D are initialized according
to the states in Zo and Z/), respectively. TCI[D is the set of pairs of states from
801IDXSOIID such that for each pair (0", o'l), the variables of Pc are changed
according to To and the variables of s are unchanged, or vice versa.

3 I n t e r f a c e P r o t o c o l s

The interface protocol is an important part of the interface description (together
with the types of the interface variables, etc.). The interface protocol documents
the communication pattern of the cell and the environment. If the communica-
tion pattern is formalized, it can be used for reasoning about cells, for example ,
for refinement purposes.

Informally, the information about the communication is stated as a condi-
tion for each interface variable. The condition indicates whether the value of the
variable can be used by the environment in a given state. For each state, this
defines a subset of the interface variables containing variables that the environ-
ment may use. This subset is referred to as the obaervable part of the interface.

188

Instead of focusing on the whole interface, the notion of refinement defined below
is only concerned with the observable part of the interface. Recall, for example,
the multiplier where the aim is to disregard s until s has reached the value of
z * y. Following the outline given here, s is kept out of the observable part of
the interface until the correct value (z * 9) has been reached, whereupon s is
included in the observable part of the interface.

Below, interface protocols are defined, and it is described what it means for
an environment to respect an interface protocol.

3.1 Definition

A condition, V(z), is associated with each interface variable z. The condition
is an assertion on the interface variables. The collection of interface conditions
constitute the interface protocol. The variable z is defined to be in the observable
part of the interface in a state ~ iff V(z) evaluates to true in ~, written V(z).~.

Example. Consider again the multiplier. The interface of the multiplier con-
tains the variables z, 9, s and ~'dy. In the multiplier, ~'d9 is set true to indicate
that the computation of 8 has finished. Therefore the environment should not use
the value of s unless rdy is true. This is formalized using the interface protocol

v(8) = ,29

Consider the state ~ -- {z = 4, 9 = 2, s = 4, rd9 = F}. The observable part of
~r is {z = 4, 9 = 2, rdy = F}. This is also the case for o" = {z = 4, y = 2, s =
0, rdy = F}. Consequently, cr and ~' can be treated identically when arguing
about the states from the environments point of view. This is exploited in the

definition of refinement given below.
End of example

For an interface variable z, V(z) is expressed by means of operators and other
interface variables. The variable y appears in V(z) if 9 is among the interface
variables that are used to express V(z). Since V(z).cr is supposed to determine
whether the environment is allowed to observe z all the variables that appear
in the predicate V(z) should be observable. To avoid circular dependencies, for

example

v(,) = y =

it is sufficient to require that if 9 appears in V(z), then V(y) must be the constant
true. V(z) defaults to true, i.e. leaving out V(z) implies that z always belongs

to the observable part of the interface.
The possibility of exploiting the interface protocol relies on the cell and the

environment to have the same understanding of which part of the interface is
observable in a given state. This is dealt with next.

189

3.2 Respect ing an Interface Protoco l

Let ns(~) denote the set of next states that the environment can cause by per-
forming one state transition from TE started in ~.

Informally, the environment depends on a variable, y, in a state, o 5 if the value
of y influences the changes of other variables caused by the environment. This
is denoted dep(y, ~). Let .~ denote the set VE \ {y}.

dev(y, ~) = 3~ e ~a/(y) : ns(~) + ~ r n,(~[~/y]) $

Consider any cell, C, with an interface protocol, V, and environment, E. Let
(~, ~) denote any state transition that E can perform. The environment is not
allowed to depend on a variable y in r when V(y).~ is false. This leads to the
following condition, N D (no dependency)

N D Vy e s : dep(y, ~) ==~ Y(y).~

Furthermore, the environment must not turn V(y) true or change the value of
unobservable interface variables. This results in the condition N C (no change):

N C vy ~ CE : -~V(y).~ ~ -~V(y).~' ^ -~V(y).~' ~ y.~ = ~.~'

When these two conditions are fulfilled, E is said to respect V.

4 R e f i n e m e n t

The notion of refinement described below is based on the information about the
environment, captured by interface protocols.

4.1 Definit ion of Ref inement

Let C denote the concrete and A the abstract design. Let V denote the interface
protocol of A and C, and let E denote an environment that respects V. Refine-
ment as defined below ensures that for any trace of C IIE there is a similar trace
of A[IE , where similar means that there are no differences with respect to the
observable variables.

The aim is to compare only the observable part of the traces. This is obtained
using Sv that projects away state variables that are not observable. Given a cell
C and er ESo

+v = ~ + { ~ ~ co I v(v) .~ }

Applying Sv to a trace corresponds to applying Sv to each of the states in the
trace.

190

Example: M u l t i p l i e r (c o n t i n u e d) . Below, each column denotes a state, and
the succeeding columns make up a part of a trace, t. In the presence of the
interface protocol V (s) = rdy, t J~v is the par t of the trace between the two
lines.

s - . . 2 2 1 2 0 3 6 9 1 2 1 1 2
r d y . . . T T F F F F F F T

z -.. 1 4 4 4 4 4 4 4 4

y - . . 2 3 3 3 3 3 3 3 3

0 ~ a

* * *

I b W

E n d o f example

Having projected away the parts of the traces that are not observable, leaves
the traces with adjacent duplicates, where the original traces only differ on non
observable state variables. Between two observable state changes the abstract
and the concrete designs might make a different number of state transitions. In
the definition below this is compensated for by allowing traces to have duplicates
(section 2). This leads to the following definition of refinement:

D e f i n i t i o n 1. Let A and C denote cells with the same interface protocol, V,
and E an environment, such that E respects V. C refines A in E iff

V t ' 6 BCllS, 9 t E BAIIE : t ' Sv = t Sv

Note that this definition is a generalization of trace inclusion, since leaving
out interface protocols implies that Sv only projects away local variables.

E x a m p l e : M u l t i p l i e r (c o n t i n u e d) . Let A and C denote the abstract and the
concrete multiplier, respectively. Let E denote an environment. Consider the two

traces t G BAnE and t ~ E BelIE.

t:

s . . . 2 5 1 2 2 2 2 2 2 J 1 2 . . .

r d y . . . T T F F F F F F T . . .

z . . . 1 4 4 4 4 4 4 4 4 . . .
y . . . 2 3 3 3 3 3 3 3 3 ---

t ' :

s . . . 2 2 1 2 0 3 6 9 1 2 1 1 5 . .

r d y . " T T F F F F F F T . ."
z ... 1 4 4 4 4 4 4 4 4 -..

y . . - 2 3 3. 3 3 3 3 3 3 . . .

While the computat ion of s takes place, ~,dy is false and the interface protocol
V (s) = ~dy ensures tha t s is projected away from the traces. This means that
when r d y is false, there is no difference between t ~ ~v and t Sv. When s has
reached the value of z * y, r d y is set true, and s is again included in the traces.

191

Still no difference is found between t ' Sv and t Sv, since now s has the same
value in both the concrete and the abstract trace. This illustrates the advantage
of considering only the observable part of the interface.
E n d o f e x a m p l e

5 V e r i f i c a t i o n

The definition of refinement given in the previous section is not directly useful
for formal verification, since it is concerned with infinite traces. This section
provides a verification technique that is suitable for mechanizing the verification
of refinement. Below, the verification is carried out using a theorem prover.
Often when theorem provers are used, the designs are specified directly in the
logic of the theorem prover. In the present work another approach is taken. In
order to avoid obscuring the descriptions with theorem prover specific details,
SYNCHRONIZED TRANSITIONS [11] is chosen as description language.

5.1 SYNCHRONIZED TRANSITIONS

A subset of SYNCHRONIZED TRANSITIONS is used. In SYNCHRONIZED TRANSI-
TIONS, a cell, C, consists of (1) declarations of the local and interface variables,
(2) an initialization, Ini t (C), (3) a set of transitions, Tr(C), (4) an invariant,
Inv(C), and (5) an interface protocol, V.

The variable declarations state the name and type of the variables, thereby
identifying the set of states, So.

The initialization is a predicate on the state variables. It determines the
initial values of state variables. The initialization has the form:

vl = vall A v2 = val2 A vs = vals A . . .

where Vl, v2, v3 are variables and vai l , val2, val3 are suitably typed values. Any
state in 5c that fulfills this predicate can be an initial state. The initialization
is related to the underlying transition system in the following way

Zo = { ~ ~ S c I In i t (C)xr }

Transitions describe the state changes that the cell can perform. Each tran-
sition consists of a precondition, p, and a multi assignment. A precondition is a
boolean typed expression. The multi assignment consists of a list of variables and
an equally long list of expressions. If p is true in a state, the multi assignment
can be executed in that state. Executing the multi assignment, simultaneously
assigns the value of the expressions e t , e 2 , . . . , a n to the variables I t ,12, . . . , I ,~ .
Syntactically, a transition looks like this:

<< P -+ l l , 12, . . . , In := el, e2, . . . , e,~ >>

Given a transition, t, exprs(t) denotes the list of expressions < p, et, e2 , . . . , en >,
and exprs(t).~ denotes the list of values (pxr, el.~r, e2 .~ , . . . , en.~ >. Given states

192

cr, a t and transi t ion t, a ---~ a j denotes tha t the precondit ion evaluates to true in
or, and tha t executing the multi assignment in a results in a t. This is referred to
as executing the transition, a and a ' are referred to as the pre and post states,
respectively, for the execution of t: Given a state: ~, several transit ions may
have a precondit ion tha t evaluates to true in a. In this case, the transi t ion to be
executed is selected nondeterministically. This means tha t the set, Tc, used to
define the underlying transi t ion system is defined by

rc = { (a, a') e (Sc • sc)] at T (C) : a a' }

An invariant, Inv (C) , is a predicate on the state variables. It holds in any
state of any trace of C. In 5.3 the use of invar iants in the verification is explained.

E x a m p l e : M u l t i p l i e r . An abs t rac t and a concrete multiplier wri t ten in SYN-
CHRONIZED TRANSITIONS are listed below.

Since transit ions are selected nondeterministically, no assumptions can be
made in advance about the order of the execution of transitions. In case of
the multiplier, this is handled in the following way: W h e n the environment has
supplied the cell with the a rguments z and y, r d y is set false to make the
computa t ion start , and when the computa t ion has finished, the cell notifies this

by sett ing rdv true.

CELL m u l t (z , y, s : I N T E G E R ; rd v : B O O L E A N)
I N T E R F A C E P R O T O C O L V(s) = r d y
I N V A R I A N T z >__ 0 A y __ 0
B E G I N

<<-~rdy --+ s, r d y := z * y, T R U E >>

E N D muir

This abs t rac t design states tha t s is assigned the value o f z * y in one state
transition. To implement multiplication a number of finer grained operat ions

are combined: s is set to 0, and y is added to s z times.

CELL m u l t (z , y, s : I N T E G E R ; rdy : B O O L E A N)
I N T E R F A C E P R O T O C O L V (s) = vdy

I N V A R I A N T z > (I A y > 0
STATE

comp : B O O L E A N
zl, s ' : I N T E G E R

I N I T I A L L Y comp = FALSE
B E G I N

<<-~rdy A -~comp --+ comp, s, z l , s t := T R U E , 0, z, s>>

<<comp A z l > 0 --~ z l , s := z l -- 1, s + y>>
<<comp A zl = 0 --+ vdy, comp : = T R U E , FALSE >>

END m u l t

f f vdy and comp are false, the computa t ion can be s tar ted by the first t ransit ion:
s is set to 0, zl gets the value of z and comp gets true. comp being t rue denotes

193

that the computation is in progress. In the second transition, zl is decremented
each time s is increased by y. The third transition deals with the situation where
the computation of s has finished (z / = 0). This is notified by setting rdy true.
s ~ has no influence on the computation. It is included for verification purposes.
This is explained in 5.5.
E n d o f e x a m p l e

5.2 Stepwise Verification

As explained previously, the definition of refinement is expressed in terms of
infinite traces. In order to avoid arguing about infinite traces, stepwise verifi-
cation is used. Stepwise verification breaks the verification task into a number
of independent steps. This is done by focusing on the parts of the design that
determine the traces, namely the initialization and the transitions. Informally,
the stepwise verification of refinement consists of

1. Proving that the abstract and the concrete designs have corresponding ini-
tializations.

2. Proving that each state change caused by the concrete design can be ex-
plained in terms of the abstract design.

Stepwise verification is used in for example [1, 5, 7, 11], however, due to differ-
ences in the view of the interface, their proof obligation for each concrete state
transition, differ from the proof obligation given below.

Stepwise verification differ from the approach in [6] and the work on tem-
poral abstraction in [9] in the following way: In their work, the concrete state
transitions are not considered one at a time; instead sequences of concrete state
transitions corresponding to one abstract state transition are considered.

5.3 Exp lo i t i ng I n v a r i a n t s in S tepwise Ver i f ica t ion

Considering transitions one at a time, it is not possible to utilize information
about the history of previously executed transitions. This implies that when
a transition is considered, the state in which the transition is executed, is only
identified by the precondition being true in that state. This means that unreach-
able states are also considered. Consequently, a verification could fail because
the property that is at tempted verified could be violated from an unreachable
state.

Unreachable states can be excluded from consideration by establishing an in-
variant that rules out these states. States axe only considered in the verification
if they fulfill this invariant. Below, it is assumed that given a cell and its envi-
ronment, it has been verified that neither the cell nor the environment violates
the invariant of the cell. In [10] it is described how this is verified.

194

E x a m p l e : M u l t i p l i e r (c o n t i n u e d) . In the concrete multiplier the following
invariant holds:

comp ~ (-~rdy A s + z l �9 y =- z * y)

Consider for example the execution of the second transition, t2, of the concrete
multiplier:

<<comp A z l > 0 --+ zl , s := zl -- 1, s + y>>

Looking at t~. in isolation, it is impossible to tell the value of ~'dy in states where
t2 can be executed. Taking the invariant into account, it is easy to conclude that
rdy is false in states where t2 can be executed. Below, invariants are used to
provide this kind of information.
End of example

5.4 R e f i n e m e n t M a p p i n g s

The verification technique ensures that the changes of the observable part of the
interface caused by concrete transitions can also be caused by the abstract tran-
sitions. When a transition makes changes to the observable part of the interface,
the changes might be based on local variables. Consider for example the abstract
transition, ta, <<i := la>> and the concrete transition, re, <~i := lc>>. Assume
that i is an observable interface variable, and la and lc are local variables. It is
not possible to conclude that the execution of te corresponds to the execution
of ta unless it is known that la and Ic have corresponding values. This implies
that a mechanism is needed for relating the variables of the two designs. For this
purpose refinement mappings [i, 7] are used.

A refinement mapping, R, is a mapping from the state space of the concrete
design to the state space of the abstract design.

R : S c ~ S a

Refinement mappings as described in [1, 7] are the identity on interface vari-
ables. This requirement can be relaxed by using interface protocols: It is only
required that R is the identity on an interface variable, z , in states where V (z)

holds.
The relaxed requirement to R is used to hide changes of unobservable inter-

face variables. For each interface variable, v, with V(v) # TRUE a verification
variable, v' is introduced, v' is used to hold the last observable value of v while v
is unobservable. The part of the refinement mapping concerning v is constructed

in the following way.

v.R(o') = IF cond.r THEN v'.~ ELSE v.~r

cond is a boolean valued expression, and is expressed in terms of local variables
of C. The refinement mapping states that the abstract value of v is interpreted
as the value of v ~ if cond is true and as the value of the concrete v if cond is false.
For this to be sound it is required that when the interface protocol for v is true,

195

R is the identity on v. As explained in 5.3 the requirements to R can be further
relaxed by considering only states where the invariant holds. This results in the
following requirement to R.

R C Vv E s Vo, E Sc : Inv(C).~r A V(v).cr ~ v.q = v .R(a)

This property is exploited in the verification technique stated below.

E x a m p l e : M u l t i p l i e r (c o n t i n u e d) . The refinement mapping for the multi-
plier is:

�9 =

=

s.R(~r) = IF comp.o" THEN sl.~ ELSE s.e
rdy.R(cr) = rdy.o"

When the computation of s starts, cornp gets true and s ~ gets the value of s. This
causes s.R((r) to remain unchanged. This means that the refinement mapping
hides the changes of s until the computation of s has finished. By then, comp
gets false, and the value of s.~ (= z.~r, y.~,) is mapped to s.R(cr).

For z, y, and rdy, R C holds trivially. In the presence of the interface protocol
V(s) = rdy and the invariant comp ~ ~rdy, the proof obligation for s is

((comp.o" ~ -~rdy.o') A vdy.o') ::r s.(r = s.R(o')

This is easily proved.
End o f example

5.5 Ver i fy ing Refinement

This section presents a verification technique that ensures the notion of refine-
ment in definition 1. It is important to note that the verification technique is
intended for mechanized verification.

The part of the verification technique concerning the initialization is called
I N I T

I N I T V~r E S c : In i t (C) .~ =r (Init(A).R(~r) A Vv E s v.~r = v .R(~))

This ensures that all initial states of the concrete design, when mapped to the
state space of the abstract design, fulfill the initialization predicate of the ab-
stract design, and that initially nothing is hidden by the refinement mapping.

The part of the verification technique concerning the transitions is called
S T E P

Vtc E ~ (C) , v, ~' E Sc :
S T E P Inv(C) .~ A o" ~ t o ~'

= v e H A) :

This ensures that any execution of a concrete transition can be explained either
as the execution of an abstract transition (3 tA. . .) or as though no change has

196

taken place (R(o-) = R(e')). I N I T and S T E P can be combined to verify
that two ceils are in accordance with definition 1 using the following verification
technique:

Verification technique: Let A and C denote cells with the same interface
protocol, V, and E any environment, such that E respects V. Verifying I N I T
and S T E P ensures that C refines A in E.

As mentioned in 5.3, it is assumed that both C and E mat~ttain the invariant of
C. Consequently this assumption does not appear explicitly in the verification
technique.

A soundness proof for the verification technique has been carried out, how-
ever, it is not given here.

At first glance, the verification technique does not seem only to be concerned
with the observable part of the interface. This concern, however, is taken care of
by the refinement mapping. When a change of a non observable interface variable
is made, the refinement mapping can hide the change. This is illustrated by the
following example.

E x a m p l e : M u l t i p l i e r (c o n t i n u e d) . For the multiplier, the verification tech-
nique identifies four proof obligations; one for the initialization, and one for each
concrete transition.

No initialization is present in the abstract multiplier. This ensures that
Init(C).~ ~ Init(A).R(~) in any initial state, ~. For z, y and rdy, the refine-
ment mapping is the identity. In the concrete design camp is initially false. This
ensures that s.~ = s.R(~) in all initial states.

When the first transition, t l , is executed, s is changed. Since camp gets true
and s ~ gets the previous value of s, the change of s is hidden by the refinement
mapping from the previous example. Consequently, the execution of tl is justified
by the clause R(~) = R(~') in S T E P .

Each time the second transition, t2, is executed, the change of s is still hidden
by the refinement mapping, since camp and s ~ are unchanged. This means that
each execution of t2 is justified by the clause R(~) = R(e') in S T E P .

When the third transition, t3, is executed, camp gets false. This means that
the refinement mapping no longer hides the change of s. The invariant (from
the example in 5.3) ensures that when zI = 0, s equals z * y. Consequently, the
execution of t3 corresponds to the execution of the transition in the abstract

design.
End of example

5.6 R e s p e c t i n g t h e I n t e r f a c e P r o t o c o l

In section 3.2, respecting the interface protocol is defined. In this definition the
environment is represented by the set of state transitions that it can make.
Respecting the interface protocol is stated in terms of this representation. Given

197

the SYNCHRONIZED TRANSITIONS description, a condition is stated below to
ensure that the interface protocol is respected.

Considering the execution of a transition, t, ~r -+t ~ , condition N C can be
applied directly to ~ and ~ . However, condition N D must be rephrased.

A transition, t is dependent on a variable y in ~ if the value of y influences
any expression of t, i.e.

dep(t, y, .) = ~v �9 val(y) : exprs(0 . . r exm(0.~[v/V]

Consequently, the resulting proof obligation is

V t E � 9 Tr(E), ~, ~,' �9 SE : ~ --~t~ ~'
Vv �9 s : (dep(tB, v, or) V V (v) . ~ ') ::~ V(v).cr A - V (v) . r =~ v.cr = v .* '

Note that respecting the interface protocol is preserved during refinement.
This means that if the environment is refined, it still respects the interface proto-
col. Note also that the verification technique for respecting the interface protocol
is independent of the refinement mapping, R. This means that if the concrete de-
sign is further refined, probably with a new refinement mapping, R ~. ff R ~ does
not violate R G , the environment still respects the interface protocol. Conse-
quently, it is only necessary to verify that the environment respects the interface
protocol once, namely at the most abstract level.

A M o d u l a r A p p r o a c h . In SYNCHRONIZED TRANSITIONS, the designs can be
described in a modular way using cells. The modularity can be exploited when
proving that the environment maintains the interface protocol. The condition
for ensuring that the environment respects an interface protocol quantifies over
all transitions. When the environment is extensive, and when several interface
protocols are present, it can be laborious to verify that all transitions in the envi-
ronment respects each of the interface protocols. In [10], an approach is described
for verifying certain safety properties. The approach exploits the modularity of
the designs to reduce the number of proof obligations. The approach can be
generalized to verify that the environment respects an interface protocol.

5.7 P r e s e r v a t i o n o f Sa fe ty Properties

In the preceding sections it has been explained how refinement using interface
protocols can be used to justify replacing one abstract cell by another concrete
cell in an environment. The correctness of this follows from the soundness proof
mentioned in section 5.5. Though the correctness focuses on safety properties,
the preservation of these is further illustrated below.

Assume that the abstract cell maintains a safety property that is vital for the
environment. For example that an arbiter does not grant a privilege to two clients
at the same time. ff the notion of refinement is trace inclusion on the externally
visible behaviors this safety property is also maintained by the concrete design.

ff the notion of refinement includes the use of interface protocols as described
previously, the concrete cell might cause externally visible behaviors that cannot

198

be caused by the abstract design. However, the refinement using interface proto-
cols implies trace inclusion for the observable part of the interface. For environ-
ments that respects the interface protocol, it follows from the proof mentioned
in 5.5 that trace inclusion for the observable part of the interface is sufficient.
Below, this is illustrated by the multiplier example.

If the multiplier is always provided with non-zero arguments, the safety prop-
erty s r 0 holds for the abstract multiplier. For the concrete multiplier, this is
not the case. Consider a transition, t, that placed in the environment of the
multiplier can detect the difference between the abstract and the concrete mul-
tiplier.

<<s -- 0 --+ e r ro r := TRUE >>

If t is found in the environment of the abstract multiplier, e r ro r will never be
true, while in the environment of the concrete multiplier, e r ro r might become
true. However, t does not respect the interface protocol, so the violation of the
safety property does not indicate a lack of soundness in the use of interface

protocols.
This illustrates that i ra safety property is not preserved, it is too strong for an

environment that relies on the safety property to respect the interface protocol.
This means that all safety properties that are relevant for the environment are

preserved.

5.8 Mechanization

Using the verification technique introduced above, it can be proved that one
design refines another. A prototype tool is developed that turns SYNCHRONIZED
TRANSITIONS descriptions into an axiomatization in the logic of the theorem
prover LP, The Larch Prover [3]. The tool is based on a translator written for
proving invariants for SYNCHRONIZED TRANSITIONS [10]. Each of the constituent
parts of the designs (i.e. transitions~ invariants, initializations, variable declara-
tions, etc.) are translated into corresponding LP constructs. The tool also gen-
erates proof obligations for proving refinement. The multiplier used as example
in this section and a number of examples from [11] have been verified using the

tool and the theorem prover.
The verification technique stated above turns out to be suitable for a theorem

prover. The proof is by cases on the concrete transitions. This means that the
proof consists of several limited subproofs. Each of these subproofs assumes
that one concrete transition has been executed. At any stage of the proof, it is
therefore straightforward to relate the current stage of the proof to a specific
transition in the concrete design. Consequently, it is easy to interact if manual
assistance is needed. Furthermore, changes in a few transitions allow for most of

the proof to be reused.

199

6 E x a m p l e - T h e T a m a r a c k M i c r o p r o c e s s o r

The verification of an implementation of a simple microprocessor is described in
[6]. This verification has been redone using the translator and theorem prover
described in the previous section.

Below, a part of the verification is described. Part ly to illustrate the appli-
cability of the verification technique of the previous section, partly to illustrate
the differences between the present approach and the approach in [6].

6.1 Abstract Descript ion

The CPU executes instructions located in a memory (mere) . A program counter
(pc) points out the next instruction to be executed. The instructions include
addition, subtraction, (conditional) jumping, and loading and storing data in
the memory. Below, focus is on the execution of a store instruction.

When pc points out a store instruction, the store instruction identifies the
location to be changed. The value to be stored in this location is contained in the
register ace. Let S T denote a function that given pc, ace and m e r e as arguments
returns the updated m e r e where the location pointed out by the store instruction
contains the value of ace and the rest of the locations are unchanged. While mere
is updated, pc is incremented to point out the next instruction to be executed.
This means that the abstract description of the store instruction is the following:

~ m e m , pc :---- S T (p c , ace, m e m), pc + 1>>

6.2 Concrete Descript ion

The concrete design describes a microcode implementation of the CPU. In the
microcode implementation, it is not possible to update the memory and to in-
crement the program counter in the same state transition. Consequently, mere
is updated first, and afterwards pc is incremented. In order to emphasize on con-
cerns relevant to the use of interface protocols, the part of the concrete design,
concerning the store instruction, is less detailed than the original description in
[6].

<<mpc = 17 -+ mere , rapc := S T (p c , ace, mera), 18>>
<<mpc = 18 -~ Pc, mpc := pc + 1, 5>>

mpc denotes the microcode program counter. It ensures the correct order of the
update of m e m and Pc. The net result of first updating m e m and afterwards Pc
is the same as executing the abstract transition shown above.

6.3 T h e Problem

The crucial difference between the abstract and the concrete descriptions is that
the changes of r a e m and pc in the concrete design do not happen in the same
state transition, mera and pc are both interface variables. This means that the
environment might observe different values on the interface of the concrete and
the abstract design.

200

T h e S o l u t i o n Us ing I n t e r f a c e P r o t o c o l s . In the present approach this is
handled by including a flag, ready, in the interface of both descriptions, ready is
set false when rnem is updated and set true when pc is incremented. An interface
protocol

V(me m) = ready

is introduced. This prevents the environment from reading mere before pc is
incremented.

A refinement mapping, R, is constructed. It hides the change of mere until pc
is incremented. When ready gets false, the value of mere is assigned to a variable,
mere ~, and mpc is incremented. Using the refinement mapping described below,
this makes mem.R(~r) unchanged. When pc is incremented, mpc is set to 5 and
ready gets true. At the abstract level it appears as though mere and pc are
changed in the same state transition.

a c c . R (r = a c c . ~

ready.R(o') = ready.or

p c . R (~) = pc . r
mem.R(~) = IF mpc.~ = 18 THEN memO.or ELSE rnem.~

Given R and V (m e m) = ready, the problem degenerates to proving refinement

between the following cells:

CELL A(pc, ace : INTEGER ; mere : MEMORY; ready : BOOLEAN)
INTERFACE PROTOCOL V (m e m) -~ ready

BEGIN
<<mere, pc, ready : : ST(pc, ace, mere), pc + 1, TRUE >>
<<ready := FALSE >>

END A

CELL C(pc, ace : INTEGER ; mem : MEMORY; ready : BOOLEAN)
INTERFACE PROTOCOL V(mem) ~ ready

STATE
mere ~ : MEMORY
mpc : INTEGER

INVARIANT
(mpc = 17 ==~ ready)A
(mpc = 18 ~ (rnem = ST(pc, ace, mere') A -~ready))

BEGIN
~< rape -=- 17 --4

mere, mpc, ready, mern ~ := ST(pc, ace, mere), 18, FALSE, mere>>
<< mpc = 18 -+ PC, ready, mpc := pc + 1, TRUE , 5>>

END C

The proof is carried out using the tools described in the previous section.
Note that the variable rnem' is a verification variable; after the verification

has been completed it can be removed since it has no influence on the design (it

is never read).

201

S o l u t i o n in [6]. In contrast to the asynchronous descriptions above, the de-
scriptions in [6] are synchronous. For both the abstract and the concrete de-
scriptions, the values of the variables are described as functions of time. In
the abstract description, the execution of one instruction takes one time unit,
whereas in the concrete design several time units are necessary to complete one
instruction. This means that the abstract time scale is more coarse grained than
the concrete. This is dealt with using temporal abstraction, which is described
in more detail in [9].

The concrete design is augmented with a boolean variable, ready. The notion
of refinement ensures that at points of concrete time where ready is true, the
concrete design is in a state that could also be caused by the abstract design. The
concrete CPU cannot be used directly instead of the abstract CPU. To be able
to replace the abstract CPU with the concrete in an environment, it is necessary
to ensure that the environment only depends on the interface variables of the
CPU when ready is true. This issue of composition is not explicitly dealt with
in [6].

7 Conc lus ion

This paper has reported an a t tempt to generalize the notion of trace inclusion
to a more liberal notion of refinement by taking the environment into account.

A verification technique has been stated for proving refinement for designs
written in SYNCHRONIZED TRANSITIONS. A prototype tool has been developed
for translating SYNCHRONIZED TRANSITIONS descriptions into the logic of an
existing theorem prover, and for generating proof obligations for refinement.

Experience with a number of examples has shown the usefulness of both the
liberal notion of refinement and the tools for mechanizing the verification.

A c k n o w l e d g e m e n t s

Thanks to J.Frost, H.H.Lcvengreen, A.P.Ravn and J.Staunstrup for comments.

R e f e r e n c e s

I. Martin Abadi and Leslie Lamport. The existence of refinement mappings. Tech-
uical Report 29, Digital Systems Research Center, 1988.

2. Randal E. Bryant. Can a simulator verify a circuit? In Formal Aspects of VLSI
Design, pages 125-136. North-Holland, 1985.

3. Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover. Tech-
nical Report 82, Digital Systems Research Center, 1991.

4. Mike Gordon. Why hlgher-order logic is a good formalism for specifying and
verifying hardware. In Formal Aspects of VLSI Design, pages 153-177. North-
Holland, 1985.

5. Bengt Jonsson. On decomposing and refining specifications of distributed systems.
In Lecture Notes in Computer Science, 430, pages 361-385. Springer Verlag, 1990.

202

6. Jeffrey J. Joyce. Formal verification and implementation of a microprocessor. In
Graham Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification and Syn-
thesis, pages 129-157. Kluwer Academic Publishers, 1988.

7. Leslie Lamport. The temporal logic of actions. Technical Report 79, Digital Sys-
tems Research Center, 1991.

8. Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for dis-
tributed algorithms. In Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, pages 137-151. ACM, 1987.

9. Thomas F. Me[ham. Abstraction mechnnisms for hardware verification. In Gra-
ham Birtwistle and P.A. Subraltmanyam, editors, VLSI Specification and Synthesis,
pages 267-291. Kluwer Academic Publishers, 1988.

10. Niels MeUergnard. Mechanized Design Verification. PhD thesis, Department of
Computer Science, Technical University of Denmark, 1994.

11. Jergen Staunstrup. A Formal Approach to Hardware Design. Kluwer Academic
Publishers, 1994.

