
Drawing Graphs by Example Efficiently:
Trees and Planar Acyclic Digraphs*

(Extended Abstract)

Isabel F. Cruz 1 and Ashim Garg 2

1 Department of Electrical Engineering and Computer Science
Tufts University

Medford, MA 02155, USA
2 Department of Computer Science

Brown University
Providence, RI 02912-1910, USA

Abst rac t . Constraint-based graph drawing systems provide expressive
power and flexibility. Previously proposed approaches make use of gen-
eral constraint solvers, which are inefficient, and of textual specification
of constraints, which can be long and difficult to understand. In this
paper we propose the use of a constraint-based visual language for con-
structing planar drawings of trees, series-parallel graphs, and acyclic di-
graphs in linear time. A graph drawing system based on our approach
can therefore provide the power of constraint-based graph drawing, the
simplicity of visual specifications, and the computational efficiency that
is typical of the algorithmic-based approaches.

1 I n t r o d u c t i o n

It is common practice to explain the layout of a graph using pictures that de-
scribe the drawing of its different components and the constraints between their
relative positions. Pictures have been successfully used to convey quantitative
information [28], in analogy reasoning, e.g., in geometry problems [18], for soft-
ware visualization [6], and their importance in discrete mathematics has been
emphasized [25]. In this paper we explore the use of pictures for expressing and
computing the layout of graphs, and not only as a tool for visualizing data.
In addition we show that for an important class of graphs, namely trees, and
series-parallel and planar acyclic digraphs this visual computation is optimal.

In the algorithmic approach the layout of the graph is generated according
to a prespecified set of general rules or aesthetic criteria (such as planarity or
area minimization) that are embodied in an algorithm [12]. The algorithmic
approach is computationally efficient but does not naturally support conslraints,
i.e., requirements that the user may want to impose on the drawing of a specific
graph (e.g., clustering or aligning a given set of vertices).

Work by Tamassia el al. [26] has shown the importance of satisfying con-
straints in graph drawing systems, and has demonstrated that a limited con-
straint satisfaction capability can be added to an existing drawing algorithm.

* Research supported in part by the National Science Foundation, by the U.S. Army
Research Office, and by the Advanced Research Projects Agency. Email addresses of
the authors: isabel@ca, t u f t s , edu, ag@cs, brogn, edu.

405

Eades and Lin [16, 23] present a system where constraints are incorporated into
tree drawing algorithms and the user can fine tune the layout by giving input
parameters. In both approaches each algorithm has to be individually coded.
These algorithms are quite efficient because they deal with specific classes of
graphs and drawings, but are difficult to extend.

Other constraint-based approaches allow declarative specification of the lay-
out and decouple this specification from the drawing engine [19, 24], therefore
requiring less expertise from the end-user than previously described techniques.
However, they use general constraint solvers, which are inefficient, and con-
straints are textually specified using a Prolog-like syntax [19] or a set nota-
tion [24]. Even for small graphs, the enumeration of the constraints can be long
and difficult to understand. Layout graph-grammars can however draw trees and
series-parallel digraphs in quadratic time [5].

To avoid leaving the evaluation to a constraint solver, another possibility
consists of providing the user with a tool-box of algorithmic components, which
can be combined in a modular fashion. Steps have been taken in this direction by
Diagram Server [13, 3], where algorithmic components are placed in an object-
oriented inheritance network with coarse granularity (e.g., the algorithms for
drawing trees are represented by a single node). In this model the execution of
an algorithm corresponds to a path in the network. Cruz et al. [11], propose
the combination of a declarative specification of graph' layout with the tool-box
approach of Diagram Server. The particular approach resides on the existence of
a visual language and of a compiler that translates the visual specifications into
a drawing algorithm synthesized from a database of drawing algorithms. The
main purpose of the compiler is to deduce from the specifications a combination
of algorithms that solves the layout problem as efficiently as possible.

As a first step towards providing a facility for writing visual programs for
drawing graphs, in this paper we show how to write visual programs for con-
structing planar drawings of trees, series-parallel digraphs, and acyclie digraphs
using the visual language DOODLE [8, 9, 10]. The drawings that we consider are:
upward planar drawings of trees, A-drawings of series-parallel digraphs, and
visibility and planar upward polyline drawings of planar acyelic digraphs. We
also show that these programs construct the drawings in linear time. Thus, our
approach combines the benefits of the declarative and algorithmic approaches,
namely, the flexibility of the former and the efficiency of the latter.

DOODLE is a declarative rule-based language for querying database objects
visually. The objects can be displayed in a variety of formats that include graphs.
The similarity between the visual specification of the layout and the pictures that
depict the database objects provide a "by example" approach to graph drawing.
In addition, the user does not have to specify the drawing of each object in the
database. Instead, drawings can be specified for database classes.

Naturally, the question arises whether algorithms and constraints expressed
by a visual language such as DOODLE can be efficiently evaluated. The general
inference mechanism of rule-based query languages such as Datalog [29] and
F-logic [22] is a least-fixed point and bottom-up approach: starting with the

406

database facts, rules are applied until no new facts are generated. In general
this approach is inefficient, and much effort has been put in devising efficient
strategies for certain classes of programs (e.g., linear Datalog programs), or
in combining the bot tom-up and top-down approaches [29]. However we cannot
use directly the strategies devised for Datalog, because we use an object-oriented
model whereas Datalog uses the relational model. In addition, DOODLE programs
express constraints. Work in Datalog with constraints and the study of the time-
complexity of such programs concentrates on the "bigger picture", such as char-
acterizing which programs are in PTIME [20]. Object-oriented work for visual
programming such as ThingLab [4] is also concerned with the efficient evaluation
of constraints, but does not focus on graphs or other specific display classes.

This paper is organized as follows. In Section 2 we describe the class of DOO-
DLE programs that can be executed in linear time. In Sections 3, 4, and 5 we
give visual (DOODLE) programs belonging to this class for drawing trees, series-
parallel digraphs, and directed acyclic digraphs in linear time. Open problems
are discussed in Section 6.

2 T h e C o m p u t a t i o n a l M o d e l

In this section we describe the evaluation strategy of DOODLE. Theorem 4 de-
scribes the DOODLE programs that can be executed in linear time. Section 2.2
gives the evaluation strategy of DOODLE toexecute such programs in linear time.

2.1 O r d e r a b l e a n d D i a g o n a l l y C o m p u t a b l e s e t s

In this section we introduce the notion of orderable and diagonally computable
sets that we use in specifying the evaluation strategy of DOODLE.

The operators provided in DOODLE are the usual arithmetic and relational
operators, and the operators m• and max. Let S be a system of constraints
consisting of variables xl, x2, �9 �9 �9 xm with initial values given for some of them, the
arithmetic and relational operators, and the operators rain and m a x such that S
has at least one solution. S is called orderable if there is an ordering 7r of variables
such that for every distinct i and j , if there is a constraint xi | raax(x/,) or
xi Q ra•163 where | is a relational operator, then 7r(i) > 7r(j); 7r is called a
consistent ordering of S. A constraint of type xi | ) is called a directed
constraint, xi is called the head and xj is called a tail of the constraint.

S is called diagonally computable if it has a consistent ordering 7r such that
every variable xi is diagonally dependent in 7r. A variable xi is diagonally de-
pendent in a consistent ordering 7r if either there is a constraint xl = c, where c
is a constant, or there is a constraint xi = f (x j ~ , x j 2 , . . . x j .) , where f is some
arithmetic function of the xjk's , such that each xj,k is diagonally computable
and 7r(xjk) < 7r(xi). We can interpret a consistent ordering as the placement of
the variables in a lower triangular matr ix such that xj gets placed in the matr ix
element (Tr(i), 7r(j)) if it occurs in a constraint xi = f (x j , . . .) where 7r(i) > 7r(j)
(consequently xj may get placed at various places). Then it is easy to see that
if S is diagonally computable then starting from the variable with the lowest
number in the ordering, each xi can be evaluated from the already computed
values of the other variables occurring in the row 7r(i) of the matrix.

407

L e m m a 1. I f S is an orderable system of constraints consist.ing of only equalities
and having at least one solution, then S is diagonally computable.

2.2 The Evaluation Strategy

We need a few definitions first. For every DOODLE rule P r Q1, Q 2 , . . . , Qm, P
is called the head of the rule and Q1, Q2, . . . , Qm is called the tailof the rule. We
say that a rule defines a constraint if the constraint occurs in its head. DOODLE,
like any other declarative system, applies a rule to the objects in the da ta base
if the conditions given in its tail are satisfied. During an execution of a DOODLE

program, a constraint between some attr ibutes xl, x2 , . . . , xm is created if as a
result of applying a rule, the constraint (which occurs in the head of the rule) is
added to the database.

Let D be a DOODLE program. Each execution E of D corresponds to a con-
straint hypergraph whose vertices are the at tr ibutes of the objects and whose
hyperedges are constraints of D created during the execution of E. We say that
D has the constraint determination properly if for every constraint C present in
the tail of a rule, the following holds: (a) C is also present in the head of some
rule, and (b) C is not of the type x = max(z, y , . . .) .

DOODLE evaluates the values of the at tr ibutes in a DOODLE program given a
set of database facts as input, by executing the following two steps:

1. Construction of a constraint hypergraph: First construct a constraint hyper-
graph of the at tr ibutes of the objects in the database.

2. Evaluation of the attribute values: Next compute a solution by carrying out
the computat ion over the constraint hypergraph.

2 .3 C o n s t r u c t i o n o f a C o n s t r a i n t H y p e r g r a p h

Let (D, F) be a pair where D is a DOODLE program and F is set of database
facts given as input to D. The construction of a constraint hypergraph for D is
done by iteratively adding to the constraint hypergraph, the new at tr ibutes and
constraints that are created due to the application of rules. The process stops
when no new constraints can be added. We say that (D, F) has the property of
localization if for every rule, the set of constraints that satisfy the conditions of
its tail form a connected hypergraph.

A set of constraints that satisfies some conditions necessary for applying a
rule but do not contradict any other conditions specified in the tail, is called a
partially satisfying set of the rule. A partially satisfying set whose constraints
form a connected hypergraph is called a connected partially satisfying set.

Now assume that (D, F) is a pair that has the property of localization. For
such a pair, our approach to finding when to apply a rule R is:

Maintain a set of all the connected partially satisfying sets of R. If a
constraint C is created (due to applying some rule) such that C has an
at t r ibute common with a partially satisfying set S of R, then augment
S by adding C to it.

Let m be the total number of constraints created by repetitively applying the
rules. Let k be total number of connected partially satisfying sets of the rules

408

that can be augmented in the above fashion to give sets whose constraints satisfy
all the conditions of the corresponding rules. (D, F) is called largely satisfiable
if k >_ cm, where c is a constant independent of m.
L e m m a 2. A constraint hypergraph G of a largely satisfiable pair (D, F) can be
constructed in O(m) time where m is the number of constraints in G, if D has
the constraint determination property.

2.4 E v a l u a t i o n o f t h e A t t r i b u t e Va lues

We now use the constraint hypergraph constructed in the previous step to com-
pute the values of the attributes. It can be easily shown that if a constraint
hypergraph G corresponds to a diagonally computable system consisting of a
set of constraints and a set of initial values of some variables, then a directed
acyclic graph G* can be constructed from G which allows the evaluation of the
values of the attributes. The evaluation is done by "moving" values from the
sources of G* towards its sinks in a manner similar to topological sorting. This
observations in conjunction with Lemma 1 yields the following lemma:
L e m m a 3. Given a constraint hypergraph G of an orderable system S consisting
of a set of initial values of some variables and a set of constraints having only
equalities, a solution of S can be computed in linear time using G.

Lemmas 2 and 3 give the main theorem of this section.

T heo rem 4. Given a DOODLE program D for solving an orderable system S con-
sisting of a set F of initial values and a set of constraints having only equalities,
we can compute a solution of S in linear time using D if S admits at least one
solution, D has the constraint determination property, and (D, F) is a largely
satisfiable pair and has the property of localization.

3 B i n a r y T r e e s

We consider planar upward straight-line drawings of binary trees such that the
x- and y-coordinate of each node are proportional to the node's inorder rank
and distance from the root, respectively. Also, isomorphic trees are displayed
by the same layout (up to translation). This kind of layout is a variation of the
D-drawing [7] (other layouts are possible by changing the position of the root).

The input to the problem is a set of objects of classes bmTree and leaf, and
an object of class root. Figure 1 shows a rule in a DOODLE program that specifies
the drawing of objects of class binTree. The class is written on the right-hand side
of the rule. The visual specification is given on the left-hand side, and consists of
a circle, two lines, an invisible box, various constraints, and the drawings of the
two binary subtrees represented by reference boxes (L and R). Each reference
box recursively refers to the drawing of a binary tree given by the same rule.
The invisible box (which will not get displayed) is the bounding box (that is, the
tightest box) around the drawing of the tree, and contains the points between
which length constraints are established.

In this rule, some of the horizontal ([hi) and vertical (Iv]) length constraints
are explicitly specified using dotted arrows. Other length constraints are specified
using the macro constraint GRID 051: for example, when two points are on the

4 0 9

same vertical line of the grid, then the horizontal distance between them is zero.
The length constraints specify that the width of the tree's bounding box is given
by the sum of the widths of the bounding boxes of the subtrees plus one, and
that the height of the bounding box of the tree is the maximum height of the
bounding boxes of the two subtrees plus one. An overlap constraint is also used
that specifies that the circle overlaps the edges. The DOODLE rules that specify
the placement of the root and of the leaves are trivial.

r r : b i n T r e ~
LEft"

"->< \
,,. ' ; - : ,r

%
,~IGNT~ , = m , - , : -~) .

= - - . - , INGOT

RIGHT

~. binTree [root ~ N node,
left--* L" bm~ree,
fight --~ R b,nTreel

ao

Figure 1: Upward layout of a binary tree: (i) DOODLE rule (ii) Layout example.

T h e o r e m 5. Given a binary tree T with n nodes, there ezists a DOODLE program
that constructs a planar upward straight-line drawing of T in O(n) time.

4 S e r i e s - P a r a l l e l D i g r a p h s

A series-parallel digraph G with a source and a sink is recursively defined as
follows [1]: it is either a single directed edge, or a series compos~tzon, or a parallel
composzlwn of two series-parallel directed graphs G1 and G2. G1 and G~ are
called the series-parallel components of G.

A A-drawing of a series-parallel graph [1] is an upward planar drawing that
is bounded by a right-angled triangle whose hypothenuse joins the source and
the sink and is placed vertically. Fig. 2(i-ill) depicts the geometric construction
of a A-drawing in the base case, series composition and parallel composition.
Fig. 2(iv) gives an example of a A-drawing. In the base case, the bounding
triangle is trivially determined. In the series composition, the bounding triangle
is the smallest right-angled triangle that bounds the drawing constructed by
placing the A-drawing of one series-parallel component at the top of the other's.
In the parallel composition, the A-drawing of the components are placed side by
side such that their bounding triangles touch at a point u on the hypothenuse
of the component on the left. Point u is defined recursively: it coincides with the
sink for the base case, it is the u point of the bottom component for the series
composition and is the u of the right component for the parallel composition.

In a parallel composition, the poles of the left digraph are diagonally trans-
lated to the right and the poles of the right digraph are translated vertically until
they coincide. Also, during a parallel composition of a digraph and an edge, the

410

edge is always placed to the right. Although we have not shown in this paper,
this condition can be easily recognized and implemented as a DOODLE rule using
the class information provided for the two digraphs being composed.

(i) (it) (iii) (iv)

Figure 2: Geometric construction of a A-drawing: (/) Base case; (it) Series composi-
tion; (iii) Parallel composition; (iv) Example of a A-drawing.

The DOODLE program for constructing A-drawings is shown in Fig. 3. We use
(invisible) bounding boxes whose dimensions are appropriately set with length
constraints so as to serve the same role as the bounding triangles.

T h e o r e m 6 . Given a series-parallel digraph G with n vertices, there exists a
DOODLE program that constructs a A-drawing of G in O(n) time.

~ SINK, U

RI: single edge

.Ill SINK
Dr,t*" I

-:,<"" l F..'." ~]
awl~.JJ--.w |

.' %.

~ x. I IMWIIG.Plh] ; i E: edge [from S' series [top-~ X;
+ + m . ,

I I L~.--.~...~SOURC,
R2: series composition (one pole is displayed)

ii. G: sp-digraph
second --~ Y] "~SOURCE [child -* G 1]

R4: entire sp-digraph (poles are displayed) RD: parallel composition

Figure 3: DOODLE program that specifies a A-drawing.

5 P l a n a r Acyclic Digraphs
We now present the DOODLE programs for constructing upward planar polyline
drawings and visibility representations of planar acyclic digraphs in linear time.
Since each upward planar acyclic digraph can be easily transformed into a planar
st-digraph (i.e., a planar acyclic digraph with exactly one source and one sink)
by adding some edges [21, 14], we limit our discussion to planar st-digraphs. Let
G be a planar st-digraph. We assume that the input to our DOODLE programs is
an upward planar embedding of G (an embedding admitting an upward planar

4 1 1

drawing) in which the edges of each vertex are separated into two lists of its
incoming and outgoing edges respectively [2, 17].

This section is organized as follows. In Section 5.1, we first show how to
visually specify, using DOODLE rules, a topological numbering of a planar st-
digraph. In Section 5.2 we give a DOODLE program to construct the dual planar
st-digraph of a planar st-graph. In Sections 5.3 and 5.4 we consider visibility and
upward planar polyline drawings respectively.

5.1 C o m p u t i n g a Topo log i ca l N u m b e r i n g

Let G : (V, E) be an acyclic digraph. A topological numbering of the vertices of
G is a mapping l : V --* Z such that l(v) > l(u) if there is a directed path from
u to v; l(v) is called the label of v in the topological numbering.

Figure 5.1 shows a DOODLE program D that uses the rule P given below for
'computing a topological numbering of a planar acyclic digraph.

P: l(v) = max(/(u) + 1, l(v)) if there is a directed edge (u, v).

T h e o r e m 7 . Given a planar acyclic digraph G with n vertices, there exists a
DOODLE program that computes a topological numbering of G in O(n) time such
that each source has label 0 and the sink has label at most n.

I O[label], s. s: sourceVertex

R1 Set the label of source to 0

I T ! max("Y(v>-Y(')>[lab~a]i ~ ::e:~X
md5.! �9

u u I n al �9
�9 = , �9

R2: Visual specification of Rule P

F i g u r e 4: DOODLE program for c o m p u t i n g a topological n u m b e r i n g of an acyclic
digraph.

5 .2 C o n s t r u c t i n g t h e D u a l D i g r a p h

In this section we give a DOODLE program for constructing the dual planar st-
graph of a given planar st-graph G. The input to this DOODLE program is an
upward planar embedding of G.

For every vertex v of G, the leftmost and rightmost edges in its list of in-
coming edges are called the leflmostin and righmostin edges of v. Similarly, the
leftmost and rightmost in its list of outgoing edges are called the leflmostout and
mghmostout edges of v. The face whose boundary contains the rightmostin and
righmostout edges of v is called right(v) and the face whose boundary contains
the leftmostout and leftmostin edges of v is called left(v).

The DOODLE program for constructing the dual digraph is given in Fig. 5
and 6. Rules R1-R6 are initialization steps; R7 and R8 construct two "half"
edges (fl, e) and (e, f~) of the desired dual edge (fl, f2) of each primal edge e;
R9 constructs each dual edge by using its half edges. Attributes Pedgel and
Pedge2 of a vertex f in the dual graph (Fig. 5) store the primal edges of the
leftmostin and righmostout edges of f respectively.

412

q,.'

-..~_~,, ~J, :.

p

t

m

E
.", L , -~ . - ." , '

- , . ; , ,

L. ~...~i 1 [.

"~

.~_ ,.,.,

!~] ~ , i l ~. i
�9 , , ,o ~ ~10

~

,,~ ~ ~ I ~ . I ~> I~

?o "i ~ .~ ~o, o~

F|gure 5: Rules R] - R8 of Lhe DOODLE program for constructing Lhe dual p|~n~r

s~-gr~ph of ~ given pl~n~r s~-graph.

413

Rg: Create each dual edge by using its half edges;
For each dual edge e, set its attribute dualEdge to ep where ep is the primal edge of e

RI0: For each primal edge e, set its attribute dualEdge to e d where e d is the dual edge ofe

F igure 6: Rules R9 and R10 of the DOODLE program for constructing a dual planar
st-graph of a given planar st-graph.

T h e o r e m 8. Given an upward planar embedding of a planar st-graph G, there
exists a DOODLE program that constructs the dual planar st-graph of G in linear
time.

5.3 Visibi l i ty R e p r e s e n t a t i o n s

A visibility representation maps vertices to horizontal line segments and edges to
vertical line segments [27]. The D O O D L E program consists of visually specifying
each step of the following algorithm given in [27]:

1. Construct a topological numbering l of the vertices of G. Set y(v) to l(v).

2. Construct a dual planar directed acyclic graph G* of G.

3. Construct a topological numbering l* of the vertices of G. Set x(v) to l*(v).

4. Draw each vertex-segment F(v) at ordinate y(v) and between abscissae
x(left(v)) and x(right(v)) - 1.

5. Draw each edge-segment F(e) where e -- (u, v) at abscissa x(left(e)) and
between ordinates y(u) and y(v). left(e) is defined as the face left of e in e .

T h e o r e m 9. Given an upward planar embedding of a planar st-graph G, there
exists a DOODLE program that constructs a visibility representation of G in linear
time.

5.4 Upward Planar Poly l ine D r a w i n g s

The DOODLE program to construct an upward planar polyline drawing of a planar
st-graph G is based'on the dominance drawing algori thm presented in [15].

414

T h e o r e m 10. Given an upward planar embedding of a planar st-graph G, there
exists a DOODLE program that constructs a planar upward polyline drawing of G
in linear time.

6 Conclusions and Future Work

In this paper we have explored the use of pictures for expressing the layout of
graphs. We have shown how to perform visual layout computations in optimal
time for an important class of graphs, namely trees, and series-parallel and planar
acyclic digraphs. Possible future work includes:

- Visual specification of layouts for undirected graphs: Our method exploits the
acyclic structure of the input digraphs to achieve optimal time complexity.
We are investigating the extension of our technique to undirected graphs.

- Visual specification of global constraints: In addition to local constraints, we
are investigating how to express with DOODLE aesthetic criteria associated
with optimization problems (e.g., crossing or area minimization).

- A graph-drawing system based on visual specification: We envision using
DOODLE as a front-end to a graph drawing system similar to Diagram Server
[13] to provide at the same time the power and simplicity of visual specifi-
cations and the computational efficiency of algorithmic components.

A c k n o w l e d g e m e n t s We are indebted to Roberto Tamassia for useful discus-
sions, which contributed to the results of this paper.

R e f e r e n c e s
1. P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. How to

Draw a Series-parallel Digraph. In Proc. 3rd Scand. Workshop Algorithm Theory,
Lecture Notes in Computer Science, vol. 621, pages 272-283. Springer-Verlag, 1992.

2. P. Bertolazzi and G. Di Battista. On Upward Drawing Testing of Triconnected
Digraphs. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages 272-280,
1991.

3. P. Bertolazzi, G. Di Battista, and G. Liotta. Parametric Graph Drawing. Techni-
cal Report 6/67, Consiglio Naziona]e delle Ricerche, Rome, Italy, July 1992.

4. A. Borning. The Programming Language Aspects of ThingLab, a Constraint-
Oriented Simulation Laboratory. A CM Transactions on Programming Languages
and Systems, 3(4):353-387, October 1981.

5. F. Brandenburg. Layout Graph Grammars: the Placement Approach. In Graph-
Grammars and their Application to Comp. Sc.. LNCS 532, Springer Verlag, 1991.

6. M. Brown, J. Domingue, B. Price, and J. Stasko, editors. ACMSIGCHI'94 Work-
shop on Software Visualization, Boston, MA, April 1994.

7. R. F. Cohen, G. Di Battista, R. Tamassia, and I. G. Tollis. A Framework for
Dynamic Graph Drawing. SIAM J. Comput., to appear.

8. I. F. Cruz. DOODLE: A Visual Language for Object-Oriented Databases. In
A CM-SIGMOD Intl. Conf. on Management of Data, pages 71-80, 1992.

9. I. F. Cruz. User-defined Visual Query Languages. In IEEE Symposium on Visual
Languages (VL '9~), 1994.

415

10. I. F. Cruz. Expressing Constraints for Data Display Specification: A Visual Ap-
proach. In V. Saraswat and P. V. Hentenryck, editors, Principles and Practice o]
Constraint Programming, pages 443-468. The MIT Press, 1995.

11. I. F. Cruz, R. Tamassia, and P. Van Hentenryck. A Visual Approach to Graph
Drawing. In Graph Drawing '93, S~vres, France, September 1993.

12. G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Algorithms for Drawing
Graphs: an Annotated Bibliography. Tech. report, Dept. of Comp. Sc., Brown
University, March 1993. To appear in Comp. Geometry: Theory and Applications.

13. G. Di Battista, A. Gianmarco, G. Santucci, and R. Tamassia. The Architecture of
Diagram Server. In Proc. o] IEEE Workshop on Visual Languages, 1990.

14. G. Di Battista and R. Tamassia. Algorithms for Plane Representations of Acyclic
Digraphs. Theoret. Comput. Sci., 61:175-198, 1988.

15. G. Di Battista, R. Tamassia, and I. G. Tollis. Area Requirement and Symmetry
Display of Planar Upward Drawings. Discrete Comput. Geom., 7:381-401, 1992.

16. P. Eades and T. Lin. Algorithmic and Declarative Approaches to Aesthetic Lay-
out. In Graph Drawing '93, S~vres, France, September 1993.

17. A. Garg and R. Tamassia. On the Computational Complexity of Upward and
Rectilinear Planarity Testing. Graph Drawing '9~ (DIMACS workshop on Graph
Drawing), 1994.

18. J. G. Greeno. Conceptual Entities. Mental Models, D. Gentner and A. L. Stevens,
ed., Lawrence Erlbaum Associates, Hillsdale, N.J., 1983, pp. 227-252

19. T. Kamada. Visualizing Abstract Objects and Relations - A Constraint-Based
Approach. World Scientific, Singapore, 1989.

20. P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages.
Technical Report CS-90-31, Dept. of Comp. Sc., Brown University, November 1990.

21. D. Kelly. Fundamentals of Planar Ordered Sets. Discrete Math., 63:197-216, 1987.

22. M. Kifer, G. Lausen, and J. Wu. Logic Foundations of Object-Oriented and
Frame-Based Languages. Technical Report 90/14 (2-nd revision), Department
of Computer Science, SUNY Stony Brook, 1990. To appear in JACM.

23. T. Lin. A General Schema]or Diagrammatic User Interfaces. PhD thesis, De-
partment of Computer Science, University of Newcastle, Australia, 1993.

24. J. Marks. A Formal Specification for Network Diagrams That Facilitates Auto-
mated Design. Journal of Visual Languages and Computing, 2:395-414, 1991.

25. I. Rival. Reading, Drawing, and Order. In I. G. Rosenberg and G. Sabidussi,
editors, Algebras and Orders, pages 359-404. Kluwer Academic Publishers, 1993.

26. R. Tamassia, G. Di Battista, and C. Batini. Automatic Graph Drawing and Read-
ability of Diagrams. IEEE Trans. on Sys., Man and Cyber., 18(1):10-21, 1988.

27. R. Tamassia and I. G. Tollis. A Unified Approach to Visibility Representations of
Planar Graphs. Discrete Comput. Geom., 1(4):321-341, 1986.

28. E. R. Tufte. The Visual Display of Quantitative Information. Graphics Press.,
Cheshire, Conn., 1983.

29. J. D. Ullman. Principles o] Database and Knowledge-Base Systems, volume II.
Computer Science Press, Inc., Rockville, Maryland, 1989.

