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Abstract .Any upward drawing :D(P) on a two-dimensional integer grid 2:, of an 
ordered set P, has completion P with an upward drawing ~(P)  on a two-dimensional 
integer grid 1" such that the total edge length of :D(~) does not exceed the total 
edge length of ~(P).  Moreover, by (possibly) translating vertices, there is an upward 
drawing 7)(P) on 27 such that ~ = 27. 

Thus, any integer grid embedding of a two-dimensionM ordered set can be extended 
to a planar upward drawing of its completion, on the same integer grid, without 
increasing the total edge length. 

Introduction 
Can we combine aesthetic standards of readability with the economy achieved by 
using less ink? [Tufte (1983)] formulates the "data-ink ratio" according to which a 
large share of the ink on a graphic should present data-information. [Aeschlimann 
a n d  Schmid  (1992}] seem to be the first to consider this problem explicitly, giving 
heuristcs, algorithms, and examples. For upward drawings of ordered sets there is 
a basis for optimism highlighted by the fact that, although the covering graph of a 
subset Q of an ordered set P, may be a subgraph of the covering of P, and, therefore, 
have shorter total edge length, it need not be a subgraph of the covering graph of P. 
Indeed, the total edge length of Q may be much more than the total edge length of 
an ordered set of which it is a subset (with the induced order). Cf. Figure 1. 

Terminologically, we speak of three items : 

�9 upward drawing 7)(P); 

, �9 order completion P; 

�9 edge length e(7)(P)). 
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It  is customary and convenient to render an ordered set by an upward drawing 
according to which the elements of the ordered set P are drawn on a surface, tradi- 
t ionally a plane, as disjoint small circles, arranged in such a way that ,  for a, b E .P, the 
circle corresponding to a is higher than the circle corresponding to b whenever a > b 
and an arc, monotonic with respect to a fixed direction, usually south to north, and 
straight,  is drawn to join them just  if a covers b (that is, for each x E P, a > x _> b 
implies x = b). We say tha t  a is an upper cover of b or b is a lower cover of a, and 
write a ~- b or b -~ a. These arcs are drawn, of course, to avoid the incidence of any 
other  circle on it (to avoid unwanted comparabilities) and, moreover, when possible, 
to avoid intersections, too (except where two arcs meet at  a circle). For our purposes, 
a s t raight  line segment is drawn joining the circles corresponding to a and b, if a ~- b 
in P.  Thus,  the upward drawing, itself, avoids "nonessential" edges, tha t  is, edges 
corresponding to comparabili t ies derivable from the transit ivi ty condition. To this 
extent,  the upward drawing is already calculated to minimize the number  of edges in 
a graphical  rendering. 

Loosely speaking, the completion P of an ordered set P is the smallest  lattice 
containing P.  The completion is a representation tha t  has found application in sev- 
eral areas : in geographical information systems (cf. [F ranzosa ,  P e r r y ,  Saa l fe ld ,  
W o h l g e m u t h  (1994)] the completion P is often easier to read and to draw, hence 
making  easier the identification of geographical units corresponding to the elements of 
P;  in the s tudy of planarity of lattices and of dimension three orders [Kel ly  (1977)]. 
More precisely, for each S C P,  set S + = {x E P : x_> s for every s E S} and 
S_ = {x E P : x  < s f o r e v e r y  s E  S}. Then the map  v which associates to each 
subset  S of P, v(S) = (S+)_ is a closure operator  on P and the mapping  a > v(a) 
is an embedding of P into the complete lattice {v(S) : S _C P},  ordered by inclusion, 
known variously as the normal completion, or Dedekind-MacNeille completion [Mac-  
Nei l l e  (1937)]. The completion of P is P -- {S + : S ~ •, S + ~ r that  is, P is this 
normal  completion except for its top and/or  bottom, unless P already has top and/or  
bottom. 

From our viewpoint these are the salient points about  the completion: 

(a) If P has an upward drawing on a two-dimensional integer grid then so does 
its completion P. An upward drawing of P on a two-dimensional integer grid 
is an assignment of positive integers xl ,x2 to its vertices x E P such tha t  
(Xl, x2) = x _< y = (Yl, Y2) just  if Xl _< Yl and x2 _< Y2. Any such ordered set is 
two-dimensional in the usual sense tha t  its order is the intersection of two linear 
extensions. 

(b) The normal completion -P is the smallest lattice containing P. The  normal 
completion of an n-element ordered set may be exponential in size. Still, if it 
is two-dimensional, then the completion has size at  most O(n~). At the same 
t ime there are several known output  sensitive polynomial t ime algorithms to 
compute  the completion [ G a n t e r ,  R e u t e r  (1991)], even on-line (cf. [ J o u r d a n ,  
R a m p o n ,  J a r d  (1994)]). 

The  length of an edge a ~- b in an upward drawing T)(P) rendered in R 2 is its Euclidean 
length, computed between the centres of the circles corresponding to the elements a, b, 
and the edge length e(~)(P)) is the sum of the edge lengths of all of its edges in :D(P). 
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Figure 1: The subset Ql has total edge length approximately 10 (normalized with edge length 1 
for the edge a ~- b), which is less than the total edge length (approximately 16) of its completion P1 
of which it is a subset (and subgraph). On the other hand, the bipartite ordered set Q2 = Ks,3 has 
total edge length more than the edge length of its completion P2 - h~3,3. 
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Figure 2: An integer grid upward drawing of an ordered set which cannot be extended to an upward 
drawing of its completion on the same integer grid, without exceeding the original edge length - -  
unless the positions of its vertices are changed, or the integer grid is changed. 

T h e o r e m  1 Any upward drawing D(P) on a two-dimensional integer grid Z, of an 
ordered set P, has completion -ff with an upward drawing 7)(-P) on a two-dimensional 
integer grid Z such that 

e(V(P)) _< e(V(P)) 
Moreover, by (possibly) translating vertices of the upward drawing 73(P) on Z, the 
upward drawing 7)(-P) of-P may be chosen on the same integer grid Z, that is, I -- Z. 

A few caut ions about  the proof. 

�9 Al though we can effect the construction sequentially, the elements of the com- 
plet ion cannot  be added randomly - -  or even in the obvious way (see Figure 3). 

The  two-dimensional  grid customari ly consists of two families of paral le l  lines, 
or thogonal  to each other (cf. Figure 4). The centers of vertices of P and of 
are all located at  intersections of these grid lines. The distances nevertheless are 
Euclidean distances along the line segment joining two vertices, not  distances 
measured along the grid lines. In fact, we do not, a t  this writ ing,  know whether 
our result  holds true for any pair  of families of paral lel  lines - -  not  necessarily 
orthogonal .  



322 

P P1 

Figure 3: The two-dimensional ordered set P has completion ]6 with shorter edge length, although 
the "intermediate" (one-element extension) P1 has larger edge length. 

�9 In fact, our proof shows that, except for a rather precise family of cases (in 
which equality occurs), e(29(P)) < e(lg(P)). 

Although a two-dimensional ordered set P may have an upward drawing, with 
its vertices located on a two-dimensional grid, the usual order of the grid need 
not induce the order of P, that is, its upward drawing is not an embedding into 
the grid (cf. Figure 2). In this case, its completion may have larger total edge 
length - -  if the vertices of P remain unchanged in its completion P .  

It is not always possible to extend an upward drawing on the two-dimensional 
integer grid to an upward drawing of its completion - -  without either changing 
the size of the integer grid, or changing the initial upward drawing (see Figure 2). 

Is there any other way to save "ink"? 

Corol lary  1 Let •(P) be an upward drawing of P on a two-dimensional integer 
grid, and let 29(Q) be an upward drawing on the same integer grid, of an ordered set 
Q containing P with the integer grid coordinates o] P unchanged. Then 

eCV(~)) < e(VCQ)) 

What is a "good" upward drawing? Of course, planarity is usually a desirable feature. 
For two-dimensional orders we can guarantee planarity without increasing total edge 
length. The obvious approach to add a vertex for every intersection of a pair of 
covering edges (see Figure 6) which, although it does not increase the total edge 
length, will have two distinct disadvantages : 

�9 the number of vertices may be considerably larger than the size of the comple- 
tion; 
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Figure  4:I(3 ,3  has an upward drawing on the plane grid. Its completion/(3,3 in which it is order 
embedded does too. On the other hand, the ordered set P (whose order can be induced by a two- 
dimensional grid embedding) has an upward drawing whose order cannot be induced by such a grid 
embedding and whose total edge length is shorter than that of its completion. 
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I the integer grid required may be considerably larger. 

Coro l l a ry  2 Every two-dimensional ordered set can be embedded in its planar comple- 
tion which itself has an upward drawing on an orthogonal grid - -  all without increasing 
its total edge length. 

On the other hand, the number of vertices of this planar ordered set may in- 
crease. For instance, the completion of the 4n-element ordered set P = {(i,j)  : 
i = 0 and j = 0,1,2 . . . . .  n, or j = 0 and i = O, 1 , 2 , . . . , n }  U {(i , j)  : i = 
n and j = O, 1 , 2 , . . . , n ,  or j = n and i = 0,1,2 . . . .  ,n} is the ( n +  1) 2 grid 
{0 ,1 ,2 , . . . , n}  x {0,1,2 . . . .  ,n} (cf. Figure 4). In this case, the total edge length 
of P equals the total edge length of P. 

O p e n  P r o b l e m s  

There is an evident parallel between our work and the "Steiner problem", which, for a 
given set of points seeks the "tree" with minimum possible total edge length, a problem 
with several known variants, all NP-complete (cf. [Garey, J o h n s o n  (1979)]). The 
Steiner ratio for a metric space is the largest lower bound for the ratio of lengths 
between a minimum Steiner tree and a minimum spanning tree on the same set of 
points in the metric space (cf. [Gao, Du,  Graham] ,  [Rao, S a d a y a p p a n ,  H w a n g ,  
Shor  (1990)]). The Steiner ratio for a metric space is the largest lower bound for 
the ratio of lengths between a minimum Steiner tree and a minimum spanning tree 
on the same set of points in the metric space. The value of this ratio depends on the 
metric chosen. 

Fix an ordered set P. Fix a upward drawing 79(P) of P. We define the completion 
ratio of P with respect to 7~(~) by 

eCD(7~)) = min e(7~(~)) 
~<~1 e(V(v)) 

where T)(P) is an upward drawing of the completion of P in which the vertices cor- 
iesponding to P coincide with their position in 79(P), and the completion ratio of P 
by 

e(P) = min ~(:D(P)) ~(~,) 

If P is a lattice then e(P) = 1. Evidently, e(K3,~) < 1 (cf. Figure 1 or Figure 3) 
while, according to Figure 1, e(Q1) > 1. 

Coro l l a ry  3 For any ordered set P of dimension two 

~(P) < 1 

Ques t ion  1 I Is there a constant k such that, for any ordered set P, 

~(P) < k ? 

IExamples show that  k > 3. 
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Figure 5: The upward drawing of K3,3 on the integer grid can be extended to the upward drawing 
of a planar ordered set containing it, by adding vertices for intersection points of its covering edges. 
However, both the grid size and the number of vertices required may increase - -  by more than what 
is necessary for the completion K3,3. 

Consider the hypercube 2 n, that  is, the ordered set of all subsets of an n-element 
set {1, 2 , . . .} .  Set P C 2 ~ the subset of the singleton subsets {i} and the one-element 
deleted subsets { 1 , 2 , . . . ,  i -  1, i +  1 . . . .  , n}. The  complet ion of this 2n-element ordered 
set is 2" \ {0, {1 ,2 , . . . }}  and, since it has exponential  size (in terms of the size of P)  
we may well expect tha t  its edge length is a great  deal larger than  e(D(P)) for any 
upward drawing :D(P) of P.  

T h e o r e m  2 There is an upward drawing 7)(P,,) of the 2n-element ordered set Pn = 
{{i}, { 1 , 2 , . . . ,  i - 1, i + 1 , . . . ,  n} : i = 1, 2 , . . .  n}, ordered by set inclusion, and there 
is an upward drawing o/its completion 79(-P-~,) containing D( P,) such that e(D(-P~,) ) < 
v~e(D(P,)) ,  that is, r = v~. 

According to the construction of this theorem, there are edges with small length 
and others with quite large length. 

Q u e s t i o n  2 If every edge has length at least kx and at most k2 (kl,k2 constants), is 
e(Pn) bounded? 

Is there a "small" cover-preserving subset of the complet ion of P (cf. [Lee, Liu,  
N o w a k o w s k i ,  R iva l  (1988)] ? 

Q u e s t i o n  3 Is there a constant k such that, for any n-element ordered set P, there 
is an ordered set Q c P such that 

(i) PC_Q, 

(ii) if x ~- y in Q then x ~-- y in -P, 

(iii) JQ[ = O(n k) ? 
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Figure 6: The two-dimensional grid n • n is the completion of the 4n-element ordered set P. The 
total edge length of P equals the total edge length of P. 
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