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Abstract. In this paper it will be shown that the following problem is 
NP-hard. We are given a labeled planar graph, each vertex of which is 
assigned to a disc in the plane. Decide whether it is possible to embed 
the graph in the plane with line segments as edges such that each vertex 
lies in its disc. 

1 Introduct ion 

Each planar graph has an embedding in the plane with line segments as edges. 
But it seems to be interesting to ask whether this is possible under various 
constraints. In [1] this is studied for the case where we restrict the length of each 
edge to be a fixed value. On the other hand we can assign each vertex a set of 
points in the plane and ask whether it is possible to embed the graph with line 
segments as edges with the additional constraint tha t  each vertex must lie in its 
point set. In this paper we show that  we can achieve NP-hardness if the points 
sets are closed discs. 

For the rest of the paper we only consider oriented planar triangulated graphs. 
For each triangle in the graph an orientation consists of an enumeration of its 
vertices modulo an even permutation. We only consider positively oriented era- 
beddings. These have the additional property that  all the vertices of a triangle 
are positive oriented (i.e. are in counter clockwise order when embedded). Our 
results hold for the non oriented case as well because oriented instances can be 
converted into non oriented instances by forcing all embeddings to be oriented 
by adding one big triangle around the discs assigning each vertex of this trian- 
gle a disc of radii zero and connecting the outer vertices of the graph with the 
triangle in some obvious way. 

Let us call the main problem in our paper c o n s t r a i n e d  e m b e d d i n g  and 
redefine it as follows: We are given a labeled triangulated oriented planar graph, 
each vertex of which is assigned to a closed disc in the plane given by a center- 
point of rational coordinates and a rational radius. Decide whether it is possible 
to embed the graph positively oriented in the plane with line segments as edges 
such that  each vertex lies in its disc. 

We will prove that  constrained embedding is N P-hard. 
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2 B a c k g r o u n d  

Cook [2] proved the NP-completeness of 3SAT by directly showing that  every 
problem in N P ca~ be reduced in polynomial time onto 3SAT. With this first 
NP-complete problem other problems could be proved to be NP-complete simply 
by reducing known N P-complete problems to them. 

2.1 Definit ions 

1> A boolean formula is said to be in conjunctive normal form iff it is a con- 
junction of disjunctions of literals. A l i t e ra l  is a variable or a negated variable. 
The disjunctions are also called clauses. 
I> A boolean formula is said to be in 3-conjunctive normal form iff it is in 

conjunctive normal form and every clause consists of exactly three literals, where 
we allow one variable to appear more than once in a clause. 
I> A boolean formula is said to be in 3 , 4 - c o n j u n c t i v e  normal form if[ it is in 

3-conjunctive normal form and every variable occurs at most four times, where 
repeated occurrences of one variable in one clause are counted repeatedly. 
1> A boolean formula ~ in conjunctive normal form is said to be p l a n a r  iff the 

bipartite graph B~ is planar, where the vertices of B~ are the variables and 
clauses of ~ and the edges are exactly the pairs (v, c) for which v is a variable 
occurring in the clause c. This definition differs slightly from the one given in 
[3], but it is sufficient to know that  planar formula in the sense of [3] is planar 
in the definition above, too. 
I> Let yellow submarine-SAT denote now the problem of deciding whether a 

given boolean formula is satisfiable, which is in submarine-conjunctive normal 
form and furthermore is yellow. 

2.2 Known Reduct ions  

In [4] it was shown that  3,4-SAT is NP-complete. The idea used to show one 
variable has to occur no more that  four times is indeed very simple; we can 
replace each variable x occurring k times by x0, . . . ,xa-1 and add the clauses 
(X~ V "~XiTlmodk). If we write (xi V ~Xi+lmodk) as (x z V x i V "lXi+lmodk) this 
gives a clause consisting of exactly three literals and every xi occurs exactly four 
times. .1 The only reason to mention this is to notice that  this process keeps the 
planarity of the formula. 

In [3] it is shown that  planar 3-SAT is NP-complete. With the idea in [4] it 
can be shown that  planar 3,4-SAT is also NP-complete. A careful reading of the 
construction in [3] used to show planar 3,4-SAT to be NP-complete makes it clear 
that  for a given formula of length n in 3-conjunctive normal form not only can an 
equivalent instance of planar 3,4-SAT consisting of some formula ~ be computed 
in polynomial time in n, but also an embedding of B~ can be computed in a very 

�9 1 This is a dirty trick. Strictly speaking in [4] it is actually shown how to avoid multiple 
occurrences of one variable within one clause. But this is not important for our proof. 
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simple way. We can furthermore assume that  B~ is embedded in a m x m-grid 
where the vertices are grid points and the edges are vertex disjoint paths on the 
grid, where m is linear in n. 

2.3 Fo lk lo re  

Altogether the following problem - -  let us call it g r i d 3 sa t  - -  is also NP- 
complete. We are given a m x m-grid, "in which some grid points are distin- 
guished as clauses and some as variables. The variables are connected with the 
clauses by vertex disjoint paths on the grid. We associate a sign with every path 
indicating whether the corresponding variable is negated in the corresponding 
clause or not. The question is, whether the formula described in this funny way 
is satisfiable or not. 

The reduction to prove constrained embedding to be N P-hard is computa- 
tionally trivial, since it is based on building the graph mentioned above from a 
stock of 26 different components. These components are complicated but  of con- 
stant size and description complexity. We will first characterize the components 
more precisely. There will be 16 different variable components, 

+ 

6 different connection components, 

1 t t 
and 4 different clause components. 

We write the signs on the edges in the graph directly on the variabl~ compo- 
nents, hence the 2 4 -- 16 different types of variable components. 

The desired instance J of constrained embedding is a labeled triangulated 
oriented planar graph. We construct it as an embedded graph. Thus each of 
the components mentioned above will be also an embedded labeled triangulated 
oriented planar graph. We put all these components together and get another 
graph. This graph has only to be tr iangulated in an arbitrary way to obtain J. 
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3 T h e  R e d u c t i o n  

3.1 G en era l  R e m a r k s  

Let I be an instance of grid3sat. Let us t ry  to construct an instance J of con- 
strained embedding which is solvable iff the formula described by I is satisfiable. 
It is mainly a question of finding a triangulated oriented planar graph which 
can 5e imbedded under  certain constraints iff the formula in I is satisfiable. 
Obviously we should search for a correspondence between an embedding of the 
graph and a t ru th  assignment for the variables in the formula. 

We will indicate instances of constrained embedding by drawing some graph, 
and this drawing also defines the orientation of the graph. The labels of the ver- 
tices will either be explicitly defined or be implicitly defined as disc of radii zero 
centered at the given position of the vertex. In most cases the drawn embedding 
will be a correct embedding. 

3.2 T h e  Variables  

Let us consider first a single variable. A variable can have exactly two states. Let 
us t ry  to give an oriented graph which can be embedded under certain constraints 
in only two different ways. Consider the following oriented graph. 

I 

F I 

! 

Let us consider now embeddings for which the positions of A, ..., F are fixed 
and the positions of A t, ..., F ~ have to lie in a circle Z only a little bigger than 
the circumcircle of the hexagon A...F. What  does this means for instance for 
A'? 
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Because of the oriented triangle A*AF the vertex A ~ has to lie in the halfspace 
above the line AF. Aside from this the vertex A ~ has to lie in its circle, namely 
Z. Thus A ~ has to lie in the circular segment defined to be the intersection of this 
halfspace and this disc. The other vertices B *, ..., F ~ also have to lie in certain 
circular segments. Since the vertices A ~ and B ~ are connected they have to be 
visible to each other in a correct embedding. To achieve this either A ~ or B * has 
to lie within the shaded region shown below. 

I 

! 

If  we draw the circle Z smaller the shaded region would shrink and in the 
following we want to say that  a point lies c lose  to A if it is this region. 

Around the vertices B, . . . ,F  there are similar regions. Together with the 
region for A these regions will be disjoint if Z sufficiently small. Now at least 
one of the vertices A ~, ..., F ~ has to lie in each region. Since there are six points 
each point has to lie in exactly one region. 

The reader can verify tha t  in principle there are only two possibilities: either 
A * is close to A, B ~ is close to B etc. as indicated in the drawings above, or A ~ 
is close to F,  F t is close to E,  etc. We can imagine tha t  A ~, . . . ,F  * form an outer 
hexagon which can be in two situations differing by a rotat ion of 60 degrees. The  
situation twisted in clockwise orientation we denote - - s i t u a t i o n  and the other 
one + - s i t u a t i o n .  

We are not able to simulate the behavior of a variable in the sense that  there 
exist exactly two embeddings which correspond to the two t ru th  assignments of 
the variable but  we are able to do it in an approximate  sense such tha t  there are 
two distinguishable classes of embeddings. 

In the following we will indicate these counterparts  of the variables only by 
the outer hexagon and talk only about  embeddings of the outer vertices and 
pretend tha t  there exists indeed only two embeddings, namely the - and + -  
situations. 

3.3 Branches 

The following example shows how to combine three hexagons such that  they 
all have to be si tuated in the same way (i.e. either all in - - s i tua t ion  or all in 
+-si tuation).  



Here is the - - s i tua t ion .  
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And here is the .+-s i tuat ion.  

3.4 Negations 

The following example shows how to combine two hexagons such tha t  one of 
them is in +-s i tuat ion if the other one is in - - s i tua t ion  and vice versa. 

Here the left one is in +-s i tuat ion 
and the right one is in - - s i tua t ion  . . . .  and this is the reverse case. 

3.5 C l a u s e s  

- - + +  

Analogously one can observe tha t  if B were in - -  
situation the vertex Z would have to lie in the half- 
space H 3 because of ft. If  then C were in - - s i tua t ion  
the vertex Z would have to lie in the halfspace H~, 
too. But  Ha  N/-/3 N H~ is empty. 

Consider the left construction. The vertex Z incident to 
11 edges may be embedded in a nearly arb i t ra ry  place. 
Think about  a disc around the whole picture assigned 
to the vertex Z. 
The crucial fact is tha t  the complementary  embedding 
(A+,B-,C-) is not possible. This is because of the 
triangles a ,  fl and 7. Consider for example c~. If the 
hexagon A were in the +-s i tuat ion the vertex Z would 
have to be in the half space Ha  (see below). 

H~ H3 
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The following pictures demonstra te  tha t  all other combinations are embeddable.  

- + +  . . . .  -F 

+ + -  

+ + +  + - +  

Thus we have three hexagons connected so tha t  all combinations of situations 
are embeddable except one (namely A+, B--, C - ) .  This corresponds to a clause 
of the form -~x V y V z. With one additional negation this can be converted into 
a clause of the form x V y V z. 

3.6 Connections 

Using the negations we can build long chains of coupled hexagons. Notice tha t  
in all constructions introduced so far there was a little bit tolerance. There was 
no need to draw them precisely to establish the argument.  We can see tha t  they 
would work even if they were shifted by a very small and indeed not visible 
amount.  Let # > 0 this amount.  Now in a sequence of hexagons ho, ..., hn glued 
together by negations we can shift the hexagon hi by ~ v  assuming Ilvll ~ n#. 
For sufficiently large n the connections between the components can be made in 
this way even if in the drawings here they are shifted. Since n depends only on 
p and I lvll and these values depend only on the geometry of the constructions, 
we can t reat  them as constants. 

In a similar way we can handle rotat ions by an arbi t rary amount.  Thus we are 
able to stretch, shift or bend long chains of coupled hexagons almost  arbitrary. 

3.7 Components revisited 

In order to construct the components  characterized in subsection 2.3 we use 
hexagons small enough to allow chains of negations to be flexible enough. In the 
following drawings a fat stroke indicates such a chain. 
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variable clause 
components components detours 

The variable components are made of two branches (see subsection 3.3) and 
we obtain the 16 different types of variable components by stretching the appro- 
priate chains of coupled hexagons with negations thereby decreasing the number 
of negations by one. The connection components are made only of chains of 
hexagons with negations. The clause components are made of the clauses ex- 
plained in subsection 3.5. 

We have to pad all components with fixed vertices in order to make most of 
the boundary of the components have a fixed shape and in order to triangulate 
the interior. 

This completes the construction. It remains to show that the formula given 
by an instance I of grid3sat is satisfiable iff there exists an embedding solving 
the instance J of constrained embedding. 

Assume that the formula is satisfiable. Then we place all hexagons in the 
branches in the variable elements in --situation, when the corresponding variable 
is assigned to be false and in +-situation otherwise. The situations of the other 
hexagons follow. 

Assume conversely there exists an embedding solving the instance J. Then 
we look at the hexagons in the branches in the variable components to get a 
truth assignment which fulfills the formula. 
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