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Abst rac t .  The VCG tool allows to visualize graphs that occur typically 
as data structures in programs. We describe the functionality of the 
VCG tool, its layout algorithm and its heuristics. Our main emphasis 
in the selection of methods is to achieve a very good performance for 
the layout of large graphs. The tool supports the partitioning of edges 
and nodes into edge classes and nested subgraphs, the folding of regions, 
and the management of priorities of edges. The algorithm produces good 
drawings and runs reasonably fast even on very large graphs. 

1 I n t r o d u c t i o n  

Visualization allows better understanding of the behavior of data  structures in 
programs. Especially in compilers - as they are developed by the ESPRIT project 
#5399 COMPARE (Compiler Generation for Parallel Architectures) [1] - many 
parts of the data structures are trees or graphs, e.g., the syntax tree, the control 
flow graph, the call graph or the data  dependence graph [15]. A simple textual 
visualization of them is too confusing or even unreadable. A special visuMization 
tool that  draws them in a natural way is more helpful. 

Since the calculation of a nice layout is computationally hard [4] and data 
structure representations are often very large, an interactive graph drawing tool 
must use heuristics and needs facilities to reduce the amount of information to 
be displayed. Furthermore, data structures are often interwoven, and parts of 
them are more important  than others in a certain situation, such that  it must 
be possible to assign priorities to the parts of the graph whose structure must 
be more readable. 

For graph drawing, there are some common aesthetic criteria like avoiding 
crossings of edges and nodes, favoring short straight edges and balancement. An 
interactive tool has the additional, important  criterion: Be reasonably fast. Thus, 
the main emphasis was to select methods and heuristics to be able to deal fast 
with large graphs. 

In the following sections, we sketch the layout method of the VCG tool. 
This method has common parts with the layout algorithms of similar tools (see 
[2][12][8]), but in many cases, it is faster or can deal with larger graphs. Our 
work is based on the approach of Sugiyama, Tagawa, and Toda [13]. We extend 
their algorithm by several new heuristics, by avoiding their expensive matr ix 

* The full article is available as Technical Report A03/94, Universitgt des Saarlandes, 
FB 14 Informatik, 1994, and via ftp from :ftp.cs.uni-sb.de (134.96.7.254), file 
/pub/graphics/vcg/doc/tr-A03-94. ps. gz. 
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operations in order to be able to handle large graphs, and .by the possibility to 
include priorities and anchor points of edges in the layout algorithm. 

2 Problem Description 

In this section, we introduce some general graph notions and explain the task of 
the layout algorithm. The graph is given to the VCG tool by a textual specifi- 
cation of nested subgraphs, nodes and edges, annotated by attributes: 

Definit ion 1 A n e s t e d  g r a p h  G = (V, E)  consists of a set V of nodes and a 
set E C_ V • V of edges. A node v E V is either a simple node or a nested graph 
G. I f  a graph does not contain nested subgraphs, we call the graph f lat .  
Edges have the following attributes: an anchor point, a priority and a class. 

Fig. 1. A syntax tree with types 

The attributes can be specified by the user and allow to influence the appear- 
ance of the graph. Graphs can be folded in different ways. The aim of a folding 
operation is to reduce the amount of the objects that  have to be laid out. This 
allows the user to select interactively parts that  must be inspected and to hide 
parts that currently are not of interest: 

- s u b g r a p h  fo ld ing:  A subgraph is normally laid out by displaying all its 
nodes. But it can also be folded, i.e. all its nodes and edges disappear. In- 
stead, a summary node is drawn. 
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- edge class hiding:  All edges of an edge class can be hidden. They disappear. 
Single nodes that are not anymore connected with the rest of the graph are 
removed, too. 

- region folding: Given a set of start nodes, a set of end nodes and a predicate 
P on edge classes, the corresponding region consists of M1 nodes that are 
reachable from a start node by a path that does not contain an end node, 
where P is true for all edges of the path. The region can be folded into one 
summary node. 

Annotations are hidden A subtree is folded Regions are folded 

Fig. 2. The same syntax tree: Foldings 

Figure 1 shows a syntax tree annotated by type information. The syntax tree 
edges have the class 1, while the annotations are connected by edges of class 2. 
The result of the folding operation 'Hide Edge Class 2' is shown in fig. 2 (left): 
The type information has disappeared. In fig. 2 (middle), the region starting at 
the uppermost 'StatList' node is folded and represented by a triangle. In fig. 2 
(right), the region starts with the same node but end at the both 'Assign' nodes. 
A second region starts at the 'Block' node and ends at this folded 'StatList' node 
and at the lowermost 'Array' node. In our example, we used the predicate 'e has 
edge class < 2' for these operations 'Fold Region'. 

The priority p indicates the importance of the edge. Edges of high priority 
are preferred, thus they are shorter and have more influence on the structure of 
the layout (fig. 3 left and middle). 

The anchor point of an edge specifies the point where the edge is anchored 
at the source node. The visualization of data structures containing several fields 
of pointers often require the association of an edge with a field: The pointer of 
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All edges have 
same priority. 

the The tree edges have the Using Anchor Points for Structs. 
higher priority. 

Fig. S. Priorities and Anchor Points 

that  field is just represented by the edge. In a practical example, the fields are 
visualized by text lines of labels, and the anchor points of edges are realized by 
the points at the nodes that are adjacent to these text lines (see fig. 3, right). As 
simplification, we allow to specify only the anchor points u n s p e c i f i e d  (these 
edges are anchored at the top or bottom of a node), l e f t ,  r i g h t  (anchored 
anywhere at the left/right side, see fig. 1) and l i n e  i which indicates that  it is 
anchored at the left or right side of a node adjacent to the ith line of the node's 
label. 

It is straightforward to applying the folding operations. The result is a fiat 
graph G = (V, E), where V contains only the visible nodes and E contains only 
the visible edges. 

3 P a r t i t i o n i n g  o f  N o d e s  a n d  E d g e s  

3.1 A n -L ev e l  H i e r a r c h y  

After the application of the folding operations, the first phase of the layout algo- 
r i thm partitions the visible nodes into levels. An integer rank R(v)  is calculated 
for each node v E V. All nodes with the same rank form a level and are laid out 
on the same vertical position (see [8] for details). 

Thus, it is appropriate to give nodes the same rank, if they are connected by 
edges anchored on the left or right side. These nodes can be drawn as neighbors 
such that the edge is a straight horizontal line between them (fig. 1). Of course, 
this is done if only one of such neighbor nodes at the left or right side exist. 
During the partitioning, these neighbor nodes are therefore fused into one node. 

It is simpler to find the layout of the edges, if all edges are directed downwards 
and no edge crosses several levels. Thus, we build a proper hierarchy [13][14] by 
reverting upward edges and by splitting edges crossing several levels into small 
edges and dummy nodes. Reverted edges are marked such that  arrowheads will 
later show the original direction. 

De f in i t i on  2 A p r o p e r  n + l - level  h i e r a r c h y  is a directed graph G = (V, E)  
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which satisfies the following conditions: 

- V is partitioned into n + 1 disjoint subsets, i.e., V = Vo U V1 U . . .  U Vn, a n d  

= {v I R(v)  = i} .  
- E ~s partitioned into n disjoint subsets, i.e., E = Eo U E1 U . . .  U E~- l ,  a n d  

E~ c_ �88 x Y~+l. 

3.2 Reduction of  Crossings 

The order of the nodes within a level determines the edge crossings in the lay- 
out, and a good ordering is one with few crossings. The problem of minimization 
of edge crossings is NP-complete [6], thus we use heuristics. The nodes are it- 
eratively reordered within the levels according to the barycenter weights [13], 
or alternatively according to the median weights [5]. The heuristics stops if the 
number of crossings is not anymore reduced. 

For the speed of the heuristics is most important,  that  the number of cross- 
ings can be calculated very fast. The original approach in [13] and [14] uses 
interconnection matrices, such that  the calculation of crossings of edges between 
level i and i + 1 needs time O(]V/] 2 [~+112). In the full paper, we present a 
representation of the levels such that  the number of crossings can be calculated 
in time O(]V/I § ]~+11 + IEil + c), where c is the number of crossings. A similar 
plane sweep algorithm is described in [3], however for the more general case of 
arbitrary line segments in the plane with runtime O(([E] § c) logiE[). 

4 Calcu la t ion  of C o o r d i n a t e s  

The y coordinates are canonical derived such that  the center of the nodes of 
each level have the same vertical position. Even if after the crossing reduction, 
it is clear in which horizontal order the nodes must appear, it is still a difficult 
task to find x coordinates for them. In order to achieve a balanced layout, a 
node v must be placed in the middle of all adjacent nodes with edges to v. Good 
result come from the spring embedder or rubber band network algorithms, for 
instance [10] and [7]: The positions of nodes is determined by the forces imposed 
upon the nodes, e.g. because edges pull on the nodes similar to springs or rubber 
bands according to their priorities. While these algorithms try to place all nodes 
directly on the plane, which often results in a nonhierarchical layout and needs a 
long runtime, we use a similar method to improve the existing hierarchical layout. 
Because in our case, the ordering of the nodes is already fixed, the situation is 
much simpler, thus the speed is reasonable. 

4.1 T h e  P e n d u l u m  M e t h o d  

The idea of the pendulum method: the nodes are the balls and the edges are 
the strings. If the uppermost balls are fixed on a ceiling, the balls on the strings 
swing to a balanced layout driven by their gravity, e.g., a ball of a level i + 1 
that  is fixed by strings to two balls at level i will swing to a horizontal position 
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just in the middle of these two balls, because the gravity imposes a horizontal 
force upon the ball proportional to the angle of the strings. Because the vertical 
position of the nodes is already fixed, the pendulum movement of the balls is 
simplified to horizbntal movements, and the angle force is approximated by the 
horizontal deflection of the edges adjacent to a node (ball). The deflection of a 
ball is positive if it is pulled to the right by the deflection of the strings it hangs 
on, and negative if it is pulled to the left. 

7 5 3 1 -1 def t  4 2 0 - 2 - 4  6 4 2 4 2 0 def t  3 1 - 1 1  - 1 - 3  

3 " �9 �9 4 2 
b e f o r e  a n d  a f t e r  t h e  m o v e m e n t  b e f o r e  a n d  a f t e r  t h e  m o v e m e n t  

Fig. 4. Region movements and combinations 

If several neighbored balls hang touching on the same ball, they influence each 
other: they cannot be placed all at the same point such that  the deflection of 
each ball becomes zero, thus they move into a position such that  the summary 
deflection of all these balls is zero, even if some balls still have a positive or 
negative deflection (fig. 4 left). We call the set of nodes influencing each other 
a region. We may have two touching regions whose left region is pulled to the 
right and whose right region is pulled to the left. In this case, these regions 
start to influence each other, i.e. they create a new region that  consists of both. 
If we have the converse case, both regions are drawn asunder, they cannot be 
combined. Two touching regions that are pulled into the same direction can be 
combined, if the force of the one region is larger than the force of the other 
region such that  the first region influences the second region (fig 4 right). If two 
regions are separated by horizontal space, they are independent and cannot be 
combined. However, they may move during the pendulum steps such that  the 
separating space disappears, then they touch together, i.e. after the movement 
they may create a new, combined region. Thus, the pendulum method is an 
iterative process: we continuously traverse all levels, for each level, the regions 
are calculated and all nodes of a region are moved by the same horizontal offset 
according to the deflection value Dpred of the region. Starting from an initial 
assignment of a x coordinate x(v) to each node v, this is done until the layout 
is balanced. 

De f in i t i on  3 The predeces so r  de f l ec t ion  of an edge e = (s, t), a node v and 
a region { v l , . . . ,  Vm) in a proper n-level hierarchy are defined as 

Dpr~d(e) = p(e) (x(s) -- x(t)) 

Dp~d(V) = ~(~,v)eE Dp~d((W, v)) 
v)) 

urn}) = E e(1, ,m) 
m 
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p(e) (p((w, v)), respectively) denotes the priority of the edge e : (w, v). Mathe- 
matically, the deflection of edges is a variant of the 1-norm. 

After a top down traversal that  balances the nodes, it is also possible to add a 
bot tom up traversal using successor deflections Ds=cc tha t  can be defined analo- 
gously. Physically, this corresponds to a rotation of the pendulum by 180 degree 
and fixing the former lowermost balls on the ceiling. The VCG tool performs top 
down traversals and bot tom up traversals in alternating order. 

As in the reality, a pendulum may start to oscillate. Even if this is very 
seldom, it is important  to have a good decision function that  stops the oscill/~tion. 
Here, we use a weight that  represents the sum of all forces on all nodes: 

E(~,~)~ p((~, ~)) (~(~) - ~(v)) + E(~,~)~ p((w, ~)) (~(~) - ~(v)) 

This value decreases with a high probability, because each step of a traversal 
reduces one summand very much while other summands may increase only a 
little bit. If the pendulum starts to oscillate, it does not decrease anymore: in 
this case the amount  of increasing summands is equal or larger than the amount 
of decreasing summands. Then, the algorithm stops. 

4.2 The  R u b b e r  B a n d  M e t h o d  

The pendulum method creates a balanced layout where all nodes have enough 
space to move to the left or to the right. However, the pendulum method does 
not force straight edges, if they are split into sequences of polygon segments and 
dummy nodes, because it analyzes only the predecessor edges of a node, or the 
successor edges of a node separately. When there is enough space between the 
nodes, it is appropriate to apply the rubber band method: as rubber bands, the 
predecessor and successor edges pull on the node at the same time such that  the 
node is centered in order to eliminate the forces of different directions. Each node 
is moved by W(v). Thus, dummy nodes, which have exactly one predecessor and 
one successor edge of the same priority, are forced to be positioned such that the 
gradient of both edges becomes equal: the combination of both edges appears as 
a straight line. In the rubber band method, neighbored nodes do not influence 
each other. A node is only moved to a new z coordinate if there is space enough 
around the node. Hence, there is no tendency to oscillate. 

D e f i n i t i o n  4 The f o r c e  we ig h t  of a node v is defined by 

W(v) = E(o,~)~E p((v, ~)) (~(~) - ~(v)) + E ( ~ , o ) ~  p((~, v)) (~(~) - ~(~)) 
E(~,~)~E p((v, w)) + E(~,~)~.  p((w, v)) 

The rubber band method is a fine tuning phase that  optimizes the horizontal 
positions of nodes. Since the reduction of W(v) for each node v implies the 
reduction of the sum of all defections, we can use the same stop criterion as with 
the pendulum method. 
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4.3 Remarks  A b o u t  the  Speed  

The order of the nodes that are selected for repositioning influences the speed. 
A movement of a node may prevent other nodes to be moved, because nodes 
should not overlap: their surrounding space may disappear. As general hint, 
nodes should be preferred that must move very much. If more nodes tend to 
move to the right than to the left, the movements to the right should be done 
first. 

In the pendulum method, neighbored node may influence each other, while 
the rubber band method ignores these influences. A combined method is also pos- 
sible: The weights W(v) are used to create regions as in the pendulum method. 
The result is a balanced layout that also forces straight edges. However, in our 
experience, this combined method is much slower than the sequence of the two 
different methods. The reason is that the weights W(v) tend to be globally 
balanced while there are only small regions in the layout where W(v) is not bal- 
anced. This imbalance must often be propagated over all nodes to get a complete 
balanced layout, i.e. in order to balance the local region, the whole layout must 
be changed. The pendulum method, as described, quickly forces parent nodes to 
be centered to children nodes, because an imbalance of the weights Opted and 
D8~,r162 that are defined only in the predecessor or the successor direction is more 
probable. Thus, the initial layout changes much more if the weights Di)re d and 
Dsucr are used, and hence, the propagation of imbalances of regions succeeds 
faster and results faster in a complete balancement. 

5 Layout of Edges 

Most graph layout tools do a good job when calculating the positions of nodes, 
but oversimplify the positioning of edges: Edge segments are drawn as straight 
lines from the border of the source node to the border of the target node. In 
fact, this results in readable pictures of the graph, if all nodes have the same 
shape and size, because edges are already split into edge segments and dummy 
nodes to form a proper hierarchy, thus it is not probably that an edge overlaps 
a node, because the dummy nodes and normal nodes do not overlap. 

In our applications of the VCG tool, nodes very often have different sizes. 
Solving the layout constraint 'no edge goes through a visible node' is here much 
more complex. Edge segments must be bent to get around the large nodes. This 
sequence of bendings can be drawn by straight polygon segments, or optionally 
as splines. In [8], a good, but complex spline routine is described that solves this 
problem. For efficiency reasons, our spline drawing routine is much simpler. The 
details of the layout of edges are described in the full paper. 

6 Layout of Anchored Nodes 

The layout of a proper hierarchy is appropriate, if edges ar anchored at the 
top or bottom of the nodes, because the edges are split into polygon segments 
pointing downwards. Upward edges are marked by drawing the arrowhead at the 
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Chains of neighbor 
nodes 

q H .......... IiI 
Anchor dummy 

nodes 
Corresponding 

polygon segments 

Fig. 5. Edges anchored line i 

uppermost beginning of the polygons. Edges with anchors l e f t ,  r i g h t  and l i n e  
i must be converted before crossing reduction. The VCG tool restricts each node 
to have at most one edge anchored left and one edge anchored right to the node. 
Nodes connected by such edges form a linear chain (fig. 5, left). These chains 
are fused into one node before the crossing reduction, because crossing reduction 
works only if the hierarchy is proper. Before the positioning of nodes, the chains 
are expanded again: As the result, the nodes of the chains are really neighbored 
at the same level and the left/right edges can be drawn as short straight edges. 

Now, Edges anchored l i n e  i can be converted into an edge anchored r i g h t :  
We add an 'anchor dummy node' v for each node s with such edges and replace 
the edges (s,t) anchored line i by edges (v,t) (anchor point unspecified) 
and one edge (s, v) anchored r i g h t  (fig. 5, middle). This situation now can be 
treated as above. After the positioning of the nodes, the anchor dummy node v 
is replaced by edge segments that connect s with the starting points of the edges 
on v, i.e. when drawing, the anchor dummy nodes are invisible, and their image 
is a sequence of edge segments (fig. 5, right). 

7 Appearance of Objects 

Further possibilities to influence the appearance of objects are shown in figure 6 
which visualizes the dependences of shell programs (from [8]). Edges may be 
solid, dotted or dashed and may have different colors and sizes. The shape of a 
node may be a box, a rhomb, a triangle or an ellipse. It is possible to specify 
their rank and order within the levels. This allows to place the shells at the 
same rank as their birth dates, and to place the time axis at the left side of 
the graph. To avoid that  the components of the graph are layouted separately, 
the parts of the graph are connected by some invisible edges. Invisible edges, 
as all other edges, influence the positions of the nodes as they would pull their 
adjacent nodes together. To avoid this effect for the invisible edges, we set the 
priority of the invisible edges to zero and the priority of the visible edges to 100. 
Finally, edges are drawn as splines. 

The label of a node may be too small to contain all the information needed 
for the node. In this case, it is possible to specify text fields that  are only shown 
on demand. A variant of this method is very useful, if the graph is scaled so 
much that  the text label is unreadable. By selecting a node, its label and its 
additional text fields are shown in a readable size. 
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Fig. 6. Different Forms 

The VCG tool is designed as an auxiliary tool to support debugging of data  
structures. In such an environment, the program to be inspected may produce 
a sequence of graphs that  must be visualized. Thus, an animation interface is 
integrated into the VCG tool. The VCG tool and the program run concurrently 
and communicate by signals and time stamps of the file to detect when the new 
instance of the graph is produced. 

8 Experiences and Statistics 

Table 1 shows the performance of the different phases of the VCG tool. All 
measurements are done on a Sun Sparc 10/30 (32 MB mere., X l lR5) .  Graph 1 
is the visualization of a LI~ deterministic automaton produced by the ~IYafoLa 
parser generator [9]. Graph 2 is an intermediate representation of a program in 
the COMPARE compilation system. Graph 3 is an intermediate representation of 
a larger program. Graph 4 and 5 are complete graphs, i.e. all nodes are connected 
pairwise. Tree 1 is a syntax trees with at tr ibute annotations, tree 2 is a binary 
tree of 12 levels, and tree 3 is a ternary tree of 8 levels. 

It is not clear, whether the barycenter weight or the median weight results in 
better layouts. The time for the calculation of the median weight depends much 
more on the degree of nodes (see graph 4 and 5), because all adjacent nodes of 
v must be sorted to calculate the median value of a node v. Thus, barycentering 
has advantages if the average degree of nodes is large. Typically, barycentering 
results in a more symmetrically ordering of nodes within the levels. Thus, the 
pendulum method needs sometimes much more time to create a balanced layout 
after using the median weight (see t=y in the graph examples). 

As we see in graph 4, 5 and tree 9. and 3, the maximal size m of a level and 
the number of edges segments e influence te and txy very much. The reduction 
of crossings and the optimal placement of the nodes are the bottleneck during 
the layout. Thus, the VCG tool has options to control the maximal number of 
iterations during these phases: It is possible to create an unbalanced layout with 
very much crossings in very fast time. Using this feature, very complex graphs 
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E x a m p l e  Nodes  Edges  Alg. t F t r  t~ t=y t~ tha .~  n e rn Levels  Crossings] 
G r a p h  1 132 288 B a r y  0.23 0.05 3 .28  0.99 0 .03 5.5 648  796 43 33 530 

M e d i a n  0.23 0.05 1.48 11.3 0.05 16.0 648  796 43 33 576 
[Graph  2] 66 95 B a r y  3.10 0.01 0 .34 0.33 0.42 3.0 245 274  25 20 53' 

M e d i a n  D.11 0.01 0.56 0.64 0 .17  3.5 245 274 25 20 86 
G r a p h  3 417  808 B a r y  9.77 0.41 142.5  40.3  0.32 190.0 $418 6809 2 3 3  72 12476 

M e d i a n  9.74 0.42 87 .4  56.7  0.42 151.0 $418 6809 233 72 12896 
G r a p h  4 23 253 B a r y  9.12 0.11 17.6 3 .64  0 .35 22.5 1794 2024  1221 23 3814  

M e d i a n  0.10 0.11 19.9 4 .14 0 .43 25.5 1794 2024  122 23 3652 
G r a p h  5 26 325 B a r y  0.15 0 .17 15.4 5.16 0.32 22.5 2626 2925 157 26 6355 

M e d i a n  0.15 0.16 37 .7  7.12 0.12 45.0 2626 2925 157 26 5981 
Tree 1 2763 2762 B a r y  2.64 0 .73 i . i 0  5.78 0.15 11.5 2763 2762 56 132 0 
Tree 2 4095 4094  B a r y  6.38 1.97 0.46 3 .67  0.24 13.5 4095 4094 2048  12 0 
Tree  3 3280 3279 B a r y  4.20 2.19 0 .34 3.81 0 .27 12.0 3280 3279 2187  tl 0 

T i m e s  ( s u m  o f  u s e r  t i m e  a n d  s y s t e m  t i m e ,  m e a s u r e d  b y  t h e  c o m p u t e r ) :  t p  = p a r s i n g  

(and folding), tr = creation of a proper hierarchy, tc = reduction of crossings, t=y 
= assignment of coordinates, td ~--- drawing. The complete runtime is the sum T = 
tp -F t r  "~- tc J~ txy  7 u fd. The real time thand we had to wait until the graph was laid out 
and drawn is measured by hand. All times are measured in seconds. 
n is the number of nodes laid out, including real nodes and dummy nodes, e is the 
number of segments to represent the edges, m is the max. number of nodes per level. 

Table  1. Statistics 

can be visualized in few seconds (e.g. graph 3 in 20 seconds). In such situations, 
the aesthetic quality is of minor interest as long as the graph can be inspected 
by following edges and centering nodes. 

9 C o n c l u s i o n  

VCG is a tool that  allows to visualize complex graphs in a compact  way and 
in good performance. It  can deal with many  different kind of graphs including 
pointer networks of structs. Thus, it is very well appropriate  to help on debugging 
data  structures. I t  Mlows to fold parts  of the graph, and to influence the layout 
to a large degree. We have described the layout algorithms, which are rather 
simple and use heuristics, but they are very fast and enable to explore very large 
graphs in reasonable time. Further work might  address the following: 

- Improve the stability of the layout: Similar graphs must  create similar pic- 
tures. 

- Allow incrementali ty of the layout: Adding an edge or a node to an layout 
should not cause a complete relayout. 

- Allow different layout algorithms for nested subgraphs: Each subgraph can 
be laid out by a specialized variant of a layout algorithm. The combination 
of such Mgorithms must  be analyzed. 

- Improve the spline drawing routine. 

The implementat ion of the tool is based on the diploma thesis of Iris Lemke 
[11] (VCG for SunView). I t  runs with SunView and X l l  on many  different 
platforms (SunOS, IRIX, IBM AIX, HP-UX . . . .  ) and can produce different 
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forms of output (PostScript, PBM, PPM). The tool is available via anonymous 
ftp at Stp.  cs . u n i - s b .  de (134.96.7.254) in the directory/pub/graphics/vcg.  
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