
Grid Layouts of Block Diagrams -
Bounding the Number of Bends

in Each Connect ion
(Extended Abstract)

S. Even* and G. Granot

Computer Science Department
Technion, Israel Inst. of Tech.

Haifa 32000, ISRAEL

even@cs.technion.ac.il gil@cs.technion.ac.il

Abs t rac t . Consider an input data which specifies rectangular modules
and connections between them; this is a graph. The size of the modules
and the placements of the terminals on them is given as part of the
input. We produce a block diagram, conforming to the input. The block
diagram is on the rectilinear grid, and each edge (connection between
modules) has few bends.
For planar input, a linear-time algorithm is described to construct a
planar drawing with at most 6 bends in each self-loop and at most 4 bends
in any other edge. The external face of the drawing may be specified by
the user. We show a planar input with no self-loops which has no drawing
with at most 3 bends in every edge and another planar input which has
no drawing with at most 5 bends in every self-loop.
A linear-time algorithm is described to construct a nonplanar drawing
of any input, with at most 4 bends in each edge. We show inputs that
have no drawing with at most 3 bends in every edge.

1 I n t r o d u c t i o n

Layouts of graphs on the rectilinear grid have been studied because of their
applications in VLSI planning and automatic graph and data drawing. A lot of
work was done on rectilinear planar drawings with vertices drawn as points; see,
for example, [Shi76, MO85, Tam87, YMS91, EG94, BK94]. Not much work has
been done on drawings in which vertices are more complex structures, in spite of
the fact that this approach is natural in VLSI, where the vertices can represent
predefined modules.

Our interest is in drawings which have a small constant upper bound on the
number of bends which occur in any edge. This is important where the drawing
realizes a circuit, and a bend may cause delay or signal loss.

* Supported by the Fund for the Promotion of Research at the Technion.

65

Often, certain attributes of the block diagram should be preserved. Therefore,
more data is specified in the input than just a graph.

The input , called a module description, consists of:

1. A set of rectangular modules of integral dimensions. Each module has a set of
terminals which are designated points on the module's perimeter, at integral
places.

2. A set of connections. Each connection has two designated terminals which are
its end-points and each terminal is an end-point of exactly one connection.

The drawing of the block diagram on the rectilinear planar grid consists of:

,

2.

Placing each module on the grid, adjusted to the grid lines. The placed
modules are nonoverlapping and do not touch each other.
Drawing each connection as a path on the grid, so that:

- No two such paths share a ~rid-edge.
- If two paths share a point, they cross each other at that point.
- No path shares any point with any module, except its end-points.

Such a drawing is referred to as a grid-layout of the module description. If
no two path intersect, the grid-layout is called planar. (See Fig. 1).

i ' i ' ' t i
.... i""-.."'"'..-"" ------"7

.... " i i i ~ :

.... i

i ! i i :

Fig. 1. A 3-bend planar grid-layout which is not 2-bend

An edge (incidence) ordering of a graph is a specification, for each vertex,
of a cyclic order of the endpoints of its incident edges. A graph with an edge-
ordering is called an ordered graph. A drawing of an ordered graph in the plane
is proper, if the edge-ordering of the ordered graph corresponds to the clockwise
arrangement of the endpoints around the vertices in the drawing. An ordered
graph is planar, if it has a proper planar drawing. An ordered graph determines
the faces of any proper drawing, but doesn't determine which one will be external
(infinite).

Clearly, a module description corresponds to an ordered graph. Each module
is represented by a vertex, and each connection is represented by an edge of the
graph. Note, that the ordered graph is not necessarily simple; it may have parallel
edges and self-loops. If this ordered graph is planar, we say that the module

66

description is planar. A module description has a plane grid-layout (without
flipping modules) if and only if it is planar.

When referring to a module description, we will frequently use terms belong-
ing to the corresponding ordered graph. Tha t is, we will say edge and degree of
a vertex instead of connection and number of terminals on a module. We denote
the ordered graph corresponding to the input module description as G(V, E).

There are several natural tasks concerning grid-layout. They can be classified
according to the following issues:

- Do we insist on a planar grid-layout? If we do, the corresponding ordered
graph must be planar.

- Do we allow to flip modules? Of course, flipping a module reverses the edge-
ordering in the corresponding vertex.

There are known linear-time algorithms to check if a given ordered graph is
planar [Zak93, Pin83, Ami87]. Also, in case ~tipping is allowed, there is a known
linear-time algorithm to check if a flipping exists for which the resulting ordered
graph is planar, and if so, to specify such a flipping [Pin83]. In this extended
abstract we assume that we are given a planar module description.

We allow rotation of the modules since it does not effect planarity.
A bend is a point of a path in a grid-layout in which the path makes a 90 ~

turn; we say that the corresponding edge of the ordered graph has a bend. A
grid-layout is called k-bend if no edge (path) has more than k bends.

We present two linear-time algorithms:

1. For any given planar module description, as well as a specified external face,
a 6-bend planar grid-layout is constructed. Each edge which is not a self-loop
has at most 4 bends. This result is the best possible in the following sense:
There are flip-planar module descriptions with self-loops, for which none of
their planar module descriptions (after flippings) has a 5-bend planar grid-
layout. Also, there are flip-planar module descriptions without self-loops, for
which none of their planar module descriptions has a 3-bend planar grid-
layout.

2. For any module description a 4-bend grid-layout is constructed. (It may be
nonplanar.) There is no need to rotate or flip any module. Again, this result
is the best possible in the following sense: There are module descriptions for
which no 3-bend grid-layout exists, even if rotation and flipping is allowed.

We use the notation ue--v for an edge e which connects vertices u and v and
e u--*v for a directed edge e from u to v.

An st bipolar orientation of a graph G is a directed acyclic graph whose
underlying undirected graph is G; it has one source s, one sink t and an edge
s--*t. An st bipolar orientation of a nonseparable graph 2 with no self-loops can
be found in linear time. This is described in [ET76], where an equivalent notion
of st numbering is used.

2 A connected graph is called nonseparable if it has no separating (cut) vertex.

67

A visibility representation of a graph is a planar drawing of the graph on
the rectilinear grid, where vertices are drawn as horizontal lines or points and
edges are drawn as vertical lines. We assume that the ends of the drawing of a
vertex are at the endpoints of its leftmost and rightmost incident edges. Two
very similar linear-time algorithms for finding visibility representations of graphs
are described in [RT86, TT86].

2 P l a n a r G r i d - L a y o u t s - T h e C a s e o f N o S e l f - L o o p s

We assume G is connected, for otherwise we can draw a planar grid-layout of
each connected component separately. The connected components of a graph
can be found in linear time. Thus, we show that any graph can be drawn in
linear t ime by showing that connected graphs can be drawn in linear time. In
this section we assume G has no self-loops.

If the graph is nonseparable, we find an st bipolar orientation of it [ET76].
Otherwise we first add edges to the ordered graph which make it nonseparable
without impairing its planarity. This is done without changing the order around
vertices of the edges of the input ordered graph; it can be done by adding edges
inside faces in which a (cut) vertex appears more than once, or as described in
[EG94]. Next, we find an st bipolar orientation of the new ordered graph. The
added edges are called auxiliary and will not be drawn in the grid-layout. As in
[ET76], one may choose any edge to be s--+t. We choose an edge such that when
it is drawn vertically, with s at the bottom, the face we want to be external
is on its left hand side. This ensures that the specified face will he external.
Henceforth we consider the ordered graph to be directed, the edges having the
directions of the st bipolar orientation.

Next, for each vertex, we determine the rotation of its module's drawing and
divide its incident edges to two subsets; one containing edges that will be drawn
to the right of the vertex and the other containing edges that will be drawn to
the left of the vertex.

First, let us describe how this is done for vertices which are neither s nor t.

Lemma 1. [RT86, TT86] In an st bipolar omentation of a planar ordered graph,
for every vertex, its zncoming (outgoing) edges appear consecutively in the edge
ordering.

We need to know which edges are the leftmost and rightmost edges of the in-
coming (outgoing) edges incident to a vertex. Lemma 1 implies that there is no
ambiguity in their indication for vertices other than s and t.

Thus, the perimeter of the module can be divided to two paths; one incident
only to incoming edges and the other incident only to outgoing edges. The mod-
ule can be rotated such that the path of outgoing edges has a section on the top
of the module, and the path of incoming edges has a section at the bot tom of the
module. Figure 2 demonstrates how this can be done. More than one appropriate
rotation may be possible.

68

Fig. 2. Rotation of a vertex which is not a source nor a sink.
The marked path on the perimeter of the module is the path that contains only outgoing
edges and should have a section on the top of the module, etc.

We choose a point on the path incident to outgoing edges which is on the
top of the module, and a point on the path incident to incoming edges which is
at the bot tom of the module. Such points exist due to the way the rotation has
been selected. These two points divide the perimeter of the module to two new
paths. The edges incident to the new path which contains the right hand side
of the module, are the edges that will be drawn to the right of the vertex. The
edges incident to the other new path, which contains the left hand side of the
module, are the edges that will be drawn to the left of the vertex. Although the
auxiliary edges are marked as drawn to the right or to the left of the module,
they will not be actuMly drawn.

Now we deal with s and t. First we consider the edge s--*t to be the leftmost
edge of s and t. Since s (t) has only outgoing (incoming) edges, we choose a point
on the perimeter of the module, between the leftmost and rightmost incident
edges, and consider it to be the path incident to incoming (outgoing) edges. The
rotation of the module and the division of the incident edges is done as with the
other vertices. Note, that this ensures that s--~t is the leftmost edge.

Next, for every vertex we determine how much space the drawing of the
vertex needs. We calculate for every vertex a quantity called the drawn height of
the vertex. The drawn height is composed of the height of the module plus added
space below and above the module. The size of the added space above (below)
the module is the maximum of the number of edges incident to the top (bottom)
of the module that are drawn to its left and the number of edges incident to the
top (bottom) of the module that are drawn to its right.

Next, we want to construct a visibility representation so that each vertex
will have the space needed to draw its module and its connections. This requires
that if we stretch each vertex of the visibility representation downwards to be
in the height of its drawn height, the vertices of the visibility representation will
remain nonoverlapping. We also require that in the drawing of each vertex v,
in the visibility representation, there will be a section having the width of the
module of v, with the following properties. All edges to be drawn to the right
(left) of v are incident to v at points to the right (left) of this section, therefore
no edge is incident to v at this section. The s--*t edge must be the leftmost edge
of the visibility representation; this causes the correct face to be external.

Such a visibility representation can be found using the algorithm of [DTT92].
This algorithm finds a visibility representation, for an st bipolar orientation, with
certain specified directed paths of the st bipolar orientation drawn as straight

69

vertical lines. That is the edges of each such path are vertically aligned. The
given paths are required not to cross each other in a proper planar drawing
of the ordered graph. In this algorithm, the coordinates of the visibility rep-
resentation are found by two topological orderings. A lopological ordering for
a directed acyclic graph with non-negative edge weights is an assignment of a
positive integer to each vertex; such that for each edge, the number assigned to
its destination minus the number assigned to its origin is greater than or equal
to the weight of the edge. One ordering is done on the vertices of the original
graph and the other is done on the vertices of a modification of the dual graph.
The weights represent the minimal space below a vertex in the first topological
ordering and represent the minimal space to the right of an edge in the second
topological ordering. Following, we describe how to determine the weights and
how to specify the paths to be aligned.

For a vertex that has incoming (outgoing) edges drawn to the left of the
vertex, we will call the rightmost incoming (outgoing) edge, which is drawn to
the left of the vertex, aligned to the vertex. If a vertex has incoming (outgoing)
edges, but they are all drawn to the right of the vertex, we duplicate the leftmost
incoming (outgoing) edge. The duplicate edge left of the edge, will be considered
drawn to the left of the vertex, and will be called aligned to the vertex. The
added edge is auxiliary and will not appear in the grid-layout.

For every vertex which is neither the source nor the sink of the st bipolar
orientation, its incoming aligned edge and outgoing aligned edge will be put in
a path to be aligned in the visibility representation. This path may continue
farther if any of these two edges are aligned to their other end vertices. The
paths created do not cross each other in a proper planar drawing of the ordered
graph, since by definition, there can be at most one path which passes through
a vertex.

The weight of an edge in the topological ordering of the original graph (in-
cluding the auxiliary edges) is the drawn height, of its target vertex, plus 1. The
weight of an edge in the topological ordering of the modified dual graph is as
follows. If the edge is aligned to one of its end vertices, its weight is the vertex's
module width plus 2. If the edge is aligned to both of its end vertices its weight
will have the greater value of the two module widths plus 2. Otherwise the edge
will have a weight equal to 1.

The specification of the input to the visibility representation algorithm en-
sures us that the visibility representation produced will be as required: There
will be a section of the line, representing the vertex, with length greater than or
equal to the module width plus 2, with no incident edges, and it will be to the
right of the edges aligned to the vertex.

Finally, we translate the visibility representation to the grid-layout by chang-
ing the drawing of each vertex. All changes in the drawing of a vertex are made
in the rectangle below the aforementioned section. See Fig. 3.

For every edge incident to the right and left sides of the module, a horizontal
line segment is drawn, connecting its terminal with the vertical line representing
the edge in the visibility representation. For every edge incident to the bottom

70

and top of the module, two line segments are used for the connection. A vertical
segment originating at the terminal, and a horizontM segment. The horizontal
line segmentss of the edges incident to the top (bottom) of the module that are
drawn to the right (left) of the module are stowed next to the module. See Fig. 3.

RR a (b) l I I I I I

<:> t t ,
L ~R (c) I l i

I I

,I

Fig. 3. The steps of drawing a module in the algorithm
(a) - After the edges are directed, the rotation of the module is determined and the
incident edges are divided to edges drawn to the left and to the right of the module;
this is done by twice dividing the perimeter of the module to two paths. (b) - The
drawing of the vertex in the visibility representation. (c) - The final drawing of the
module in the grid-layout.

This produces the grid-layout. The connection of an edge to a module in-
troduces one bend when incident to the right or left side of the module, and
two bends when incident to the top or bot tom of the module. An edge has at
most two bends at the top, at most two bends at the bot tom, and no bends in
between. Thus, an edge has no more than four bends in the grid-layout.

Theorem 2. A linear-time algorithm exists that given a planar module descrip-
tion with no self-loops finds a corresponding g-bend planar grid-layout.

3 P l a n a r G r i d - L a y o u t s - T h e C a s e W i t h S e l f - L o o p s

Self loops impose a problem. Following we describe how we deal with them.
First, we put a new vertex in the middle of every self-loop; i.e. we replace

every self-loop by two edges and a new vertex. This is shown in Fig. 4(b). The
newly created vertices are called dummy vertices, and the vertices of the original
graph are called normal. The dummy vertices will be drawn differently from
normal vertices; they will not be replaced by modules. Other than this, the
graph is drawn in the same way as described in the previous section.

After introducing the dummy vertices, the resulting graph is separable, and
we use the techniques described in the previous section to make it nonsepara-
ble. For each normal vertex, we determine the rotation of the module and the
assignment to the right and to the left of the incident edges, as in Sect. 2.

71

Next, we find a visibility representation of the graph with enough space in
it to accommodate the drawings of the vertices. The weights of the edges in
the topological ordering of the original graph are determined as before, when
the drawn height of dummy vertices is zero. The weights of the edges in the
topological ordering of the modified dual graph are determined as before, when
no edge is considered aligned to a dummy vertex.

When translating the visibility representation, just the drawing of the normal
vertices is changed. The horizontal line segment, representing a dummy vertex,
together with the drawing of the two edges incident to it, completes the drawing
of the self-loop in the grid-layout.

" '" ' - . W
~ U

L " B . R

(b) (c) (a)
L : R R

U

V

W

(e)

Fig. 4. Drawing a graph that has self-loops.
The steps of finding the drawing are shown: (a) The input. (b) The input graph after
changing the self-loops, the choice of s ~ t and of the external face. (c) The st bipolar
orientation, the edges are drawn upward according to their direction. (d) The rotation
of the modules and the division of edges to be drawn to the left and to the right of the
module. (e) The visibility representation. (f) The final grid-layout.

This yields a grid-layout of a module description with self-loops. A demon-
stration run of the algorithm is described in Fig. 4. Edges which are not self-loops
have, as before, at most four bends. Self loops are composed of two edges in the
visibility representation. Each has at most two bends near the vertex the self-
loop is adjacent to, and exactly two bends at the drawing of the dummy vertex
in the visibility representation. Thus, self-loops have a total of at most six bends.

T h e o r e m 3. A linear-time algorithm exists that given a planar module descrip-

72

tion, finds a corresponding 6-bend planar grid-layout in which every edge that is
not a self-loop has at most 4 bends.

The coordinates of the drawing are determined by the two topological order-
ings. Therefore, the maximum coordinate is smaller than the sum of the edge
weights. We denote the sum of the widths of the modules, in their chosen rota-
tion, by W, and the sum of the heights of the modules by H. Thus, the width
and height of the produced drawing are W+O(IEI) and H+O(IEI) , respectively.

We present examples of planar module descriptions which show that our
bounds are tight. (See Fig. 5). These examples do not depend on module flippings
or on the choice of the external face.

Fig. 5. Planar module descriptions that do not draw well.
(a) Requires at least 4 bends for some edge.
(b) Requires at least 6 bends for some self-loop.

4 A n A p p l i c a t i o n

Our drawing algorithm can draw the grid-layout with any specified external face.
This is important since it enables us to produce a planar grid-layouts which
include external connections.

This is demonstrated in the following example which is an application of the
drawing algorithm.

Let us consider the construction of a planar grid-layout intended to be the
internal layout of a big module. The input is a description of the big module,
consisting of its size, the placement of its terminals, and the module description
of its inside. That is, in addition to the (inner) module description, its external
face is specified as well as the following constraints on external terminals: For
each external terminal, a connection to a terminal on the perimeter of an (inner)
module is specified. Notice that the additional specification of the terminals of
the big module may render the input nonplanar. Unfortunately the problem of
finding if such a planar grid-layout exists is hard. Consider an input with no
edges. The problem becomes the 2D bin-packing problem which is NP-hard. In
certain cases the following approach solves the problem: Find a grid-layout of
the inside of the module, and if it is not too big, connect it to the perimeter of
the big module. This can be done as follows.

73

Add four special vertices to the inner module description, which represent
the sides of the big module's perimeter. The special modules are connected to
the original module description by edges representing the terminals of the big
module, and the special modules are also connected to each other, see Fig. 6(a).
Also, the special modules will be drawn in the same rotation as they have in
Fig. 6(a). This is possible since these rotations comply with the rules of selecting
a rotation, and we may select any such compliant rotation. A grid-layout of the
new module description is constructed using our algorithm. Also, the s--*t is
chosen as in Fig. 6(a).

(c)

Fig. 6. An example of an application - planar layout of a big module.
(a) The new module description. (b) The grid-layout produced, after removing edges
between the special modules. (c) The final layout of the big module.

If the drawing produced is bigger than the size given for the big module,
we fail. If not, erase from the grid-layout the edges that connect the special
modules, see Fig. 6(b). Remove the drawings of the special modules, and change
the drawing of the remaining edges connected to them, so they connect to the
terminals of the big module on its perimeter. This is demonstrated in Fig. 6(c).

5 N o n p l a n a r G r i d - L a y o u t s

In this section we consider the nonplanar versions of the problems we have dealt
with. We allow edges to cross one another in the grid-layout. The input module
description is not assumed to be planar, and even if it is, the output grid-layout
is not required to be planar.

We show how to find 4-bend (nonplanar) grid-layout of any module descrip-
tion. The flippings of the modules and the rotation in which they are drawn may
be determined arbitrarily. The input to the algorithm is a module description,

74

and the rotat ion in which each module is to be drawn. A linear-time drawing
algori thm is described in Fig. 7. The algorithm is demonstra ted in Fig. 8. The al-
gor i thm works by first placing the modules diagonally, so tha t if we continue the
line of any terminal, it will not hit any module. Next, we complete the drawing
of the edges.

p r o c e d u r e NPGL(M);
{ M is a module description, with a rotation specified for each module. }
beg in
position the modules in the drawings diagonally, such that

the drawings of two modules do not share a row or a column ;
R := the smallest rectangle on the grid which contains all modules ;
for every edge e of M do

beg in
continue the lines of the two terminals of e till they exit from R,

and connect them by at most 3 lines around the boundary of R ;
expand R to contain the drawing of e
end

end;

Fig. 7. Construction of a 4-bend (nonplanar) grid-layout.

R
1 4

Fig. 8. Output of the nonplanar grid-layout algorithm.

T h e o r e m 4 . Algorithm NPGL (see Fig. 7) finds in linear-time a 4-bend (non-
planar) grid-layout for any module description, with any specified rotations of
the modules.

The area of the grid-layouts has the same upper bound as for the planar
grid-layouts.

75

Finally we mention two module descriptions which have no 3-bend grid-
layout. The first module description has one module which has one self-loop.
The terminals of the self-loop are on opposite sides of this module. The second
module description has two modules and sixteen edges. Every side of one module
is connected by one edge to every side of the other module.

References

[Ami87]

[BK941

[DTT92]

[EG94]

[ET76]

[M085]

[Pin83]

[RT86]

[Shi76]

[Tam87]

[TT86]

[YMS91]

[Zak93]

A. Amihood. A direct linear-time planarity test for unflippable modules.
Intern. J. Computer Math., vol. 21, pp. 277-290, 1987.
T. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. In
Proc. o~ the Second Annual European Symposium (ESA '9~), Lecture Notes
in Computer Science, Vol. 855, pp. 24-35. Springer-Verlag, 1994.
G. Di Battista, R. Tamassia, and I. G. Tollis. Constrained visibility repre-

sentations of graphs. Information Processing Letters, vo]. 41, pp. 1-7, 1992.
S. Even and G. Granot. Rectilinear planar drawings with few bends in each
edge. Technical Report 797, Computer Science Department, Technion, Israel
Inst. of Tech., 1994. can be retrieved by anonymous ftp from ftp.technion.ac.il
at directory /pub/supported/cs/Tech_Reports/1994 as file TR797.ps.Z.
S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Com-
puter Science, vol. 2, pp. 339-.344, 1976.
Z. Miller and J. B. Orlin. NP-completeness for minimizing maximum edge
length in grid embeddings. Journal of Algorithms, vol. 6, pp. 10-16, 1985.
R. Y. Pinter. River routing: Methodology and analysis. In third CALTECH
con]erence on Very Large Scale Integration, pp. 141-163. Computer Science
Press, 1983.
P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar ori-
entations of planar graphs. Discrete and Computational Geometry, vol. 1 no.
4, pp. 343-353, 1986.
Y. Shiloach. Linear and Planar Arrangements of Graphs. PhD thesis, De-
partment of Applied Mathematics, Weizmann Institute of Science, Rehovot
Israel, 1976.
R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Computing, vol. 16 no. 3, pp. 421-444, 1987.
R. Tamassia and I. G. Tollis. A unified approach to visibility representations
of planar graphs. Discrete and Computatwnal Geometry, vol. 1 no. 4, pp.
322-341, 1986.
L. Yanpei, A. Morgana, and B. Simeone. General theoretical results on recti-

linear embedability of graphs. Acta Mathematicae Applicatae Sinica Journal,
vol. 7 no. 2, pp. 187-192, 1991.
S. Zaks. An easy planarity test for unflippable modules. Technical Report
771, Computer Science Department, Technion, Israel Inst. of Tech., 1993.

