
3-D Visualization of Program Information
(Extended Abstract and System Demonstration)

Steven P. Reiss I

Department of Computer Science
Brown University

Providence, RI 02912
(401)-863-7641, spr@cs.brown.edu

Abstract

This paper details our work on providing 3-D visualization
of program information. We have a project currently under-
way that attempts to use 3-D workstations to provide
insight into programs, their structure and their execution,
tin'ough the use of a variety of user-definable displays. We
provide a variety of different presentation styles and utilize
a variety of different layout methods and heuristics.

1 Introduction

This paper describes the visualization aspects of a system for viewing abstract data,
particularly information about programs. Our eventual goal is to provide a system
where the programmer can specify what information should be displayed and how it
should be displayed with a minimal amount of work and where the displays provide
the maximum amount of information in an intuitive context[19]. We are designing a
framework to accomplish this. This framework is based on a package we have written
for abstract 3-D visualization, PLUM. In addition, we have implemented a package for
hierarchically browsing over the data, PEACH, and a package, TWIG, for mapping
from arbitrary data structures representing program information into the graphical rep-
resentation structures required by PLUM. We are currently working on a visual lan-
guage for specifying both the information to display and the visual representation of
this information.

1. Support for this research was provided by the NSF under grants CCR9111507 and
CCR9113226, by DARPA order 8225, by ONR grant N00014-91-J-4052, and by sup-
port from Sun Microsystems.

13

2 Background

While there has been substantial work on program visualization, most of this work has
been directed toward providing specific visualizations such as a call graph or a class
browser, and little has been directed toward a generic framework. The work that is
closest to our approach includes our earlier efforts on data and program visualization
[15-18], work related to the display of user data structures [1,9,13], work directed at
graphical editing [5,11,14], work on systems for algorithm animation [2-4,22], and
visualization efforts that attempt to use a single paradigm for a variety of applications
[7,8,10,12,20,23].

3 Moving From 2-D to 3-D

With the exception of some of the more recent work on algorithm animation and some
simple experiments, alniost all of the work on program visualization has involved 2-D
presentations. We wanted to determine whether the expense and complexity of using
three dimensions could significantly improve program visualization and affect pro-
gram understanding. To do this, however, we needed to determine how to use the extra
dimension.

Most of the solutions that we and others have devised for utilizing 3-D for data visual-
ization involve extending what is normally a 2-D representation into a 3-D one. This is
desirable since it maintains a 2-D philosophy and presentation, allowing the viewer to
see all the data at once while also allowing the additional dimension to he used for a
variety of purposes. There are a variety of techniques that can be used here.

Several of these techniques do a 2-D layout and then extend the graph into the third
dimension using some property of the data. Other methods take the 2-D layout and
provide a 3-D organization of the information. Other solutions to moving from 2-D to
3-D space attempt to actually use the full capabilities of three dimensions without
attempting to preserve a full 2-D view from some perspective. More complex exam-
pies include using the third dimension to represent time.

Another visualization technique that makes effective use of three dimensions is to pro-
vide several different 2-D visualizations simultaneously. One of the presentation meth-
ods we provide, for example, allows the user to select one hierarchy to be displayed in
the XY plane, one hierarchy to be displayed in the YZ plane, and a third hierarchy to
be displayed in the XZ plane. We place nodes so that each of the hierarchies can be
seen if viewed directly on and so that the user can see connections between the differ-
ent hierarchies by viewing the result from different perspectives. A similar strategy has
been proposed and used by others.

14

4 PLUM Structure

In order to experiment with 3-D visualizations, we needed to develop a framework that
allows different presentation styles. The framework we chose is object-oriented, using
different flavors of objects to represent the different presentation methods. This frame-
work is also hierarchical so that different visualizations can he easily combined. For
example, the time-based views of a dynamic call graph takes as subobjects the original
call graph nodes representing the called functions, and arcs representing the actual
calls. It operates by determining the position of each of the dynamic call nodes based
on the position of the corresponding node in the original call graph and the entry and
exit times. Using an object-oriented approach also makes extensibility easy. New
classes of objects can be defined to reflect new presentation styles. Moreover, a presen-
tation style can be specialized by subclassing the object that represents it.

PLUM presentation objects are characterized by a flavor that denotes the type of
object. Each object has an associated set of properties that parameterize the presenta-
tion. These are described in section 6.0.

Objects can have both components and constraints. Components are used to describe
other objects that are children of the given object. Constraints axe containers for addi-
tional information that is to he associated with an object.

PLUM computes a layout in three phases. It assumes that the application has set up a
tree of objects, components, and constraints. The first phase computes the desired size
of each of the objects. This is the size, determined by the object itself, that it would
ideally like to be drawn. This is done bottom up, with each node of the tree first asking
its component nodes to determine their size and then using the resultant information to
determine the size of the node itself. The next phase involves layout. This is generally
done top-down. Each object is responsible for determining the actual size and position
of each of its components. The actual size generally will correspond to the desired size
that the component specified. However, the size can also be larger or smaller depend-
ing on the needs of the parent object. Positions are defined relative to the center of the
parent object. Once the object determines the size and position of its components, it
has each of the components compute the size and position of their components. Having
this pass be top-down allows an object to know its actual size before it has to lay out its
components. The third phase involves actually drawing the components. This is typi-
cally done top-down as well since the parent object provides background for the chil-
dren.

5 Graphical Presentation Objects

The basic objects offered by PLUM can be divided into three categories. The first cat-
egory defines basic objects. These are object that have a concrete screen representa-
tion. These include data objects, arc objects, and light objects.

15

The second category of presentation objects are those that provide layout services, i.e.
placement and sizing of their component objects. These include tiled objects, layout
objects, sized layout objects, tagged objects, time sequences, and 3-D trees. Tiled
objects represent 3-D rectilinear filings that are solved using a system of constraints.
Layout objects and sized layout objects represent arbitrary layouts of nodes and arcs
that are positioned using the layout heuristics described in section 7.0. Tagged objects
allow a tag to be attached to a layout or other object. Time sequences use the Z dimen-
sion to represent time, for example to show the dynamic call graph for a program. 3-D
trees are similar to Xerox's cone trees.

The third category of presentation styles includes styles that control both layout and
presentation. These include scatter plots, file objects, and plot layout objects. File
objects are similar to Bell Laboratories SeeSoft displays. Plot layout objects allow the
application to specify the size or position of layout components and position any
unspecified nodes using a relaxation algorithm.

6 Styles in PLUM

Properties serve a variety of functions in specifying the various types of presentation
objects. They control the graphical presentation of the objects, specify parameters that
control the layout, and provide data to be used in the presentation. As such, it was
important that PLUM provide a powerful and convenient mechanism for specifying
properties.

The basic notion is based on styles. A style is a collection of properties each of which
is an attribute-value pair. Properties are grouped into styles as a matter of convenience.
It is often the case that a set of different objects will share a common set of properties.
Styles allow this set to be specified once and then simply associated with each of the
objects. Styles are designed to support standard definitions like this while still allowing
properties to be overridden for individual objects. They also are designed so that styles
from difference sources can be easily merged. This allows a style that is specified for
selection to be merged with the default style for an object. Finally, styles are designed
to allow the setting of default properties for each flavor of presentation object and for
drawing.

Styles are implemented as objects where values are determined by object-oriented del-
egation rather than inheritance.

Objects have several styles associated with them. In addition to a style computed by
the system that represents the current selections, they have a base style that is generally
defined by the object to specify default values for object-specific properties, a user
style for normal settings, an override style for priority settings, and a child style to
indicate settings for their subobjects.

16

7 L a y o u t M e t h o d s in P L U M

Must of the work done by the presentation objects involves layout, i.e. placement of
subobjects. A variety of different layout strategies are evident, some attempting to use
layout to convey information, e.g. using depth to indicate the amount of time spent in a
routine or using Z to represent time. Others just attempt to make the layout look
"good" according to some abstract criteria.

The simplest layout method is used for layout objects and sized layout objects. These
methods allow arbitrary nodes and arcs and simply attempt to do graph layout in 3-D,
typically while presenting a 2-D view from the front of the display. Graph layout has
been extensively studied in two dimensions [6]. The problem is one of placing nodes
and arcs to produce an aesthetically pleasing graph. This is generally translated into
more specific problems such as reducing arc length and the number of crossings or of
emphasizing symmetry. While we provide a variety of approaches in our 2-D layout
packages, the algorithm of choice for program data has been one based on level graphs
[21] since it tends to emphasize hierarchy and since it generally produces a reasonable
looking result.

Moving graph layout algorithms from two to three dimensions is not trivial. The first
problem is determining what "looks good" in three dimensions. Because 3-D graphics
imply that the user is going to move around and look at the graph from different per-
spectives, assumptions based on the user's view may not be valid. For example, the
heuristic of minimizing crossings is meaningless. Given any two arcs in three space
that do not intersect, we can find a perspective where they do not cross and a second
perspective where they do cross. Since most arcs will not physically intersect in three
space, the number of crossings will vary with the perspective.

A second problem is that 3-space offers many more degrees of freedom. In two dimen-
sions there are two alternatives to laying out a level graph, representing the levels as
either rows or columns, and the resulting graphs are identical except for orientation. In
three dimensions one has three alternatives for how to represent levels. Moreover,
once the leveling is done, each level can be potentially represented by a plane and
hence by an arbitrary 2-D layout. One could, for example, apply a 2-D level graph
algorithm to the remaining nodes, i.e. do leveling twice. Alternatively, the algorithm
could place the nodes in a circle as in cone trees.

A third problem that arises is that we want to use the third dimension to convey infor-
mation and not just to provide more space for layout. This means that we have to find
layout methods that reflect properties of the underlying objects. For example, layout
methods must be able to assign a Z coordinate to a node based on its accumulated run
time or what file its in or how distant it is from a set of selected nodes that the user is
focusing on.

In PLUM we have implemented a flexible approach to 3-D layout to experiment with
different algorithms and to gain experience with what works and what does not. Our

17

approach allows layout methods to work in various ways. Some methods, such as lev-
eling, work for one dimension and depend on another layout method to handle the
remaining dimensions. Other layout methods are comprehensive, working in all three
dimensions at once. Still others, such as local optimization, don't compute the layout
in any dimension, but instead modify a layout that is already present. All the layout
methods allow values to be defined by the application or by the user. Each coordinate
can be given a default relative or a default absolute value. Relative values identify the
location in the array that is used by layout objects. These are typically used to repre-
sent program assigned values. Absolute values can be used to exactly reflect user
manipulations of the underlying objects. All the layout algorithms are also parameter-
ized using properties.

The layout methods that handle only one dimension include level graphs, level rank-
ings, unique values, and application-specified values.

Other layout methods handle all remaining dimensions. These can be used as a top-
level method or as a secondary method to some of the above to fill in the remaining
values. They include depth-tirst layout, breadth-first layout, averaged layout, and
orthogonal layout. The latter attempts to display multiple hierarchies in the XY, XZ,
and YZ planes.

Finally, we currently provide one post-processing optimization that uses a relaxation
algorithm.

8 Animation in PLUM

One of the key features provided by PLUM is automatic animation. Animation is nec-
essary for 3-D visualization. PLUM provides animation in two ways. The simpler is to
allow the user to move the camera position so as to fly through the object. The more
complex allows arbitrary changes to the presentation objects to be made.

PLUM is designed to he used by an application in an edit-display cycle. The applica-
tion first sets up a top level presentation object and then asks that it be displayed. Then,
in response to a user request or a program action, it either edits the current presentation
objects or creates a new top level presentation object. Editing can involve setting new
property values for the presentation objects, creating new presentation objects and
attaching them as components of existing objects, removing object components, add-
ing or modifying constraints, or selecting or deselecting objects. Once a series of edits
is complete or a new top level object has been defined, the application informs PLUM
that the edit is complete. Unless told otherwise, PLUM will attempt to animate the
transition from the current display to the display of the modified objects.

The first stage in this automatic animation process involves identifying what has
changed. The second phase occurs at the start of updating the display. Here PLUM
attempts to match old and new objects and to save the old display settings for matched
objects. Once the old and new objects have been compared, PLUM computes the new

18

FIGURE 1. 3-D call graph display

presentation. The new presentation is then drawn by making passes over the resultant
object structure to compute the display list corresponding to each object. The object
properties used in each pass are automatically determined by PLUM using inteq~ola-
tion between the original and desired values.

9 Experience with PLUM

We have been working on PLUM and the related packages for abstraction visualiza-
tion for about two years. During that time we have rewritten most of PLUM at least
once in attempting to find the proper abstractions and interface. The current system
comprises about 25,000 lines of C++ code. Examples of the system are shown in the
figures. Figure 1 shows an example of a 3-D call graph. Figure 2 shows a call graph
where tagged objects are used to represent the files. Figure 3 shows a top-down view
of a dynamic call graph display using a time sequence object. An example of a tree

19

FIGURE 2. Call graph using tagged objects

layout is shown in figure 4. Figure 5 shows file objects being used in a call graph dis-
play.

Much of our experience with PLUM has been positive. The framework provided by
PLUM makes it easy to add new presentation styles. This is due to the use of hierarchy
to simplify what each presentation has to do, the general notions of properties, compo-
nents and constraints that are supported by the system. We have been able to integrate
a variety of different presentations into this framework in a natural way. Adding a new
presentation style can generally be done in a day or less, but additional time is often
required to fine tune the graphical presentation.

The interface between PLUM and the application also seems to be the right one. The
application defines objects, components, and constraints. Styles and properties are
associated with objects. Properties can be set for components and constraints. Because

20

. ` ` . . . ~ . . . ~ . . ` ~ ` . . ~ ~ . . ` ~ . . . ~ . ~ ~ : ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ : ~ : ~ . ~ ` . ~ : ~ ? ~ : ~ i ~ ! ~ i ~ ! ~ i ~ i ~ i ~ i ~ ! ~ ! ~ i ~ i i i ~ i ~ ! ? ~ ! ~ ! i i i i ~ i ! i ~ i i ~ i ~ ! ~ i ~ i ~ i

iii!i ~ iii i;iiiii~i~i!i!:~iiiii~i~!~iiiii~:~iiiiiiii!i i ~, !~,i',i'~ ~, iii~,iiiil ', iiliii iiiiiii:,iiiiiii~!~i ~, !!ii i iiiiiii!! ~S~iii! iiii'~,i!!iii~!i;iiii~!iii;iii!!!ii,,i,,~i! !iiii:i~ii!i!il ;; ;i!;!i!i!;i ~ili!iii; ii!i!i:,

il i iiiii i i iiiiiii
ii?iiiiiiiiiii
i [? '~? i : i : i l ! i :~ : i : i : i : i : i : i : i : i : i : i : i : i . . : : : : ~ : :

-".iiiiiiiiiiiiiiii!iiiiiiii ~ : i : i : i : i : i

: . i : i : i : i : i : :

,ii i iiiiJ ~ii;iiiii!iji!iiii~ :,~,:,i:::i,~,::~:i:~:~,~:!:~" \ .~

\
: . . r . , , :
. , . . . , , , . ,

FIGURE 3. Time sequence objects in dynamic call graph display

object, components, constraints, and styles are all generic, the size of the interface that
is required is quite small given the complexity of the system. The use of automatic ani-
mation allows the application to compute the new presentation without having to spec-
ify how it differs from the old. This often greatly simplifies the applicationl

The weak points of PLUM generally relate to performance. The presentation is too
slow for convenient viewing and interaction, especially for displaying large, complex
structures. There are three reasons for this. The primary one seems to be the perfor-
mance of the underlying graphics system independent of PLUM. A complex presenta-
tion can take seconds to redraw even if no work is done other than changing the
camera position and retraversing the display list. This means that animations are very
choppy and the user does not get the sense of 3-D that is necessary for understanding
the display.

The second performance bottleneck lies in the system structure. Our currently imple-
mentation of PLUM has PLUM run as a separate process. The application interface to
PLUM translates each interface command into a message that is then sent to the
PLUM server where it is implemented. Even though the messages are sent using a
shared memory buffer, this process is time consuming. A complex display can involve
several thousand messages, each of which has to be encoded, placed into the memory
buffer, and then decoded. While it is convenient to architect the system as a separate

21

FIGURE 4. Tree layout display of call graph

process for debugging and to simplify the applications, the current structure wiU allow
us to incorporate PLUM into the application if this ever becomes the primary bottle-
neck.

The third performance problem is more difficult to deal with. This involves the
implicit architecture of a system using PLUM where PLUM creates shadow objects
for each application object. The use of such indirection and the cost of maintaining
shadows and transferring and maintaining the properties of the shadows as the original
objects change constitutes a substantial portion of what an application using PLUM
needs to do. This is aggravated by the browser that we currently have that sits in front
of PLUM. This browser creates its own shadow objects and hence a second level of
indirection between the user object and the drawing object. One of the eventual goals
we have for program visualization would be to look at trace data where there can be a
very large number of objects that need to be considered in computing the display. Cre-
ating multiple shadow copies of each of these objects seems impractical.

22

FIGURE 5. File object display showing function properties

10 References

1. David B. Baskerville, "Graphic presentation of data structures in the DBX
debugger," UC Berkeley UCB/CSD 86/260 (1985).

2. Marc H. Brown and Robert Sedgewick, '~eclmiques for algorithm animation,"
IEEE Software Vol. 2(1) pp. 28-39 (1985).

3. Marc H. Brown and John Hershberger, ~'Color and sound in algorithm animation,"
Computer Vol. 25(12) pp. 52-63 (December 1992).

4. Marc H. Brown and Marc A. Nojork, "Algorithm animation using 3D interactive
graphics," DEC Systems Research Center (1992).

23

5. Jacques Davy, "GoPATH programmer's guide," Bull Imaging and Office Solutions
(December 1992).

6. E Fades and R. Tamassia, "Algorithms for automatic graph drawing: an annotated
bibliography," Networks, (1993).

7. Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr., "Seesofl -- a tool of
visualizing software," AT&T Bell Laboratories (1991).

8. Belinda B. Flynn and David Maier, "Specification and generation of displays for
complex database objects," Oregon Graduate Institute of Science and Technology
(1992).

9. Sadahiro Isoda, Takao Shimonmura, and Yuji Ono, "VIPS: A visual debugger,"
IEEE Software Vol. 4(3) pp. 8-19 (May 1987).

10. Clinton Lewis Jeffrey, "A framework for monitoring program execution," U.
Arizona Technical Report TR 93-21 (July 1993).

11. Mark A. Linton and John M. Vlissides, "Unidraw: A framework for building
domain-specific graphical editors," Proc. UIST '89, pp. 158-167 (November 1989).

12. Jock D. Mackinlay, George G. Robertson, and Stuart K. Card, "Theperspective
wall: Detail and context smoothly integrated," Proc. CHI'91, pp. 173-179 (April
1991).

13. Brad A Myers, "Incense: a system for displaying data structures," Computer
Graphics Vol. 17(3)pp. 115-125 (July 1983).

14. Brad A. Myers, Dario A. Guise, Roger B. Dannenberg, Brad Vander Zanden,
David S. Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal, "Garnet:
Comprehensive support for graphical, highly interactive user interfaces," IEEE
Computer, pp. 71-85 (November 1990).

15. Steven E Reiss and Joseph N. Pato, "Displaying program and data structures,"
Proc 20th Hawaii Intl Conf System Sciences, (January 1987).

16. Steven P. Reiss, "Working in the Garden environment for conceptual
programming," IEEE Software Vol. 4(6) pp. 16-27 (November 1987).

17. Steven E Reiss, Scott Meyers, and Carolyn Duby, "Using GELO to visualize
software systems," Proc. UIST '89, pp. 149-157 (November 1989).

18. Steven E Reiss, "Connecting tools using message passing in the FIELD
environment," IEEE Software VoL 7(4) pp. 57-67 (July 1990).

19. Steven P. Reiss and Manojit Sarkar, "Generating program abstractions using an
object-oriented database," Brown University Department of Computer Science (1992).

20. George G. Robertson, Jock D. Mackinlay, and Stuart K. Card, "Cone trees:
Animated 3D visualizations of hierarchical information," Proc. CHI'91, pp. 189-194
(April 1991).

24

21. L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan, "A
browser for directed graphs," Software Practice and Experience Vol. 17(1) pp. 61-76
(1987).

22. John T. Stasko, "TANGO: A framework and system for algorithm animation,"
IEEE Computer Vol. 23(9) pp. 27-39 (September 1990).

23. James Wen, "A three dimensional browser for visualizing orthogonal hierarchies,"
Brown University (1992).

