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A b s t r a c t .  It has been observed that often the release of a l imited part  
of an information resource poses no security risks, but the relase of a suf- 
ficiently large part  of that  resource might pose such risks. This problem 
of controlled disclosure of sensitive information is an example of what is 
known as the aggregation problem. In this paper we argue that  it  should 
be possible to art iculate specific secrets within a database that  should 
be protected against overdisclosure, and we provide a general framework 
in which such controlled disclosure can be achieved. Our methods foil 
any a t tempt  to at tack these predefined secrets by disguising queries as 
queries whose definitions do not resemble secrets, but whose answers nev- 
ertheless "nibble" at secrets. Our methods also foil a t tempts  to at tack 
secrets by breaking queries into sequences of smaller requests that  ex- 
t ract  information less conspicuously. The accounting methods we employ 
to thwart such at tempts  are shown to be both accurate and economical. 

1 I n t r o d u c t i o n  

T h e  mos t  common  approach  to secrets is to specify the  i n fo rma t ion  t h a t  mus t  
be p ro t ec t ed ,  and  to  devise mechanisms  t ha t  forb id  disclosure of any of th is  
i n fo rma t ion  to  unau t h o r i zed  users. In  the  env i ronmen t  of r e l a t iona l  da t abases ,  
secret  i n fo rma t ion  is of ten defined v ia  views. Models  for multi-level security are 
used to  classify bo th  users and  in fo rma t ion  according  to  a var ie ty  of  secrecy 
levels, and  authorization a lgor i thms  ensure t h a t  classified in fo rma t ion  is m a d e  
ava i lab le  only  to users wi th  the a p p r o p r i a t e  c lassif icat ion [1]. 

However,  i t  has  been observed t ha t  often the  release of  a limited pa r t  of an 
i n fo rma t ion  resource poses no secur i ty  risks, bu t  the  relase of  a sufficiently large 
pa r t  of  t h a t  resource might  pose such risks. In  the  env i ronmen t  of  r e l a t iona l  
da t abases ,  this  impl ies  t h a t  the  release of  a l imi ted  number  of  tup les  would  
be p e r m i t t e d ,  bu t  once this  number  exceeds a p r e de t e rmine d  threshold ,  secur i ty  
migh t  be breached.  Th is  p r o b l em of cont ro l led  disclosure of  sensi t ive i n f o r m a t i o n  
is an example  of  wha t  is known as the  aggregation p rob l e m [5, 3, 6, 7, 2, 4]. 

The work of Motto was supported in part by NSF Grant No. IRI-9007106 and 
by ARPA grant, administered by the Office of Naval Research under Grant  No. 
N0014-92-J-4038. The work of Jajodia  was supported in part by NSF Grant No. 
IRI-9303416. 
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A typical example is that  of the Secret Government  Agency (SGA) Phone- 
book. In this example, the entire phonebook is a classified document  that  is not 
available without the appropriate  clearance; yet, individual phonebook entries 
are available to inquiring callers. In theory this may appear to be contradictory, 
because with a sufficient number of queries it should be possible to extract all the 
information in the phonebook. In practice, however, these queries are handled 
by operators who can recognize repetitive querying; also, the low bandwidth of 
these extractions serve to protect the phonebook from substantial  disclosures. A 
small example of such a phonebook is shown in Fig. 1. 

Name Tel Div Mail Bldg Room 
A. Long x1234 A m404 1 307 
P. Smith x l l l l  B m303 2 610 
E. Brown x2345 B ml01 3 455 
C. Jones x1234 A m202 1 307 
M. Johnson x1234 B m]01 3 103 
B. Stevenson x2222 A m202 1 305 
S. Quinn x2222 C m606 3 101 
R. Helmick x1234 A m404 1 307 
A. Facey x1122 C m505 2 400 
S. Sheets x2345 B ml01 3 103 

Fig. 1. The Phonebook Example 

An approach for preventing overdisclosure of such a database is to monitor 
the number of database tuples that  are being given away [2]; in this example, 
where the total  number of tuples is 10, it could be determined tha t  only 3 tuples 
should be disclosed to the same user. 

Yet, it is conceivable that  we would be willing to disclose an unlimited number 
of telephone numbers, but only a limited number of division affiliations (say, 
because these affiliations disclose the amount of effort devoted to particular 
projects). Similarly, we might be willing to disclose any number  of telephone 
numbers, but limit the disclosure of telephone numbers of employees in division A 
(because we would like to prevent users from estimating the size of this division). 
In other words, rather than protect the entire database from overdisclosure, we 
argue that  it should be possible to articulate those specific aggregates that  are 
sensitive, and protect only these aggregates from overdisclosure. 

In this paper we describe a scheme for aggregation control that  provides 
this flexibility. Our scheme uses general views to define the secrets that  can be 
disclosed to a limited degree, and associates a threshold value with each such 
view. We shall refer to these views as sensitive concepts (or simply concepts). 
Clearly, if a view is defined to be a concept, then any view that  incorporates this 
concept (a "larger" concept) should be protected as well. 
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This approach allows to define a variety of sensitive concepts. For example,  
with the database of Fig. 1: 

1. To limit the disclosure of the total  number of employees to five, the concept 
7 ( N a r n  e is assigned the threshold 5. 

2. To prevent disclosure of information regarding the division to which employ- 
ees belong, the concept 7rNarne,Di v is assigned the threshold 0. Note tha t  any 
view that  includes the attr ibutes Name, Div would be protected as well! 

3. To limit the disclosure of occupants in Building 1 to at most three employees, 
the concept 7rNameO'Bld#= 1 is assigned the threshold 3. 

Attacks on sensitive concepts (i.e., secrets that  may be disclosed part ial ly)  
may be disguised by either of two strategies (or a combination of both):  

1. Queries are broken down into sequences of smaller requests tha t  extract  
information less conspicuously. 

2. Queries are disguised as other queries whose definitions do not resemble se- 
crets, but  whose answers nevertheless extract  information covered by secrets. 

Any system that  permits controlled disclosure of secrets must be able to recognize 
both of these strategies. 

Consider the above concept limiting to 3 the disclosure of occupants of build- 
ing 1. A query to list the names and buildings of all employees at mailstop m202 
retrieves 2 employees in Building 1 (Jones and Stevenson). A second query to 
list the names, telephone numbers and buildings of employees at room 307 re- 
trieves 3 employees (Long, Jones and Hemlick). Any mechanism for protecting 
concepts must recognize that  these apparently dissimilar queries in effect might 
be "nibbling" at the same sensitive concept. 

The first s trategy can be foiled by keeping track of the total number of tuples 
from a concept that  have already been disclosed to every user. Thus, it is most ly  
a question of continuous accounting. Yet, this accounting is often subject to gross 
inaccuracies. When queries Q1 and Q2 retrieve nl and n2 tuples, respectively, 
the number of tuples disclosed would be taken as nl + n2. In effect, if the queries 
overlap, the number is smaller; for example, if Q1 = Q2 (the same query is 
repeated),  the number of tuples disclosed is only nl.  In the previous example,  
the number of building 1 occupants disclosed by both queries is not 5, but 4, 
because Jones was included in both queries. This inaccuracy may be corrected 
by keeping record of the actual tuples that  have been disclosed; for example,  by 
maintaining a set of tuple identifiers. The disadvantage is that  with very large 
databases such record keeping becomes very costly. 

The method we describe foils the first strategy by continuous accounting, 
which is precise yet economical: it keeps accurate account of the number  of 
tuples disclosed without maintaining the entire set of these tuples. 1 

The second attack strategy poses a more serious challenge. As an example,  
assume that  the set of employees working in division A is a sensitive concept 

1 Incidentally, since we wish to protect arbitrary views, it would not have been even 
possible to use tuple identifiers to keep track of the tuples that have been disclosed. 
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and consider a query on the employees in building 1. Apparently, this query 
is unrelated to the concept, and therefore should be allowed. Yet, the set of 
employees in building 1 is identical to the set of employees in division A. By 
answering this query, the system will be giving away the contents of a sensitive 
concept, although the definition of this set of values (as formulated by the user) 
is quite different from its definition as a sensitive concept. 

Consider a database view V and its materialization v in a specific database 
instance. V and v are often called, respectively, the intensional definition (or sim- 
ply intension) and the extensional definition (or simply extension) of a view. 2 
Given V (and assuming the proper permissions), v is easily and uniquely deter- 
mined. I t  is much more difficult, however, to determine V from v. Indeed, there 
may  be numerous intensional definitions of a view that  evaluate to the same view 
extension. The problem of finding for a given view intension V another view in- 
tension V t that  shares the same extension v is known as intensional answering 
[9]. In that  context, the finding of alternative intensional definitions to a query is 
considered cooperative behavior: provide users with additional characterizations 
of their answers. In this context, finding alternative intensional definitions to a 
query is intended to be uncooperative: given a query, the system would search 
for alternative intensional definitions that  "cover" the same information as the 
query, but correspond to sensitive concepts; if found, the user may be a t tempt ing 
to at tack a concept using the second strategy. 

Given a query, our method will detect whether it trespasses a sensitive con- 
cept, regardless of the statement of the query. Thus, our method thwarts the 
second strategy as well. 

In summary,  we provide a general framework in which sensitive information 
can be defined flexibly. To protect sensitive concepts f rom excessive disclosure, 
for each concept and for each user our method keeps track of the number of 
tuples that  has already been disclosed. Each incoming query is compared with 
each predefined concept to determine whether it might trespass that  concept. If 
so, the number of new tuples thus disclosed is computed and added to the number 
of tuples already disclosed, and, depending on the relationship of this counter to 
the threshold, the query is either permit ted or rejected. Our accounting is both  
accurate and economical. 

Our discussion is limited to databases that  are single relations and to queries 
and concepts that  are projection-selection views, where all selections are con- 
junctions of simple clauses of the form attribute = value. We conjecture that  
our method can be extended to overcome these limitations. 

Section 2 establishes the formal framework with definitions of queries, con- 
cepts and concept disclosure by queries. Section 3 describes a basic algorithm 
for disclosure control, and Section 4 describes two improvements.  Section 5 con- 
eludes this paper with a brief summary  and discussion of future research direc- 
tions. 

The terms are derived from the notions of intensive and extensive descriptions of 
information [10]. 
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2 T h e  M o d e l  

We adopt the usual definition of relational databases, but restrict our attention 
to databases that  are single relations, and to projection-selection views, where 
all selections are conjunctions of simple clauses of the form attribute = value. 
We denote the database scheme R = (A1 , . . . ,  An). 

2.1 Quer ies ,  C o n c e p t s  and  P a t t e r n s  

A query is a view. Its extension in the present database instance is the answer 
to the query. Queries are defined by users and describe the information they 
are seeking. A concept is also a view. Concepts are defined in the system and 
describe the information that needs to be protected. 

Views (queries or concepts) may be syntactically different, but yet describe 
the same information. Consider the example database scheme Emp = (Name, 
Tel, Div, Mail, Bldg, Room) and these two views: 

1. rrName,Room O'(Room=lOa)̂ (Div=B) 
2. 7rNamelT(Room=lO3)A(Div_=B ) 

Both view definitions are identical, except that the latter view does not project 
a selection attribute which is projected by the former (Room). Nevertheless, be- 
cause the values of selection attributes are known (in this case, the constant 
value 103), there is no difference in the information these views describe. Con- 
sequently, we shall always assume that views are defined in their expanded form, 
where the projection attributes include all the selection attributes. Thus, in the 
above example, both views would be interpreted as 

7rName ,Div ,Room 0"( Room= 103 )A(Div =B)  

A pattern is a formal notation for views. A pattern is an n-tuple P l , . . . , P n ,  
where n is the number of attributes in the database scheme, and each Pi is 
defined as follows 

a if the selection formula includes Ai = a 
Pi = * if Ai is a projection attribute which is not a selection attribute 

- otherwise 

Because the projection attributes are assumed to include the selection attributes, 
patterns record only the projection attributes that are not selection attributes. 

For example, all three view definitions above are represented by this pattern 

( , ,  - ,  B , - , - ,  103, ) 

Note that �9 indicates an attribute of the database which is unaffected by the 
view: it is neither restricted nor removed. This notation resembles the notation 
for meta-tuples used in [8]. 
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2.2 Concept Disclosure 

Let U and V be views of database scheme D. 
The selection condition of U is at least as restrictive as the selection restric- 

tion of V, if every clause Ai = a in V's selection condition also appears in U's 
selection condition. The selection conditions of U and V are contradictory, if 
U's selection condition includes the clause Ai = a and V's selection condition 
includes the clause Ai = b, for some attr ibute Ai and two different constants a 
and b. 

U overlaps V, if their selection conditions are not contradictory, and U's 
projection attributes contain V's projection attributes. When U overlaps V, 
then the extension of U could be processed by another view that  will remove the 
extra attributes. Some of the resulting tuples may be in the extension of V. 

U overlays V, if U's selection condition is at least as restrictive as the selection 
condition of V, and U's projection attributes contain V's projection attributes. 
Obviously, when U overlays V, it also overlaps V. However, when the extension 
of U is processed by another view that  removes the extra attributes, all the 
resulting tuples will be in the extension of V. 

The overlap and overlay relationships are illustrated schematically in Fig. 2, 
in which U1 overlaps V and U2 overlays V. 

V 

U2 

U1 

Fig. 2. Overlapping and Overlaying 
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Assume that  U overlaps V. The restriction of V to U, denoted V ] U, is 
the view obtained from V by appending to its selection condition the selection 
condition of U. The exclusion of U from V, denoted V I -,U, is the view obtained 
from V by appending to its selection condition the negation of the selection 
condition of U. 3 Obviously, V = (V [ U) U (V ] -,U). 

Let C be a concept view and let Q be a query view. Q discloses C, if Q 
overlaps C. Intuitively, a query discloses a concept, if its result could be processed 
by another query, to possibly derive tuples from the protected concept. 

As an example, with the previous database scheme, consider this concept 

C = 7rNarne,Div,RoomO'(Room=lO3)A(Div=B) 
(names of those in division B and in room 103) 

and these three queries 

1. Q1 = 7CNarne,Tel,Div,RoornO'(Roorn=lO3)A(Div=B)A(Tel=x2345) 
(names of those in room 103, in division B, and with telephone x2345) 

2. Q2 -~- 7rNarne,Div,RoornO'Div=B 
(names and rooms of those in division B) 

3. Q3 ~- 7rNarne,Div,RoornO'Roorn=lO2 
(names and divisions of those in room 102) 

Q1 discloses C, because applying the query 7rNarne,Div,Roor n to the result of Q1 
may yield some tuples in C. Q2 discloses C in its entirety, because applying 
the query anoo,~=loa to the result of Q2 yields all the tuples of C. Qa does not 
disclose any tuples of C because their selection conditions contradict. 

The disclosure relationship between a query and a concept is illustrated 
schematically in Fig. 3. Notice that a concept protects its tuples, but not its 
subtuples; i.e., a query on a subset of the concept's projection attributes does not 
disclose the concept. On the other hand, a query on a superset of the attributes 
would disclose the concept (unless their selection conditions are contradictory). 

As mentioned earlier, disclosure control requires that the number of tuples 
disclosed from a given concept does not exceed a certain predetermined number. 
For each concept C we define three integer values called concept total, concept 
threshold and concept counter, and denoted respectively, N, T and D. N de- 
notes the total number of tuples in the extension of this concept, T denotes the 
maximal number of tuples that  may be disclosed from this concept, and D de- 
notes the number of tuples from this concept that  have already been disclosed. 
If T >_ N, then the concept is unrestricted; we shall assume that  none of the 
concepts are unrestricted. As queries are processed, the database system must 
keep track of D to ensure that  D _< T. The number of tuples in the extension of 
a view V will be denoted IlVll; e.g., IICll = N. 

Note that the resulting selection condition is no longer a simple conjunction. 
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t u ~ - n - - ~ l ~ p ~ c o n c e p t  

disclosed concept tuples 

_ _  tu__uples retrieved ~ _ _  

Fig. 3. Disclosure relationships between a query and a concept 

3 A g g r e g a t i o n  C o n t r o l  

Given a concept C with its three counters and given a query Q, our goal is to 
determine whether the request should be satisfied or not, and update  the counters 
as appropriate.  The main problem is to determine how many luples of C does Q 
disclose? Once this question is answered, the rest is mostly bookkeeping. 

To answer this question, we consider the pat terns  that  represent Q and C. 
Let 

C = ( e l , . . . ,  c~) 
Q = ( q l , - . . , q . )  

We establish a relationship between each element of the query pat tern  qi and the 
corresponding element of the concept pat tern ci. Recall that  a pat tern element 
could be a constant or * or - .  A constant a indicates that  Ai is a selection 
at t r ibute and the selection condition is Ai = a, * indicates that  Ai is a projection 
at t r ibute  which is not a selection attr ibute,  and - indicates that  Ai is neither a 
selection at tr ibute nor a projection attribute.  

We now define overlapping and restriction at the level of pat tern  elements. 
An element qi of the query pat tern overlaps the corresponding element ci of the 
concept pattern,  if either 

1. qi is a constant and ci is either the same constant or * or - .  
2. qi is . .  
3. qi and ci are both  - .  

Thus, the query element qi overlaps the concept element ci in all but two sit- 
uations: (1) when the query and the concept have contradictory selection condi- 
tions, or (2) when the at t r ibute Ai is protected by the concept, but not requested 
by the query. Intuitively, if qi overlaps ci, and all the other pat tern elements in 
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both the query and the concept are * (reflecting unaffected attributes), then the 
query Q overlaps the concept C. 

Assume that  qi overlaps ci. The restriction of ci to qi is defined as follows: 

S qi if qi is a constant 
r i  / ci otherwise 

Intuitively, if the query element qi overlaps the concept element ci, and all 
the other pat tern elements in both the query and the concept are * (reflecting 
unaffected attributes), then the pattern with ri in position i and * everywhere 
else describes the restriction of concept C to the query Q. 

In general, a query Q overlaps a concept C, if all their corresponding pat- 
tern elements overlap. Similarly, the restriction of a concept C to a query Q is 
obtained from the restrictions of the corresponding pattern elements. Thus, by 
considering "in parallel" all the pattern elements, we can determine whether Q 
discloses C, and define the precise subview of C that  is disclosed by Q. This 
discussion is summarized in the following theorem. 

T h e o r e m  (d i sc lo su re ) .  Let C be a concept with pattern ( c l , . . . ,  ca) and Q a 
query with pattern ( q l , . . . ,  qn). Then 

1. Q possibly discloses tuples of C, if qi overlaps ci, for all 1 < i < n. 
2. The set of C luples disclosed by Q is given by the pattern (rl, . . . ,rn),  where 

ri is the restriction of ci to qi. 

This theorem suggests a basic algorithm for disclosure control, shown in 
Fig. 4. The input to this algorithm is a set C1 , . . . ,  C,,~ of protected concepts, 
each with its associated counters Ni, Ti and Di, and a query Q. The algorithm 
also uses a temporary counter Mi for each concept. When it terminates, the 
value of permit  indicates whether the answer to Q should be presented to the 
user or not. 

Essentially, the overhead incurred in authorizing Q is the determination 
whether Q overlaps Ci and, if it does, the derivation of C/ ] Q from Q. As 
the theorem suggests, overlapping is discovered by a simple comparison of the 
patterns. The derivation of the disclosed tuples Ci I Q from the answer set Q 
is also quite simple. Altogether, the complexity of this algorithm (excluding the 
cost of materializing Q) is O ( m .  n .  k), where m is the number of concepts, n is 
the number of attributes, and k is the size of the answer. 

Referring to the example in Fig. 1, there are 4 employees in division A. As- 
sume that  only 3 employees in this division may be disclosed, and that  one such 
employee has already been disclosed. The concept pattern and counters are 

C1 = ( , , , , A , * , , , * )  
N1 = 4  
T 1 = 3  
D I = I  
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Algor i thm (disclosure) 
permit :-- true 
materialize Q 
i : = 0  
while permit and  i < m 
do 

i : = i A - 1  
M~ := 0 
if Q overlaps C, 
then  

Mi := [[C~ [Q[[ 
if  Di + Mi > Ti 
t h e n  

permit := false 
break  

endi f  
e n d i f  

done 
if permit 
t hen  

f o r i - - 1 , . . . m  
do 

D~ := D~ + M~ 
done 

endi f  

Fig. 4. Basic algorithm for disclosure control 

Consider now the query that  requests complete information on the employees 
whose telephone number is x1234 and whose mail stop is m404. The query and 
query pat tern  are 

O'( T e l : x l  234)A( M a i l=m404  ) 
Q • (*, x1234, *, m404, *, . )  

The restriction of C1 to Q is described by the pat tern 

R = (*, x1234, A, m404, *, *) 

R 's  extension has two tuples, so the query is accepted and D1 is updated to 3. 
As another example, the telephone number x1234 is assigned to 4 employees. 

Assume that  only 3 employees with this number may be disclosed, and that  two 
have already been disclosed. The concept pat tern  and counters are 

C2 = (*,x1234 . . . .  - )  
N 2 = 4  
T 2 = 3  
D2 = 2  
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Consider now the query that  requests the location of the telephone whose number 
is x1234. The query and query pattern are 

7rT el,B ldg ,Room O'T el=xl 234 

Q = ( - ,  x1234, - ,  - ,  , ,  , )  

Q does not overlap C2, so it is permitted. 

4 I m p r o v e m e n t s  

Assume a concept C. First, consider a query Q1 that overlaps C by ml tuples. 
Algorithm d i s c l o s u re  increments the counter D of disclosed tuples by ml.  Con- 
sider now a second query Q2 that overlaps C by m2 tuples. The algorithm will 
increment D by m2. This continues until D reaches the threshold value T, when 
further queries that  overlap C would be denied. 

Yet, it is entirely possible that some of (or all) the tuples disclosed by Q2 
have already been disclosed by Q1. In other words, possibly the user is being 
"charged" twice for the same tuples, and is thus approaching the threshold faster 
than warranted, 

To rectify this, we offer the following improvement. With each concept C 
we associate a predicate P that describes the concept tuples that  have already 
been disclosed. P is initialized to true. Assume that Q1,.. . ,  Qp have already 
been processed when Qp+l is received, and let ~ 1 , . . . ,  c~p denote their respec- 
tive selection conditions. The present value of P would be ch V -- �9 V ~p. After 
computing the restriction of C to Qp+l, we exclude from it the view ~p. The 
tuples in this new query are those that have not been delivered already. This 
improvement is incorporated into a new algorithm, shown in Fig. 5. 

The input to this algorithm is a set C1 , . . . ,  C,~ of protected concepts, each 
with its associated predicate P/ and counters Ni, Ti and Di, and the query Q 
whose selection predicate is c~. When the algorithm terminates, the value of 
permit indicates whether the answer to Q should be presented to the user or 
not. 

Again, the overhead incurred in authorizing Q is the determination whether 
Q overlaps Ci and, if it does, the derivation of (Ci I Q) I ~o-p, from Q. Again, 
these are simple procedures, and the complexity of the algorithm is O(m. n. k .p), 
where n, m and k are as before, and p is the number of queries already processed. 

We have assumed that the collection of protected concepts C 1 , . . . ,  C,~ is es- 
sentially unstructured and have ignored any possible relationships among these 
concepts. At times, the concepts to be protected form specific structures; rec- 
ognizing these structures could help improve the performance of the disclosure 
control algorithms. 

Assume an organization with three divisions called A, B and C, and the 
following limitations on disclosure: 20 employees in division A, 15 in division B, 
10 in division C, but not more than 30 employees in total. These limitations are 
described in four concepts: 
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Algor i thm ( improve l )  
permit  := true 
materialize Q 
i : = 0  
while permit  and  i < m 
do 

i : = i + 1  
M~ := 0 
if Q overlaps Ci 
then  

M, := II(C, [Q) I -'~P, II 
if  D, + M, > T~ 
t hen  

permit  := fa lse  
break  

endi f  
endif  

done 
if permit 
t hen  

f o r / = l , . . . m  
do 

Pi := Pi A a 
D~ := Di + M~ 

done 
endi f  

Fig. 5. Disclosure control algorithm with accurate bookkeeping 

1. C1 = 7rNarne ,DivO'Div=A 

T 1 = 2 0  
2. C2 z ~rNarne,DivCrDiv= B 

T 2 = 1 5  
3. 63 ~- 7rNarne,DivO'Div=C 

T 3 = 1 0  
4. C4 z 7rNarn e 

T 4 = 3 0  

With respect to the mutual  relationships of these four views, we note that  

1. Each of the concepts C1, C2, and C3 overlays the concept C4. 
2. The restrictions C4 I C1, C4 I C2, C4 I Cz partition C4. 

Thus, every disclosure from one of first three concepts corresponds to a disclosure 
from C4 (and disclosure from C4 corresponds to a disclosure from exactly one 
of the first three concepts). Consequently, the disclosure control algorithm only 
needs to compare a query Q against the first three concepts. Increments of D1, 
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A l g o r i t h m  ( i m p r o v e 2 )  
materialize Q 
permit  := true 
for  every leaf concept Ci 
d o  

Mi := 0 
i f  Q overlaps Ci 
t h e n  

Mi := ][(C, [ Q)[  --lo-pi[[ 
i f  Di + Mi > Ti 
t h e n  

permit  := false 
b r e a k  

else 
for  every ancestor Cj of Ci 
d o  

M~ := Mi 
i f  D~ + Mj > Tj 
t h e n  

permit := false 
b r e a k  

e n d i f  
d o n e  

e n d i f  
e n d i f  
i f  -~permit 
t h e n  

b r e a k  
e n d i f  

d o n e  
i f  permit 
t h e n  

f o r / =  1, . . . m 
d o  

D, := D, + M, 
i f  Ci is leaf concept 
t h e n  

P i : = P ,  A a  
e n d i f  

d o n e  
e n d i f  

F ig .  6. Disclosure control algorithm with concept hierarchy 
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D2 or D3 should also trigger identical increments to D4 (and a comparison of 
D4 with T4). 

This improvement is incorporated into a new algorithm, shown in Fig. 6. 
The input to this algorithm is a hierarchy C1 , . . . ,  Cm of protected concepts, 
each with its associated predicate Pi and counters Ni, T/ and Di, and the query 
Q whose selection predicate is a. When the algorithm terminates, the value of 
permit  indicates whether the answer to Q should be presented to the user or 
not. The complexity of the algorithm is O(m . n .  k �9 p + m2). 

Note that  it is not necessary to maintain the predicates Pi for non-leaf con- 
cepts: tuples newly disclosed from leaf concepts are guaranteed to be newly 
disclosed from ancestor concepts. 

5 C o n c l u s i o n  

We addressed the problem of controlled disclosure of sensitive information. We 
defined a model in which any view of the database can be defined as a sensitive 
concept, and we offered simple and efficient algorithms that  accurately monitor 
the disclosure of these predefined concepts. With these algorithms, any query by 
a user of the database is noted for its effect on the set of predefined concepts; 
any "nibble" into a concept is recorded, and once these "nibbles" add up to 
a substantial part of a concept (as defined by a threshold), future queries are 
rejected. Even queries that are apparently unrelated to sensitive concepts are 
monitored for their effect on these concepts, thus foiling any strategy of disguising 
queries through alternative formulations. 

Much work remains to be done, and we mention here several directions. First, 
we are interested in extending this work to remove the simplifying assumptions 
that  have been made on the relations and on the definitions of concepts and 
queries. Also, the selection of concepts and thresholds needs to be considered 
more carefully. For example, thresholds must be assigned consistently; e.g., the 
threshold for a "broader" concept must be larger than the threshold for any of 
its "subconcepts". 

Our discussion has been limited to "static" databases; i.e., when considering a 
sequence of queries by the same user, we assumed that  the extensions of concepts 
do not change via insertions or deletions of tuples. Further research is required 
to extend this work to "dynamic" databases. 

Finally, we assumed that all sensitive information has been predefined as 
concepts, and challenged every attack against these concepts. Hence, we can only 
detect attacks on information that has already been recognized as sensitive. A 
more challenging direction is to conclude from users queries whether they are 
at tempting to "converge" on a concept which so far has been unclassified, thus 
alerting the system to the possibility of security "holes". 

Acknowledgement. The authors are grateful to the anonymous referees for their 
important  corrections and suggestions. 
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