
D a t a b a s e II

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

875

Advisory Board: W. Brauer D. Gries J. Stoer

Aggregat ion in Re lat ional Databases:
Contro l l ed Disc losure of Sens i t ive Informat ion

A m i h a i Motro , Dona ld G. Marks , and Sushi l J a j o d i a

Department of Information and Software Systems Engineering
George Mason University
Fairfax, VA 22030-4444

A b s t r a c t . It has been observed that often the release of a l imited part
of an information resource poses no security risks, but the relase of a suf-
ficiently large part of that resource might pose such risks. This problem
of controlled disclosure of sensitive information is an example of what is
known as the aggregation problem. In this paper we argue that it should
be possible to art iculate specific secrets within a database that should
be protected against overdisclosure, and we provide a general framework
in which such controlled disclosure can be achieved. Our methods foil
any a t tempt to at tack these predefined secrets by disguising queries as
queries whose definitions do not resemble secrets, but whose answers nev-
ertheless "nibble" at secrets. Our methods also foil a t tempts to at tack
secrets by breaking queries into sequences of smaller requests that ex-
t ract information less conspicuously. The accounting methods we employ
to thwart such at tempts are shown to be both accurate and economical.

1 I n t r o d u c t i o n

T h e mos t common approach to secrets is to specify the i n fo rma t ion t h a t mus t
be p ro t ec t ed , and to devise mechanisms t ha t forb id disclosure of any of th is
i n fo rma t ion to unau t h o r i zed users. In the env i ronmen t of r e l a t iona l da t abases ,
secret i n fo rma t ion is of ten defined v ia views. Models for multi-level security are
used to classify bo th users and in fo rma t ion according to a var ie ty of secrecy
levels, and authorization a lgor i thms ensure t h a t classified in fo rma t ion is m a d e
ava i lab le only to users wi th the a p p r o p r i a t e c lassif icat ion [1].

However, i t has been observed t ha t often the release of a limited pa r t of an
i n fo rma t ion resource poses no secur i ty risks, bu t the relase of a sufficiently large
pa r t of t h a t resource might pose such risks. In the env i ronmen t of r e l a t iona l
da t abases , this impl ies t h a t the release of a l imi ted number of tup les would
be p e r m i t t e d , bu t once this number exceeds a p r e de t e rmine d threshold , secur i ty
migh t be breached. Th is p r o b l em of cont ro l led disclosure of sensi t ive i n f o r m a t i o n
is an example of wha t is known as the aggregation p rob l e m [5, 3, 6, 7, 2, 4].

The work of Motto was supported in part by NSF Grant No. IRI-9007106 and
by ARPA grant, administered by the Office of Naval Research under Grant No.
N0014-92-J-4038. The work of Jajodia was supported in part by NSF Grant No.
IRI-9303416.

432

A typical example is that of the Secret Government Agency (SGA) Phone-
book. In this example, the entire phonebook is a classified document that is not
available without the appropriate clearance; yet, individual phonebook entries
are available to inquiring callers. In theory this may appear to be contradictory,
because with a sufficient number of queries it should be possible to extract all the
information in the phonebook. In practice, however, these queries are handled
by operators who can recognize repetitive querying; also, the low bandwidth of
these extractions serve to protect the phonebook from substantial disclosures. A
small example of such a phonebook is shown in Fig. 1.

Name Tel Div Mail Bldg Room
A. Long x1234 A m404 1 307
P. Smith x l l l l B m303 2 610
E. Brown x2345 B ml01 3 455
C. Jones x1234 A m202 1 307
M. Johnson x1234 B m]01 3 103
B. Stevenson x2222 A m202 1 305
S. Quinn x2222 C m606 3 101
R. Helmick x1234 A m404 1 307
A. Facey x1122 C m505 2 400
S. Sheets x2345 B ml01 3 103

Fig. 1. The Phonebook Example

An approach for preventing overdisclosure of such a database is to monitor
the number of database tuples that are being given away [2]; in this example,
where the total number of tuples is 10, it could be determined tha t only 3 tuples
should be disclosed to the same user.

Yet, it is conceivable that we would be willing to disclose an unlimited number
of telephone numbers, but only a limited number of division affiliations (say,
because these affiliations disclose the amount of effort devoted to particular
projects). Similarly, we might be willing to disclose any number of telephone
numbers, but limit the disclosure of telephone numbers of employees in division A
(because we would like to prevent users from estimating the size of this division).
In other words, rather than protect the entire database from overdisclosure, we
argue that it should be possible to articulate those specific aggregates that are
sensitive, and protect only these aggregates from overdisclosure.

In this paper we describe a scheme for aggregation control that provides
this flexibility. Our scheme uses general views to define the secrets that can be
disclosed to a limited degree, and associates a threshold value with each such
view. We shall refer to these views as sensitive concepts (or simply concepts).
Clearly, if a view is defined to be a concept, then any view that incorporates this
concept (a "larger" concept) should be protected as well.

433

This approach allows to define a variety of sensitive concepts. For example,
with the database of Fig. 1:

1. To limit the disclosure of the total number of employees to five, the concept
7 (N a r n e is assigned the threshold 5.

2. To prevent disclosure of information regarding the division to which employ-
ees belong, the concept 7rNarne,Di v is assigned the threshold 0. Note tha t any
view that includes the attr ibutes Name, Div would be protected as well!

3. To limit the disclosure of occupants in Building 1 to at most three employees,
the concept 7rNameO'Bld#= 1 is assigned the threshold 3.

Attacks on sensitive concepts (i.e., secrets that may be disclosed part ial ly)
may be disguised by either of two strategies (or a combination of both):

1. Queries are broken down into sequences of smaller requests tha t extract
information less conspicuously.

2. Queries are disguised as other queries whose definitions do not resemble se-
crets, but whose answers nevertheless extract information covered by secrets.

Any system that permits controlled disclosure of secrets must be able to recognize
both of these strategies.

Consider the above concept limiting to 3 the disclosure of occupants of build-
ing 1. A query to list the names and buildings of all employees at mailstop m202
retrieves 2 employees in Building 1 (Jones and Stevenson). A second query to
list the names, telephone numbers and buildings of employees at room 307 re-
trieves 3 employees (Long, Jones and Hemlick). Any mechanism for protecting
concepts must recognize that these apparently dissimilar queries in effect might
be "nibbling" at the same sensitive concept.

The first s trategy can be foiled by keeping track of the total number of tuples
from a concept that have already been disclosed to every user. Thus, it is most ly
a question of continuous accounting. Yet, this accounting is often subject to gross
inaccuracies. When queries Q1 and Q2 retrieve nl and n2 tuples, respectively,
the number of tuples disclosed would be taken as nl + n2. In effect, if the queries
overlap, the number is smaller; for example, if Q1 = Q2 (the same query is
repeated), the number of tuples disclosed is only nl. In the previous example,
the number of building 1 occupants disclosed by both queries is not 5, but 4,
because Jones was included in both queries. This inaccuracy may be corrected
by keeping record of the actual tuples that have been disclosed; for example, by
maintaining a set of tuple identifiers. The disadvantage is that with very large
databases such record keeping becomes very costly.

The method we describe foils the first strategy by continuous accounting,
which is precise yet economical: it keeps accurate account of the number of
tuples disclosed without maintaining the entire set of these tuples. 1

The second attack strategy poses a more serious challenge. As an example,
assume that the set of employees working in division A is a sensitive concept

1 Incidentally, since we wish to protect arbitrary views, it would not have been even
possible to use tuple identifiers to keep track of the tuples that have been disclosed.

434

and consider a query on the employees in building 1. Apparently, this query
is unrelated to the concept, and therefore should be allowed. Yet, the set of
employees in building 1 is identical to the set of employees in division A. By
answering this query, the system will be giving away the contents of a sensitive
concept, although the definition of this set of values (as formulated by the user)
is quite different from its definition as a sensitive concept.

Consider a database view V and its materialization v in a specific database
instance. V and v are often called, respectively, the intensional definition (or sim-
ply intension) and the extensional definition (or simply extension) of a view. 2
Given V (and assuming the proper permissions), v is easily and uniquely deter-
mined. I t is much more difficult, however, to determine V from v. Indeed, there
may be numerous intensional definitions of a view that evaluate to the same view
extension. The problem of finding for a given view intension V another view in-
tension V t that shares the same extension v is known as intensional answering
[9]. In that context, the finding of alternative intensional definitions to a query is
considered cooperative behavior: provide users with additional characterizations
of their answers. In this context, finding alternative intensional definitions to a
query is intended to be uncooperative: given a query, the system would search
for alternative intensional definitions that "cover" the same information as the
query, but correspond to sensitive concepts; if found, the user may be a t tempt ing
to at tack a concept using the second strategy.

Given a query, our method will detect whether it trespasses a sensitive con-
cept, regardless of the statement of the query. Thus, our method thwarts the
second strategy as well.

In summary, we provide a general framework in which sensitive information
can be defined flexibly. To protect sensitive concepts f rom excessive disclosure,
for each concept and for each user our method keeps track of the number of
tuples that has already been disclosed. Each incoming query is compared with
each predefined concept to determine whether it might trespass that concept. If
so, the number of new tuples thus disclosed is computed and added to the number
of tuples already disclosed, and, depending on the relationship of this counter to
the threshold, the query is either permit ted or rejected. Our accounting is both
accurate and economical.

Our discussion is limited to databases that are single relations and to queries
and concepts that are projection-selection views, where all selections are con-
junctions of simple clauses of the form attribute = value. We conjecture that
our method can be extended to overcome these limitations.

Section 2 establishes the formal framework with definitions of queries, con-
cepts and concept disclosure by queries. Section 3 describes a basic algorithm
for disclosure control, and Section 4 describes two improvements. Section 5 con-
eludes this paper with a brief summary and discussion of future research direc-
tions.

The terms are derived from the notions of intensive and extensive descriptions of
information [10].

435

2 T h e M o d e l

We adopt the usual definition of relational databases, but restrict our attention
to databases that are single relations, and to projection-selection views, where
all selections are conjunctions of simple clauses of the form attribute = value.
We denote the database scheme R = (A1 , . . . , An).

2.1 Quer ies , C o n c e p t s and P a t t e r n s

A query is a view. Its extension in the present database instance is the answer
to the query. Queries are defined by users and describe the information they
are seeking. A concept is also a view. Concepts are defined in the system and
describe the information that needs to be protected.

Views (queries or concepts) may be syntactically different, but yet describe
the same information. Consider the example database scheme Emp = (Name,
Tel, Div, Mail, Bldg, Room) and these two views:

1. rrName,Room O'(Room=lOa)̂ (Div=B)
2. 7rNamelT(Room=lO3)A(Div_=B)

Both view definitions are identical, except that the latter view does not project
a selection attribute which is projected by the former (Room). Nevertheless, be-
cause the values of selection attributes are known (in this case, the constant
value 103), there is no difference in the information these views describe. Con-
sequently, we shall always assume that views are defined in their expanded form,
where the projection attributes include all the selection attributes. Thus, in the
above example, both views would be interpreted as

7rName ,Div ,Room 0"(Room= 103)A(Div =B)

A pattern is a formal notation for views. A pattern is an n-tuple P l , . . . , P n ,
where n is the number of attributes in the database scheme, and each Pi is
defined as follows

a if the selection formula includes Ai = a
Pi = * if Ai is a projection attribute which is not a selection attribute

- otherwise

Because the projection attributes are assumed to include the selection attributes,
patterns record only the projection attributes that are not selection attributes.

For example, all three view definitions above are represented by this pattern

(, , - , B , - , - , 103,)

Note that �9 indicates an attribute of the database which is unaffected by the
view: it is neither restricted nor removed. This notation resembles the notation
for meta-tuples used in [8].

436

2.2 Concept Disclosure

Let U and V be views of database scheme D.
The selection condition of U is at least as restrictive as the selection restric-

tion of V, if every clause Ai = a in V's selection condition also appears in U's
selection condition. The selection conditions of U and V are contradictory, if
U's selection condition includes the clause Ai = a and V's selection condition
includes the clause Ai = b, for some attr ibute Ai and two different constants a
and b.

U overlaps V, if their selection conditions are not contradictory, and U's
projection attributes contain V's projection attributes. When U overlaps V,
then the extension of U could be processed by another view that will remove the
extra attributes. Some of the resulting tuples may be in the extension of V.

U overlays V, if U's selection condition is at least as restrictive as the selection
condition of V, and U's projection attributes contain V's projection attributes.
Obviously, when U overlays V, it also overlaps V. However, when the extension
of U is processed by another view that removes the extra attributes, all the
resulting tuples will be in the extension of V.

The overlap and overlay relationships are illustrated schematically in Fig. 2,
in which U1 overlaps V and U2 overlays V.

V

U2

U1

Fig. 2. Overlapping and Overlaying

437

Assume that U overlaps V. The restriction of V to U, denoted V] U, is
the view obtained from V by appending to its selection condition the selection
condition of U. The exclusion of U from V, denoted V I -,U, is the view obtained
from V by appending to its selection condition the negation of the selection
condition of U. 3 Obviously, V = (V [U) U (V] -,U).

Let C be a concept view and let Q be a query view. Q discloses C, if Q
overlaps C. Intuitively, a query discloses a concept, if its result could be processed
by another query, to possibly derive tuples from the protected concept.

As an example, with the previous database scheme, consider this concept

C = 7rNarne,Div,RoomO'(Room=lO3)A(Div=B)
(names of those in division B and in room 103)

and these three queries

1. Q1 = 7CNarne,Tel,Div,RoornO'(Roorn=lO3)A(Div=B)A(Tel=x2345)
(names of those in room 103, in division B, and with telephone x2345)

2. Q2 -~- 7rNarne,Div,RoornO'Div=B
(names and rooms of those in division B)

3. Q3 ~- 7rNarne,Div,RoornO'Roorn=lO2
(names and divisions of those in room 102)

Q1 discloses C, because applying the query 7rNarne,Div,Roor n to the result of Q1
may yield some tuples in C. Q2 discloses C in its entirety, because applying
the query anoo,~=loa to the result of Q2 yields all the tuples of C. Qa does not
disclose any tuples of C because their selection conditions contradict.

The disclosure relationship between a query and a concept is illustrated
schematically in Fig. 3. Notice that a concept protects its tuples, but not its
subtuples; i.e., a query on a subset of the concept's projection attributes does not
disclose the concept. On the other hand, a query on a superset of the attributes
would disclose the concept (unless their selection conditions are contradictory).

As mentioned earlier, disclosure control requires that the number of tuples
disclosed from a given concept does not exceed a certain predetermined number.
For each concept C we define three integer values called concept total, concept
threshold and concept counter, and denoted respectively, N, T and D. N de-
notes the total number of tuples in the extension of this concept, T denotes the
maximal number of tuples that may be disclosed from this concept, and D de-
notes the number of tuples from this concept that have already been disclosed.
If T >_ N, then the concept is unrestricted; we shall assume that none of the
concepts are unrestricted. As queries are processed, the database system must
keep track of D to ensure that D _< T. The number of tuples in the extension of
a view V will be denoted IlVll; e.g., IICll = N.

Note that the resulting selection condition is no longer a simple conjunction.

438

t u ~ - n - - ~ l ~ p ~ c o n c e p t

disclosed concept tuples

_ _ tu__uples retrieved ~ _ _

Fig. 3. Disclosure relationships between a query and a concept

3 A g g r e g a t i o n C o n t r o l

Given a concept C with its three counters and given a query Q, our goal is to
determine whether the request should be satisfied or not, and update the counters
as appropriate. The main problem is to determine how many luples of C does Q
disclose? Once this question is answered, the rest is mostly bookkeeping.

To answer this question, we consider the pat terns that represent Q and C.
Let

C = (e l , . . . , c~)
Q = (q l , - . . , q .)

We establish a relationship between each element of the query pat tern qi and the
corresponding element of the concept pat tern ci. Recall that a pat tern element
could be a constant or * or - . A constant a indicates that Ai is a selection
at t r ibute and the selection condition is Ai = a, * indicates that Ai is a projection
at t r ibute which is not a selection attr ibute, and - indicates that Ai is neither a
selection at tr ibute nor a projection attribute.

We now define overlapping and restriction at the level of pat tern elements.
An element qi of the query pat tern overlaps the corresponding element ci of the
concept pattern, if either

1. qi is a constant and ci is either the same constant or * or - .
2. qi is . .
3. qi and ci are both - .

Thus, the query element qi overlaps the concept element ci in all but two sit-
uations: (1) when the query and the concept have contradictory selection condi-
tions, or (2) when the at t r ibute Ai is protected by the concept, but not requested
by the query. Intuitively, if qi overlaps ci, and all the other pat tern elements in

439

both the query and the concept are * (reflecting unaffected attributes), then the
query Q overlaps the concept C.

Assume that qi overlaps ci. The restriction of ci to qi is defined as follows:

S qi if qi is a constant
r i / ci otherwise

Intuitively, if the query element qi overlaps the concept element ci, and all
the other pat tern elements in both the query and the concept are * (reflecting
unaffected attributes), then the pattern with ri in position i and * everywhere
else describes the restriction of concept C to the query Q.

In general, a query Q overlaps a concept C, if all their corresponding pat-
tern elements overlap. Similarly, the restriction of a concept C to a query Q is
obtained from the restrictions of the corresponding pattern elements. Thus, by
considering "in parallel" all the pattern elements, we can determine whether Q
discloses C, and define the precise subview of C that is disclosed by Q. This
discussion is summarized in the following theorem.

T h e o r e m (d i sc lo su re) . Let C be a concept with pattern (c l , . . . , ca) and Q a
query with pattern (q l , . . . , qn). Then

1. Q possibly discloses tuples of C, if qi overlaps ci, for all 1 < i < n.
2. The set of C luples disclosed by Q is given by the pattern (rl, . . . ,rn), where

ri is the restriction of ci to qi.

This theorem suggests a basic algorithm for disclosure control, shown in
Fig. 4. The input to this algorithm is a set C1 , . . . , C,,~ of protected concepts,
each with its associated counters Ni, Ti and Di, and a query Q. The algorithm
also uses a temporary counter Mi for each concept. When it terminates, the
value of permit indicates whether the answer to Q should be presented to the
user or not.

Essentially, the overhead incurred in authorizing Q is the determination
whether Q overlaps Ci and, if it does, the derivation of C/] Q from Q. As
the theorem suggests, overlapping is discovered by a simple comparison of the
patterns. The derivation of the disclosed tuples Ci I Q from the answer set Q
is also quite simple. Altogether, the complexity of this algorithm (excluding the
cost of materializing Q) is O (m . n . k), where m is the number of concepts, n is
the number of attributes, and k is the size of the answer.

Referring to the example in Fig. 1, there are 4 employees in division A. As-
sume that only 3 employees in this division may be disclosed, and that one such
employee has already been disclosed. The concept pattern and counters are

C1 = (, , , , A , * , , , *)
N1 = 4
T 1 = 3
D I = I

440

Algor i thm (disclosure)
permit :-- true
materialize Q
i : = 0
while permit and i < m
do

i : = i A - 1
M~ := 0
if Q overlaps C,
then

Mi := [[C~ [Q[[
if Di + Mi > Ti
t h e n

permit := false
break

endi f
e n d i f

done
if permit
t hen

f o r i - - 1 , . . . m
do

D~ := D~ + M~
done

endi f

Fig. 4. Basic algorithm for disclosure control

Consider now the query that requests complete information on the employees
whose telephone number is x1234 and whose mail stop is m404. The query and
query pat tern are

O'(T e l : x l 234)A(M a i l=m404)
Q • (*, x1234, *, m404, *, .)

The restriction of C1 to Q is described by the pat tern

R = (*, x1234, A, m404, *, *)

R 's extension has two tuples, so the query is accepted and D1 is updated to 3.
As another example, the telephone number x1234 is assigned to 4 employees.

Assume that only 3 employees with this number may be disclosed, and that two
have already been disclosed. The concept pat tern and counters are

C2 = (*,x1234 -)
N 2 = 4
T 2 = 3
D2 = 2

441

Consider now the query that requests the location of the telephone whose number
is x1234. The query and query pattern are

7rT el,B ldg ,Room O'T el=xl 234

Q = (- , x1234, - , - , , , ,)

Q does not overlap C2, so it is permitted.

4 I m p r o v e m e n t s

Assume a concept C. First, consider a query Q1 that overlaps C by ml tuples.
Algorithm d i s c l o s u re increments the counter D of disclosed tuples by ml. Con-
sider now a second query Q2 that overlaps C by m2 tuples. The algorithm will
increment D by m2. This continues until D reaches the threshold value T, when
further queries that overlap C would be denied.

Yet, it is entirely possible that some of (or all) the tuples disclosed by Q2
have already been disclosed by Q1. In other words, possibly the user is being
"charged" twice for the same tuples, and is thus approaching the threshold faster
than warranted,

To rectify this, we offer the following improvement. With each concept C
we associate a predicate P that describes the concept tuples that have already
been disclosed. P is initialized to true. Assume that Q1,.. . , Qp have already
been processed when Qp+l is received, and let ~ 1 , . . . , c~p denote their respec-
tive selection conditions. The present value of P would be ch V -- �9 V ~p. After
computing the restriction of C to Qp+l, we exclude from it the view ~p. The
tuples in this new query are those that have not been delivered already. This
improvement is incorporated into a new algorithm, shown in Fig. 5.

The input to this algorithm is a set C1 , . . . , C,~ of protected concepts, each
with its associated predicate P/ and counters Ni, Ti and Di, and the query Q
whose selection predicate is c~. When the algorithm terminates, the value of
permit indicates whether the answer to Q should be presented to the user or
not.

Again, the overhead incurred in authorizing Q is the determination whether
Q overlaps Ci and, if it does, the derivation of (Ci I Q) I ~o-p, from Q. Again,
these are simple procedures, and the complexity of the algorithm is O(m. n. k .p),
where n, m and k are as before, and p is the number of queries already processed.

We have assumed that the collection of protected concepts C 1 , . . . , C,~ is es-
sentially unstructured and have ignored any possible relationships among these
concepts. At times, the concepts to be protected form specific structures; rec-
ognizing these structures could help improve the performance of the disclosure
control algorithms.

Assume an organization with three divisions called A, B and C, and the
following limitations on disclosure: 20 employees in division A, 15 in division B,
10 in division C, but not more than 30 employees in total. These limitations are
described in four concepts:

442

Algor i thm (improve l)
permit := true
materialize Q
i : = 0
while permit and i < m
do

i : = i + 1
M~ := 0
if Q overlaps Ci
then

M, := II(C, [Q) I -'~P, II
if D, + M, > T~
t hen

permit := fa lse
break

endi f
endif

done
if permit
t hen

f o r / = l , . . . m
do

Pi := Pi A a
D~ := Di + M~

done
endi f

Fig. 5. Disclosure control algorithm with accurate bookkeeping

1. C1 = 7rNarne ,DivO'Div=A

T 1 = 2 0
2. C2 z ~rNarne,DivCrDiv= B

T 2 = 1 5
3. 63 ~- 7rNarne,DivO'Div=C

T 3 = 1 0
4. C4 z 7rNarn e

T 4 = 3 0

With respect to the mutual relationships of these four views, we note that

1. Each of the concepts C1, C2, and C3 overlays the concept C4.
2. The restrictions C4 I C1, C4 I C2, C4 I Cz partition C4.

Thus, every disclosure from one of first three concepts corresponds to a disclosure
from C4 (and disclosure from C4 corresponds to a disclosure from exactly one
of the first three concepts). Consequently, the disclosure control algorithm only
needs to compare a query Q against the first three concepts. Increments of D1,

443

A l g o r i t h m (i m p r o v e 2)
materialize Q
permit := true
for every leaf concept Ci
d o

Mi := 0
i f Q overlaps Ci
t h e n

Mi :=][(C, [Q)[--lo-pi[[
i f Di + Mi > Ti
t h e n

permit := false
b r e a k

else
for every ancestor Cj of Ci
d o

M~ := Mi
i f D~ + Mj > Tj
t h e n

permit := false
b r e a k

e n d i f
d o n e

e n d i f
e n d i f
i f -~permit
t h e n

b r e a k
e n d i f

d o n e
i f permit
t h e n

f o r / = 1, . . . m
d o

D, := D, + M,
i f Ci is leaf concept
t h e n

P i : = P , A a
e n d i f

d o n e
e n d i f

F ig . 6. Disclosure control algorithm with concept hierarchy

444

D2 or D3 should also trigger identical increments to D4 (and a comparison of
D4 with T4).

This improvement is incorporated into a new algorithm, shown in Fig. 6.
The input to this algorithm is a hierarchy C1 , . . . , Cm of protected concepts,
each with its associated predicate Pi and counters Ni, T/ and Di, and the query
Q whose selection predicate is a. When the algorithm terminates, the value of
permit indicates whether the answer to Q should be presented to the user or
not. The complexity of the algorithm is O(m . n . k �9 p + m2).

Note that it is not necessary to maintain the predicates Pi for non-leaf con-
cepts: tuples newly disclosed from leaf concepts are guaranteed to be newly
disclosed from ancestor concepts.

5 C o n c l u s i o n

We addressed the problem of controlled disclosure of sensitive information. We
defined a model in which any view of the database can be defined as a sensitive
concept, and we offered simple and efficient algorithms that accurately monitor
the disclosure of these predefined concepts. With these algorithms, any query by
a user of the database is noted for its effect on the set of predefined concepts;
any "nibble" into a concept is recorded, and once these "nibbles" add up to
a substantial part of a concept (as defined by a threshold), future queries are
rejected. Even queries that are apparently unrelated to sensitive concepts are
monitored for their effect on these concepts, thus foiling any strategy of disguising
queries through alternative formulations.

Much work remains to be done, and we mention here several directions. First,
we are interested in extending this work to remove the simplifying assumptions
that have been made on the relations and on the definitions of concepts and
queries. Also, the selection of concepts and thresholds needs to be considered
more carefully. For example, thresholds must be assigned consistently; e.g., the
threshold for a "broader" concept must be larger than the threshold for any of
its "subconcepts".

Our discussion has been limited to "static" databases; i.e., when considering a
sequence of queries by the same user, we assumed that the extensions of concepts
do not change via insertions or deletions of tuples. Further research is required
to extend this work to "dynamic" databases.

Finally, we assumed that all sensitive information has been predefined as
concepts, and challenged every attack against these concepts. Hence, we can only
detect attacks on information that has already been recognized as sensitive. A
more challenging direction is to conclude from users queries whether they are
at tempting to "converge" on a concept which so far has been unclassified, thus
alerting the system to the possibility of security "holes".

Acknowledgement. The authors are grateful to the anonymous referees for their
important corrections and suggestions.

445

References

1. D. E. Denning. Cryptography and Data Security. Addison Wesley, Reading, Mas-
sachusetts, 1982.

2. J.T. Halgh, R.C. O'Brian, P.D. Stachour, and D.L. Toups. The LDV approach to
security. In D.L. Spooner and C. Landwehr, editors, Database Security III: Status
and Prospects, pages 323-339. North Holland, Amsterdam, 1990.

3. T.N. Hinke. Inference aggregation deduction in database management systems.
In Proceedings of IEEE Symposium on Security and Privacy, pages 96-106, April
1988.

4. S. Jajodia. Inference problems in secure database management systems. Techni-
cal Report MTR 92W0000052, The MITRE Corporation, McLean, Virginia, June
1992.

5. T.Y. Lin. Database, aggregation and security algebra. In Proceedings of the 4th
IFIP Working Conference on Database Security, September 1990.

6. T.F. Lunt. Aggregation and inference: Facts and fallacies. In Proceedings of IEEE
Symposium on Security and Privacy, pages 102-109, May 1989.

7. T.F. Lunt and R.A. Whitehurst. The Sea View formal top level specifications.
Technical report, Computer Science Laboratory, SRI International, February 1988.

8. A. Morro. Integrity = validity + completeness. ACM Transactions on Database
Systems, 14(4):480-502, December 1989.

9. A. Motro. Intensional answers to database queries. IEEE Transactions on Knowl-
edge and Data Engineering, 6(3):444 454, June 1994.

10. D. C. Tsichritzis and F. H. Lochovsky. Data Models. Prentice Hall, Englewood
Cllifs, New Jersey, 1982.

