
A Consideration of the Modes of
Operation for Secure Systems

C L Robinson and S R Wiseman

Secure Information Systems Group
Defence Research Agency

Malvern
Worcestershire, WR14 3PS, UK

email: harrold@dra.hmg.gb or wiseman@dra.hmg.gb

Abstract. Secure systems are often characterised by a 'mode of operation'.
This acts as a shorthand for the degree of risk to the information on the
system and the minimum security functionality required as a countermeasure.
This paper examines the UK definitions of these modes and proposes a
model of a system which can be used to capture the distinctions between
them. The variations of possible secure system functionality within each
mode are then discussed. Some new definitions, which are orthogonal to the
modes of operation, are proposed which can be used to resolve ambiguities.

Keywords. Security Mode of Operation, Dedicated, System High, Compartmented,
Multi-Level, System Model, Z Notation

1 Introduction

Within the UK, secure systems are often characterised by a 'mode of operation'. This
acts as a shorthand for the degree of risk to information on the system and the
minimum security functionality required as a countermeasure. There are currently four
UK modes of operation: Dedicated; System High; Compartmented and Multi-Level.
The CESG Glossary [1] provides definitions of these modes as particular
combinations of user need-to-know, formal clearances and security functionality.
Similar terms and definitions are used in the US [2].

Any definition relating to a secure system requires a precise understanding of the
boundary of a system and its users. Such an understanding was relatively
straightforward when systems were large standalone mainframes located in computer
rooms. However, in the age of desktop computers and networks the boundary of the
system and the identification of its users becomes more problematical. This difficulty
does appear to be recognised, since the definitions of the UK modes have been
clarified with subsequent issues of the glossary. Similar problems with the US
definitions are discussed in [3].

The main problem with the definitions of the modes of operation is that they are
not sufficiently detailed enough to give a complete picture of a system. Systems

�9 British Crown Copyright 1994 / DRA
Published with the permission of the Controller of
Her Britannic Majesty's Stationery Office

336

which have the same mode of operation can have different security functionality
requirements. Thus, the use of the mode of operation alone as a shorthand to describe
a system can potentially lead to misunderstandings. This paper proposes additional
sets of terms to characterise the %oundary mode', 'output class mode' and 'output need-
to-know mode' of a system. The intention is that the definitions can provide a
framework to assist in the identification of appropriate security requirements for
individual projects.

The definitions in this paper are f'mnly based upon an abstract mathematical model
of a system. This model has been used to explore the distinctions between the
different modes of operation and how they relate to the system boundary and to justify
the proposed new definitions. Therefore, in this paper the purpose of the model is to
explore the different ways in which secure systems may be used in military
environments. The model is at a high level of abstraction, without many of the
details of system functionality or security mechanisms. This use of a model is
therefore different to the commonly quoted models of operating system security
mechanisms, due to Bell and LaPadula [4].

In order to avoid ambiguity, the Z notation [5] is used to precisely define the
system model and definitions. The notation is based on standard set theory, and a brief
explanation of the symbols used is given as Annex A. However, the overview of the
model and English commentary to the formal specifications should be sufficient to
gain an appreciation of the model, the distinctions between the different modes of
operation and the proposed new definitions.

The structure of this paper is as follows: Section 2 considers the standard UK
definitions of the modes of operation and identifies the concepts which are required to
model them; Section 3 describes the model of a system, which is then specified
formally in Section 4; Section 5 defines the four modes of operation for secure
systems, and for completeness an additional mode that corresponds to an insecure
system; Section 6 discusses these formal definitions and proposes some orthogonal
criteria which can be used to distinguish particular types of system within the mode
categories; Finally, Section 7 draws some conclusions.

2 Identification of Model Elements

The following definitions are directly taken from the official UK glossary of computer
security terminology [1].

DEDICATED. "A mode of operation in which all the users of a system are cleared
for, need to know about and have access to all the data handled by it. Hence, the
system does not enforce national security rules or need-to-know and little or no
technical security functionality is required."

SYSTEM HIGH. "A mode of operation in which all the users are cleared for, and
have formal access approval for, all the information handled by it, but not all of
whom actually need to know about all of the data. In this mode of operation DAC
will normally be applied".

C O M P A R T M E N T E D . "A mode of operation in which all the users of a system
are cleared for all the data handled by the system; and who only need to have, and are
only given, access to some of the data by means of MAC."

337

MULTILEVEL. "A mode of operation in which a computer system (or network.of
computer systems) handles data at various classifications etc., but for which there are
users not cleared for all that data whose access is restricted appropriately. Hence, the
system (or network) is relied upon to enforce the national security rules."

Thus, it can be seen that the basic concepts in the model will need to be user
clearances, data classifications and need-to-know requirements.

The definitions for System High and Compartmented modes are similar. Indeed,
the Compartmented mode has only relatively recently been introduced into UK
terminology, although it appears to have been used in the US for some time. The
distinction between the two modes is in the type of security functionality used to
control the user's need-to-know. In a System High mode, need-to-know is controlled
by Discretionary Access Control (DAC) mechanisms, whereas in a Compartmented
mode Mandatory Access Control (MAC) mechanisms are used.

Thus, the model will need to distinguish between systems with no technical
security functionality (i.e. for Dedicated Mode) and between those with DAC or MAC
functionality. The model also needs to distinguish between MAC functionality which
is used to control need-to-know (i.e. for Compartmented Mode) and MAC based on
clearances (i.e. for Multi-Level Mode).

The standard definitions for MAC and DAC, for example in [1], are not
sufficiently precise to clearly explain the intended differences between the System
High and Compartmented modes of operation. However, the mode definitions suggest
that the difference relates to the strength of the mechanism. With DAC functionality,
there would appear to be the potential for users to be given access to information for
which they do not have a need-to-know. Obviously, to operate in this mode, the
system risk assessment must have determined that this did not represent a significant
threat.

It is assumed that in a System High Mode, the discretion of the users of a system
can be trusted. Therefore, a reasonable interpretation of the difference between MAC
and DAC for need-to-know relates to the trustworthiness of software. In other words,
software acting on behalf of a user might misuse discretionary controls but cannot
step outside of the bounds imposed by mandatory controls. Precise definitions for the
different types of access control are proposed in [6].

Therefore, the model of a system includes the notion of software proxies. These
are the active agents working for the human users within the computer system. The
model distinguishes between software which can be trusted only to alter a
discretionary control with the authority of the user, and software which cannot be so
trusted.

The technical security controls within a system are not modelled at the same level
of abstraction as in the Bell and LaPadula models of [4]. Instead, they are modelled by
identifying the possible handling restrictions applied to outputs. This is based on the
modelling approach of Goguen and Meseguer [7]. In a system with no technical
security controls all the output has to be treated at the level of the highest possible
security class on the system. Alternatively, in a system with technical security
functionality, i.e. MAC or DAC, to control the flows of information within the
system, output can be labelled more accurately.

338

3 An Overview of theModel

This section gives an overview of the proposed model of a system. This model is
subsequently used to explore the modes of operation and propose further definitions.
The purpose of the model is to define a generalised secure system, and therefore many
of the details of realistic implementations are omitted. Further, the model permits
cases which may not be required in particular environments. However, it is not
considered to be sensible to complicate the model by explicitly excluding some
situations.

Figure 1 below depicts the elements of the model and their relationship to each
other and the system boundary. The elements of the model are described in the
following text, and then precise definitions are given in the formal model of
section 4.

Inputs

Direct Users

�9 ~ c ~ Ilnf~176 LL
. . ' . ~ ~ . Content F ~

Machine Boundary
\

External
Users Boundary, System

~l Outputs]---------4~Recipients

External Environment

Boundary, System 2
Fig. 1. The Model of a System

3.1 Information and its Security Class and Need-to-Know

A system contains information. This comprises input from other systems and input
from the users of the system, together with information generated as a result of
calculations and associations made within the machine. All the information in a
system has an inherent security class and need-to-know requirement associated with it.
The need-to-know for information is abstractly represented by the set of people who
need-to-know the information in order to effectively carry out their job function.

A system may not contain information at all possible security classes. Neither do
the need-to-know sets for a particular system necessarily contain all combinations of
people. This is because a system generally exists in an environment which can
restrict what is entered into the system. The functionality of a system can also limit
the security classes and need-to-knows for the information it can create.

339

The inherent need-to-know of information in a system can include people who are
not users of the machine. However, someone has to have a need-to-know for each
item of information, either in the system or output from it (see below). In other
words, the model does not consider something to be information if no one needs to
know it.

However, the model does not restrict the inherent need-to-know for information to
the users of the machine. Instead, the need-to-know in the model represents all the
people who need to have access to the information in some form. Thus, the model
permits there to be information in a system for which no user has a need-to-know.

3 . 2 Users

A system has at least one authorised user. The users are the people who influence the
contents of the system. They are the people who enter and manipulate information on
the system via the functionality of the machine. The users are outside of the machine
boundary and interact with the contents via software proxies within the machine
boundary.

A distinction is made between the direct and external users. Direct users are under
the direct control of the system management, and will generally access the system via
its physical components, such as screens and keyboards. The external users access the
system via an interconnection, and will be the direct users of a different system. A
particular person could be both an external and a direct user of a system, for example
if they were able to logon both at a connected workstation and remotely from another
system.

The reason for the distinction between direct and external users relates to the
positioning of a system boundary when many computers from different management
domains are interconnected. However, the exact positioning of the boundary is not
important to the model. What is important is that all the people who can influence
the information in the system are identified by the two sets.

3 . 3 Outputs and Recipients

A system produces outputs, although there may be some information on a system
which is never output. An output is something, either paper-based or electronic,
which enters the environment outside of the direct control of the system. Within the
external environment there are people who are the potential recipients of the outputs.
These people could also be users of the system. The difference between a recipient and
a user is that the former cannot influence the information, but only receive it.

A system has to 'trust' its external environment to ensure that its outputs are
handled appropriately. To assist the external environment, a system will label its
outputs with respect to the minimum security clearance and need-to-know
requirements.

3 . 4 Clearances and User Need-to-Knows

The authorised users may have different formal clearances, and there may also be users
of a system who hold no formal clearance. However, every user of the system has to
have a need-to-know for some item of information on the system. This represents the
obvious requirement that people should only be given access to a computerised

340

system if they have a need to do so. Therefore, this definition rules out people
hacking into a system across a network, and thus the model requires that a system has
appropriate identification and authentication measures in place.

It is less obvious that it is reasonable for there to be information on the system
for which no user is formally cleared. For example, it is possible to postulate a
messaging system where highly classified information is transported by users not
cleared to access the information. They obviously need-to-know some aspect of the
information, such that it exists and the address it is intended for, but do not need-to-
know or be cleared for the contents.

In addition, UK Security Policy contains an "Occasional Access" rule. This
permits a person with insufficient formal clearance to be given access to a limited
amount of information above their clearance because they have a genuine need-to-
know that information in order to effectively carry out their duties. Therefore, the
model of an electronic system should not rule out this case.

However, although the system model permits otherwise, in practice it would be
expected that there will always be a user who is actually formally cleared for all
information on a system, such as system security administrators. In this case the
interesting point is that they need to be formally cleared in order to manage the
system, but do not in fact have a genuine need-to-know for the information they are
managing. Thus, the managers represent the dual of the Occasional Access rule. In
effect the need for a system manager who is able to access all the information on the
system arises from the implementation of the system and is not a system
requirement. Therefore, from an abstract viewpoint the system managers could be
considered as an implementation detail.

3.5 Software Proxies and Confidence

Although software acts as a user's proxy within the machine, the user does not
necessarily have complete confidence that their wishes are being faithfully carried out.
This is because software is generally not well specified and is frequently accepted and
used when it contains errors. It can thus exhibit surprising or unexpected behaviour.
Where this is the case the user will have a fairly low level of confidence that their
wishes are being carried out.

On the other hand, using a Trusted Path to invoke a security critical function
gives the user a great deal of confidence that their wishes are being carried out. This is
because additional effort has been expended in the specification, design, testing and
evaluation of the software and its means of invocation. Thus, in a system there will
be differing degrees of confidence in the software proxies which act on behalf of the
human users.

Control over need-to-know is achieved through human discretion, actioned via
software proxies within the machine boundary. Therefore, the model associates with
each software proxy which is capable of altering need-to-know controls, a degree of
confidence that it only does so with the authority of the responsible person.

3.6 Security Policy

A secure system is always 'no flows down' with respect to security classes. Thus
CONFIDENTIAL information may be output labelled CONFIDENTIAL, SECRET,
etc., but cannot be labelled UNCLASSIFIED.

341

A system may contain technical security functionality which is able to maintain
separation between the different classes of information on the system and monitor the
flows of classified information around the system. Where this is the case, information
can be output labelled at its inherent security class. Such functionality is generally
referred to as MAC.

Other systems may not contain security functionality capable of maintaining
accurate labels within the system. When this is the case, all the outputs must be
labelled at the level of the highest security class on the system. Otherwise the system
might not be 'no flows down'.

No information flow property is given for need-to-know. Thus, no constraints are
placed on the possible output labels with respect to need-to-know for the information
on the system. Appropriate control is achieved for need-to-know by applying human
judgement and discretion.

3.7 Summary

To summarise, a system contains information at various security classes and with
various need-to-know requirements. The information is accessed by its users via
software proxies, and there are varying degrees of confidence in the trustworthiness of
this software. A system loses direct control over its outputs. It therefore applies
security markings in order that the recipients of output can be limited to those with
adequate clearance or need-to-know. A formal specification is given in section 4.

4 T h e F o r m a l M o d e l

This section specifies the model of a system using the Z notation [5] along with a
brief English commentary that explains the intended interpretation of the
mathematics. The meaning of the Z symbols used is included as Annex A.

Computerised systems are used by people. Thus a set is introduced to represent all
the possible people of interest. This set includes the users, i.e. the people who are
able to influence the state of the computer system, and the people who receive the
outputs from the system.

[PERSON]

However, the users cannot directly manipulate the information within a computer,
but must use software to act on their behalf. Thus, the model identifies a set of
software agents, or proxies.

[PROXY]

Although software acts as a user's proxy within the computer, the user does not
necessarily have complete confidence that their wishes are being faithfully carried out.
For the purposes of this model a set is introduced to represent the various degrees of
confidence that people could have in software. The confidence levels are partially
ordered by a relation called _~ (dominates), which defines which degrees of confidence
are 'better' than others.

342

[CONFIDENCE]

I _ ~ _ : partial_order CONFIDENCE
i

One particular confidence is important to the modes of operation, although the
system model permits there to be other confidences. This confidence is called
NTKfaithful and is the point at which the people start to believe that the software
carries out their wishes with respect to need-to-know (NTK) controls. Thus software
with a confidence which dominates NTKfaithful is trusted not to misuse the discretion
of the human user with respect to the need-to-know controls. Software whose
confidence level does not dominate NTKfaithful is not so trusted.

I NTKfaithful : CONFIDENCE

Secure systems manipulate classified information, and thus a set of security
classes is defined. Note that a security class encompasses categories and caveats in
addition to a hierarchical component, as defined in [1]. Thus, security classes can
encompass certain need-to-know controls such as codewords. The security classes are
partially ordered by a relation called _~ (dominates). A least upper bound function is
given for security classes, but the definition is omitted for clarity.

[CLRSS]

I _ _~_ : partial_order CLASS

I LUB : IP CLASS ~ CLASS

I

A system is characterised by the non-empty set of identities for its users and the
non-empty set of clearances which they hold. At the level of abstraction used in this
model, it is not necessary to directly relate users to clearances. A distinction is made
between the direct users, who are under the control of the system management, and
external users, who access the system via an interconnection. Not all the authorised
users o f a system need to hold a formal clearance.

r USERS

I DirectNames, ExternalNames : IP PERSON

I Direct~learances, ExternaIC1earances : IP CLASS

l
I DirectNames o ExternaINames * {}

I DirectC1earances u ExternaIC1earances �9 {}
I

Additional sets of people and clearances are identified in the model. These represent
the identities of all the people who may potentially receive outputs from the system,
either paper-based or electronic, and their clearances.

343

I'- RECIPIENTS

[RecipientNames : IP PERSON

I RecipientC1earances : IP CLASS

I
I RecipientClearances * {} ~ RecipientHames * {}

I

The security classes and need-to-know for information on the system (section 3.1)
and the labelling of output from a system (section 3.6) are both captured in the Z
specification using functions called OutputClasses and OutputNTKs.

The domain of the OutputClasses function models the inherent security classes for
the information contained within the system. For each possible security class within
the system, the OutputClasses function gives the set of possible output security
labels. OutputClasses is restricted to ensure that the system is 'no flows down'. In
other words, for each security class on the system, all the possible output labels must
be at least as high.

The distinction between no technical security functionality within the system and
functionality to separate different classes is also captured. The CLASS_CONTROLS
schema states that either information can be output at its inherent security class, i.e.
separation is maintained, or alternatively all the outputs must be labelled at the level
of the highest security class within the system.

-- CLASS_CONTROLS

OutputC1asses : CLASS -~* IP CLASS

OutputClasses * {}

V c : dom OutputC1asses

V I : OutputClasses(c)

(V c : dom OutputClasses c

v rng OutputC1asses = {{ LUB

I~_c

c OutputC1asses(c)

(dom OutputClasses) }})
I

Similarly, the domain of the OutputNTKs function models the sets of people who
need to know the various pieces of information within the system. For each possible
need-to-know set within the system, the OutputNTKs function gives the set of
possible output security labels. However, no information flow restrictions are defined
for need-to-know labelling.

344

I-- NTK_CONTROLS

I OutputNTKs :

I
I OutputNTKs *
I

IP1 PERSON --~ IP IP1 PERSON

(}

Note that a possible interpretation of the abstract type I~1 PERSON could be an
Access Control List, although other interpretations, such as all the people who are
cleared into a particular codeword, are not ruled out by the model. Alternatively,
certain codewords could be modelled by security classes.

The final element of the formal model is a function to capture the level of
confidence in the trustworthiness of the particular software proxies with respect to the
need-to-know controls. The domain of this function represents all the software proxies
within the system which have the ability to alter the need-to-know controls. For each,
the function gives the level of confidence that they carry out the human user's wishes.
An empty set for this function is intended to capture the case where the system
contains no technical need-to-know controls.

F- SOFTWARE

I NTKProxyConfidence
I

: PROXY -+~ CONFIDENCE

Thus, in this model a system is defined by: its users; the recipients of output; the
security classes of information it contains and how it labels its outputs; the need-to-
know for information and how this is labelled on output, together with the confidence
that software does not misuse any need-to-know controls.

-- SYSTEM

USERS

RECIPIENTS

CLASS_CONTROLS

NTK_CONTROLS

SOFTWARE

V u : DirectNames u ExternalNames

q ntk : dora OutputNTKs u �9 ntk

5 D e f i n i t i o n o f S e c u r i t y Modes of O p e r a t i o n

Returning to the glossary definitions of the modes of operation, given in Section 2, it
can be seen that they require four criteria with which to partition the model of a
system.

345

i) Whether all the users (both direct and external) are cleared for all of
the information on the system.

ii) Whether all the users have a need-to-know for all of the information
on the system.

iii) The kind of technical security mechanisms which are used for need-
to-know.

iv) Whether the system contains security functionality which can ensure
that information is accurately labelled on output with a security
class.

A Dedicated system is distinguished from all the other modes of operation by the
fact that all the users are both formally cleared and have a need-to-know for all of the
information on the system. Consequently, a Dedicated system is secure whether or
not it contains technical security functionality for need-to-know or security classes.

- - Dedicated

SYSTEM

(DirectC1earances u ExternaIClearances) x

(dom OutputC1asses) ~ _ ~ _

V ntk : dom OutputNTKs

DirectNames u ExternaINames ~ ntk

For a System High mode of operation all the users are formally cleared, but do not
have a need to know for all of the information. In other words, there must exist at
least one need-to-know grouping of information on the system which does not include
at least one of the users. However, the main distinguishing feature of the System
High mode is that the need-to-know controls are vulnerable to misuse by the software
acting on behalf of the users. This is expressed by stating that at least one software
proxy capable of altering the need-to-know controls, is not trusted to always faithfully
carry out the user's wishes.

- - SystemHigh

SYSTEM

(DirectC1earances u ExternalClearances) x

(dom OutputC1asses) ~ _ ~ _

3 ntk :dGm OutputNTKs

~(DirectNames u ExternaINames ~ ntk)

3 c : rng NTKProxyConfidence ~(c ~ NTKfaithful)

.... I

The distinction between the System High and Compartmented modes is captured
by the fact that in the Compartmented mode all of the software proxies capable of
altering need-to-know controls are trusted not to misuse this ability. Note that in

346

practice this is usually achieved by arranging that the 'untrusted' software cannot alter
the controls.

- Compartmented

SYSTEM

(DirectClearances u ExternalClearances) x

(dom OutputClasses) ~ _ ~ _

3 ntk :dom OutputNTKs

~(DirectNames u ExternaINames ~ ntk)

NTKProxyConfidence * {}

rng NTKProxyConfidence x {NTKfaithful} ~ _ ~ _

The feature which distinguishes the Multi-Level mode from the others is that not
all of the users have formal security clearance for all of the information and technical
security functionality is present which is capable of maintaining accurate security
labels. Thus for every inherent security class on the system the information can be
output labelled at that class. Such functionality is capable of preventing the users
fxom accessing information for which they are not cleared.

Note that this proposed definition of the Multi-Level Mode of operation also
requires that if there are users with no need-to-know for information there must be
some technical security controls to prevent them from gaining access.

- - Multi-Level i

SYSTEM

1((DirectClearances u ExternalClearances) x

(dom OutputC1asses) ~ ~)

V c : dom OutputC1asses c c OutputC1asses(

3 ntk :dom OutputNTKs

~(DirectNames u ExternaINames ~ ntk)

NTKProxyConfidence * {}

c)

A system can be insecure for two reasons. Firstly, it is insecure for there to be no
functionality to maintain accurate security labels and yet have users with insufficient
formal security clearance. Secondly, it is insecure to have users with no need-to-know
for information, and yet have no technical security controls to prevent them from
gaining access.

347

I'- Insecureelass

I SYSTEM

I
I ,((DirectClearances u ExternaIC1earances) x

l (dam OutputClasses) ~ ~)

I rng OutputC1asses = { { LUB (dam OutputC1asses
I

) }

F- InsecureNTK

I SYSTEM

I
I 3 ntk :dam OutputNTKs

l ,(DirectNames u ExternaINames ~ ntk)

I NTKProxyConfidence = {}
I

Insecure = ^ InsecureC1ass v InsecureNTK

As discussed earlier, this model of a system recognises the existence of the UK
Occasional Access rule. This permits people limited access to information for which
they have a genuine need-to-know, but are not formally cleared. A system which
requires this rule to be invoked in a controlled manner will need to contain security
functionality which is capable of maintaining accurate security labels on information.
Thus, the definitions above place such a system as operating in the Multi-Level
mode. However, in a computer with software acting on behalf of the human users, the
precise difference between a system which requires the Occasional Access rule to be
invoked and an insecure system is unclear.

These five types of system partition the model of a system given in this paper.
Thus, all systems which conform to the model described in Section 4 will meet
exactly one of the above definitions. An informal justification for this theorem is
given as Annex B. This contains a table listing the combinations of criteria and
identifies the corresponding mode.

< Dedicated, SystemHigh, Compartmented, Multi-Level,

Insecure > partition SYSTEM

6 D i s c u s s i o n a n d F u r t h e r D e f i n i t i o n

Systems which meet the definition of a particular mode of operation can have different
technical security requirements. In particular, the definitions of both System High
and Compartmented allow systems within the mode to have either accurate labelling
of output or to label at the level of the highest security class on the system. This
could be a potential source of confusion and ambiguity whenever the mode of
operation is used as a shorthand to describe a system.

348

Furthermore, systems may meet different modes of operation definitions depending
upon where the system boundary is drawn with respect to the direct and external users.
For example a system could be Compartmented if only the direct users were counted,
and yet be Multi-Level if the clearances of all the people who could access the system
via an interconnection, i.e. external users, were considered.

However, even when all the users have been taken into consideration, and all have
formal security clearances, a system may still require accurate labelling of output. In
other words, accurate labelling of output may be required in systems other than those
which operate in the Multi-Level mode (as defined in this paper). Such a situation
arises quite naturally where there is a requirement for a system to pass its outputs into
an environment where there will be people who are not fully cleared.

This section proposes three further terms which can be used to more fully
characterise a system. These are derived from the model given in this paper, and
describe the 'boundary mode', the 'output class mode' and the 'output need-to-know
mode' of a system.

6 .1 Boundary Mode

As discussed above, a system may meet different modes of operation depending upon
where the boundary has been drawn with respect to the direct and external users. The
problem partly results from the fact that the official terminology does not precisely
define the users of a system. In terms of the model of a system used in this paper,
choosing just the direct users who are under the direct control of the system
management may give one mode, whilst including the external users gives another.
Such a situation could occur if an interconnection requirement for a system arises at a
late stage in its procurement.

This paper proposes that systems which have not included external users in their
mode of operation be referred to as Introspective, since the system boundary has been
drawn between its direct and external users. It is proposed that a system which does
consider both kinds of user be called Inclusive.

I-- Introspect ive

l SYSTEM

I
I ExternaINames \ DirectNames
I

* ()

F- Inclusive
I SYSTEM

I
l ExternaINames \ DirectNames
I

= (}

< Introspective, Inclusive > oartition SYSTEM

349

6.2 Output Class Mode

An output class mode for a system is proposed. This characterises the potential
recipients of the outputs from the system with respect to the security clearances
which they hold. Four modes are defined, Isolated, Connected and StrongBounded, and
a mode corresponding to a system with an insecure boundary.

In determining the output class mode for a system, the clearances of the potential
recipients are considered with respect to the highest security class contained within the
system. It is important to note that they are not just compared with the security
classes of the outputs they should receive.

An Isolated system is one where all of the possible recipients of output have
sufficient clearance for all of the security classes contained on the system. Thus, no
technical security functionality within the system is necessary, since labels are not
required to control access to outputs. Without technical security functionality to
maintain separation between security classes, all the outputs will be labelled at the
level of the highest. Such a system can be considered to be isolated with respect to
security classes, since it does interact with people who are not cleared for all of its
information.

F- Isolated

I SYSTEM

I
I RecipientC1earances x

I rng OutputC1asses = {
I

(dam OutputC1asses) ~ _ ~ _

{ LUB dam OutputClasses }

A Connected system is one where the outputs may enter an enwronment where
there are potential recipients who are not formally cleared for all of the information on
the system. Thus, the system needs to provide accurate labels on its outputs in order
to ensure that the environment to which it passes responsibility for information is
able to make appropriate access control decisions.

F- Connected

I SYSTEM

I ~(RecipientClearances x (dam OutputC1asses) ~ _ ~ _)

I V c : dam OutputClasses c r OutputC1asses(c)
I

A system would have an insecure boundary if there were potential recipients of
output who were not cleared for all of the classes of information on the system, and
yet the system did not contain any security functionality to ensure that security labels
were accurate.

350

I'- InsecureBoundary

I SYSTEM

I
I n(RecipientClearances x (dom OutputClasses) ~ _ ~ _)

I rng OutputC1asses = { { LUB (dom OutputClasses) } }

I # dom OutputC1asses * I
I

There is one final case to consider. This is where all the potential recipients of
outputs have sufficient clearance for all of the information on the system, and yet the
system maintains accurate security labels on the various classes of information in the
system. Such a situation could be needed if there were authorised users (as opposed to
the recipients of output) with insufficient clearance.

F- StrongBounded

I SYSTEM

I
I RecipientClearances x { dom OutputClasses } ~ _ ~ _

I V c : dom OutputC1asses c c OutputC1asses(c)

I # dom OutputC1asses * I
I

< Isolated, Connected, StrongBounded, InsecureBoundary >

partition SYSTEM

6.3 Output Need-to-Know Mode

Finally, an output need-to-know mode is proposed. This is similar to the output class
mode, except that the potential recipients of the outputs are considered with respect to
their need-to-know for information. Five modes are defined, Continuous, Linked,
Discrete and StrongNTKBounded, together with a mode corresponding to a system
with an insecure need-to-know boundary.

A Continuous system is defined to be one where all the potential recipients of
outputs have a need-to-know for all of the information within the system. Thus, no
technical security functionality is required to ensure that the external environment,
either electronic or human, can make appropriate access control decisions. Such a
system could be considered as continuous, because the boundary between the
electronic systems, or between the electronic and human world, is not significant.

3 5 1

I'- Continuous

I SYSTEM

I
I V ntk : dom OutputNTKs RecipientNames ~ ntk

I NTKProxyConfidence = {}
I

A Linked system is defined to be one where there are potential recipients of output
who do not have a need-to-know for all of the information, and where the threat is
such that 'weak' need-to-know controls are sufficient. The system contains security
controls to provide need-to-know labelling which may be misused by software acting
on behalf of the users, i.e. without their authority. Thus, the need-to-know markings
applied to output could be inappropriate. Such a type of system can be referred to as
linked with its external environments. Thus, there is a weak boundary between the
system and the environment of its outputs.

F- Linked

I SYSTEM

I
I 3 ntk

I 3 c :
I

: dom OutputNTKs 3 u : RecipientNames u ~ ntk

rng NTKProxyConfidence ,(c ~ NTKfaithful)

Thirdly, a system can be considered to be a discrete entity with external interfaces
requiring 'strong' need-to-know controls. Such controls ensure that the environments
which take over responsibility for the protection of information can make appropriate
decisions. In this case there are potential recipients of outputs who do not have a
need-to-know for all of the information on the system. The system contains security
controls for need-to-know which cannot be altered inappropriately by the software
acting on behalf of its users.

F- Discrete

I SYSTEM

I
I 3 ntk : dom OutputNTKs

I NTKProxyConfidence = {}

I rng NTKProxyConfidence x
I

3 u : RecipientNames u

{ NTKfaithful } ~ _ ~ _

ntk

A system is insecure across its boundary to external environments if there are
potential recipients who do not have a need-to-know for all of the information on the
system, and yet the system has no technical security functionality to provide need-to-
know controls.

352

I'- InsecureNTKBoundary

I SYSTEM

I
I 3 ntk : dom OutputNTKs

I NTKProxyConfidence = {}
I

3 u : RecipientNames u r ntk

The final case to consider is where all the potential recipients of output have a
need-to-know for all of the information on the system, and yet the system contains
some need-to-know controls. This situation could be needed if the authorised users (as
opposed to the recipients of output) do not all have a need-to-know for the
information on the system.

F- StrongNTKBounded

I SYSTEM

I
I V ntk : dom OutputNTKs

I NTKProxyConfidence * {}
I

RecipientNames ~ ntk

< Continuous, Linked, Discrete, StrongNTKBounded,

InsecureNTKBoundary> oartition SYSTEM

7 C o n c l u s i o n s

This paper has considered the standard UK glossary definitions of the modes of
operation for secure systems. A mathematical model of a system has been proposed
and precise definitions for Dedicated, System High, Compartmented and Multi-Level
have been given in terms of this model. New, orthogonal, definitions have been
proposed which can be used to describe the differences between various kinds of
system which have the same mode of operation.

Therefore, this paper concludes that it is possible to devise finer-grained
descriptions of a system than the standard modes of operation currently provide. What
remains for future work is to determine whether the finer-grained descriptions
proposed in this paper can be usefully applied to the problems of determining the
appropriate security functionality and assurance requirements which are encountered in
real system procurements.

A second conclusion from the work presented in this paper concerns the value of
the use of formal methods. The development of the mathematical model of a system
required the issues of the boundary of a system and its users to be explored in depth.
Furthermore, the mathematical specification has underpinned the development of the
ideas contained in this paper. Whether or not the proposed definitions of the existing
and new modes are appropriate, the mathematical specification provides a solid
foundation for further discussions in this area. It is concluded that the use of
mathematical modelling can be an effective tool in the development of the conceptual
foundations and terminology for the science of Computer Security.

353

8 R e f e r e n c e s

1. CESG Computer Security Memorandum 1, Glossary of Computer
Security Terms, Issue 2.2, November 1993

. Guidance for Applying the Department of Defense Trusted Computer
System, Evaluation Criteria in Specific Environments, CSC-STD-
003-85, June 1985

. H O Lubbes: COMPUSEC, A Personal View, Proceedings of the 9th
Annual Computer Security Applications Conference, Orlando, Florida,
December 6- 10, 1993

. D E Bell, L J LaPadula: Secure Computer Systems: Mathematical
Foundations, MTR-2547, Volume 1, November 1973; Secure
Computer Systems: A Mathematical Model, MTR-2547 Volume II,
November 1973; Secure Computer Systems: A Refinement of the
Mathematical Model, MTR-2547 Volume III, April 1974; and Secure
Computer System: Unified Exposition and Multics Interpretation,
MTR-2997, January 1976

5. J M Spivey: The Z Notation: a Reference Manual, 2nd Edition,
Prentice Hall International, 1992

. S R Wiseman, C L Robinson and M M Adams: A Mathematical
Definition of Access Control, DRA report DRA/CIS/CSE2/94007,
April 1994

. J A Goguen, J Meseguer: Security Policies and Security Models,
Proceedings of the 1982 Symposium on Security and Privacy,
Oakland, California, April 1982

Annex A: An Overv iew of the Z Notat ion

Z is a mathematical notation that has been developed by the Programming Research
Group at Oxford University. The underlying basis of Z is standard set theory, and it
makes use of the associated notation. Properties about sets are described using
predicate calculus. A Z specification is structured into self contained parts using
schemas.

CO]
{}

a e A

a r A

A_c B

A u B

introduction of a new set, called A

set, with no members

a is a member of the set A

a is not a member of the set A

A is a subset of the set B (possibly equal)

union of members of the sets A and B

354

A \ B members of set A which are not in set B

A x B set consis t ing of all the possible pairings
members of A and B

x : T declaration, x is an element drawn from the set T

IP A powerset, i.e. the set of all possible subsets of
(including empty set)

IP I A powerset, excluding empty set

flS o a r t i t i on A the set of sets AS are disjoint sets and cover A

of

A

A relation may be viewed as a set of ordered pairs. Functions are a special type of
relation where there is a single element in the range for each element of the domain.
Thus, the operators def ined for sets are appl icable to both funct ions and relations.

dam r

rng r

f : A~B

f : A-+~B

r : part ia1_order A

domain of relation, r, i.e. set of all the first elements
of the ordered pairs
range of a relation, r, i.e. set of all the second
elements of the ordered pairs
f is a total function, i.e. domain is all possible
members of the set A
f is a partial function, i.e. domain is not necessarily
all of the set A
r is an ordered relation where all pairs of dements are
not necessarily comparable

I ' v Q

-, P

P ~ Q

V x : T �9 P

3 x : T �9 P

I-P

either predicate P holds or Q does

predicate P does not hold

if P holds then Q does

for all x of type T predicate P holds

there exists an x of type T for which predicate P holds

P is a theorem

I declarat ion

I
I predicates

F ' - i ' l a m e m l

I signature

I
I predicates
I

An axiomatic definition. The declarations are global
and the predicates define properties about them. The
predicates are optional.

A schema. The signature declares some variables and
their types. The predicates define some properties
about them.
The declarations from one schema are made available
to another by including the name of the schema in the
signature. They are in scope until the end of the
schema. The predicates are conjoined with those of
the new schema.

S ~ T schemas S and T are equivalent

355

Annex B: Modes of Operation

The table below lists the possible combinations of the mode of operation partitioning
criteria and gives the mode of operation for each. Certain combinations represent
insecure systems, and where this is the case a note gives the reason. The table also
indicates where the combination of clearance and need-to-know suggests that the UK
Occasional Access rule is being applied.

Users Cleared: all

some

all users (direct and external) cleared for all security
classes on the system
at least one not cleared

Users NTK: all

some

all users (direct and external) have a need-to-know for all
information on the system
at least one does not have a need-to-know for something

NTK Labels: none

weak

strong

no technical security functionality to control access
based on need-to-know
need-to-know mechanisms vulnerable to inappropriate
use by untrusted software
need-to-know mechanisms not vulnerable

Class Labels: high

accurate

all output must be labelled at highest security class on
system
security functionality present to maintain accurate
security class labels

Users
Cleared

all

all

all

all

all

all

all

all

all

all

all

all

Users

NTK

all

all

all

all

all

all

some

some

some

some

some

some

NTK
L ~ d s

none

none

weak

weak

strong

strong

none

none

weak

weak

strong

strong

Class Mode
Labels

high DEDICATED

accurate DEDICATED

high DEDICATED

accurate DEDICATED

high DEDICATED

accurate DEDICATED

high insecure NTK

accurate insecure NTK

high SYSTEM HIGH

accurate SYSTEM HIGH

high COMPARTMENTED

accurate COMPARTMENTED

356

some all none high insecure CI-,ASS

some all none accurate MULTI-LEVELOAR

some all weak high insecure CLASS

some all weak accurate MULTI-LEVEL OAR

some all strong high insecure CLASS

some all strong accurate MULTI-LEVELOAR

some some none high insecureNTK and CLASS

some some none accurate insecure NTK

some some weak high insecure CLASS

some some weak accurate MULTI-LEVEL

some some strong high insecure CLASS

some some strong accurate MULTI-LEVEL

NTKThis combination is insecure because although not all users need-to-know all the
information, no technical security controls are applied to prevent them getting access.

CLASSThis combination is insecure because although not all users are cleared, no
controls are applied.

OARThis combination suggests that the Occasional Access rule applies since
although not all users are cleared for all the information, all have a need-to-know.

