
On Strengthening Authentication Protocols to
Foil Cryptanalysis*

Wenbo Mao and Colin Boyd

Communications Research Laboratory
Department of Electrical Engineering

University of Manchester
Manchester M13 9PL, UK

Email: wenbo~comms.ee.man.ac.uk

A b s t r a c t . Cryptographic protocols have usually been designed at an
abstract level without concern for the cryptographic algorithms used in
implementation. In this paper it is shown that the abstract protocol
definition can have an important effect on the ability of an attacker to
m o u n t a successful attack on an implementation. In particular, it will be
determined whether an adversary is able to generate corresponding pairs
of plaintext and ciphertext to use as a lever in compromising secret keys.
The ideas are illustrated by analysis of two well-known authentication
systems which have been used in practice. They are Kerberos and Kryp-
toKnight. It is shown that for the Kerberos protocol, an adversary can
acquire at will an unlimited number of known plaintext-ciphertext pairs.
Similarly, an adversary in the KryptoKnight system can acquire an un-
limited number of data pairs which, by a less direct means, can be seen to
be cryptanalytically equivalent to known plaintext-ciphertext pairs. We
propose new protocols, using key derivation techniques, which achieve
the same end goals as these others without this undesirable feature.

1 I n t r o d u c t i o n

In recent years great advances have been made in unders tanding how to de-
sign cryptographic protocols for enti ty authent icat ion and secure message ex-
change. Various techniques have been proposed (e.g., [19, 20, 12, 13, 10, 4]) and
thereafter security flaws or weaknesses were discovered. To repeatedly find and
fix problems in the published authenticat ion mechanisms is an active research
topic. Meanwhile, systems based on these mechanisms have been implemented;
two well-known systems are Kerberos [17, 14] and KryptoKnight [18]. Natu-
rally, these implementat ions should also be frequently examined and debugged
in accordance with discoveries of the problems in the underlying mechanisms.

In applications of distributed computa t ion which crucially require secure
communicat ion, ent i ty authenticat ion establishes a secure channel between com-
municat ion parties remotely si tuated in a hostile environment. In the techniques

* This work is funded by the UK Engineering and Physical Sciences Research Council
under research grant GR/G19787.

194

mentioned above, this task is achieved through the use of a trusted authentica-
tion server and as a special case, the server itself can be one of the communica-
tion parties. It is always assumed that a secure channel already exists between a
client principal and the server. Let this existing channel be referred to as a long-
term channel, which is established through some expensive method in a higher
level of the security hierarchy. It must be understood that the security essence
of a long-term channel is its low bandwidth: its usage must be limited only to
establish other channels of higher bandwidth. In other words, authentication
protocols are meant to use a secure long-term channel to transmit or to agree
a small amount of secrets (usually, a cryptographic key) which may serve as a
new secure channel (called a session channe 0 along which information can be
t ransmit ted with a smaller delay. Notice that a channel with a high bandwidth is
vulnerable to temptations in terms of cryptanalysis; it therefore should a limited
lifetime. Whenever needed, communication parties should run an authentication
protocol to create a new session channel.

It is thus clear that the reason for maintaining the low bandwidth of a long-
te rm channel is in order to foil cryptanalysis passively and/or actively targeted
on it. Only by taking this into account does the required and assumed long life-
t ime of a long-term channel make sense. In public-key cryptographic techniques
there is also a need for thoughtful use of a long-term channel. For instance, in the
case of the lZSA algorithm [9.1], a long-term channel between a pair of principals
can be identified with the private keys of each party; such a key is matched to the
public key which is certified to the principal. This viewpoint should be consid-
ered when the RSA algorithm is used to "bootstrap" a conventional encryption
scheme.

In this paper, we keep in mind the working principle of entity authentica-
tion mechanisms discussed above while we investigate the existing techniques.
We focus on two implemented systems, Kerberos (Section 2) and KryptoKnight
(Section 3). These two systems will be shown to allow an adversary to acquire
at will an unlimited number of known plaintext-ciphertext pairs. So viewed by
the adversary, long-term channels of these systems are actually used at a very
high bandwidth, even higher than that of any session channel. This is inconsis-
tent with respect to the working principle of authentication mechanisms. Our
investigation will result in some insight into how an authentication mechanism
should be designed to fulfill the intended purpose of entity authentication. In
Section 4, we will demonstrate our idea by presenting remedies for the problem,
using an idea of "one-time" channel derivation, which achieves the same end
goals as these others without the undesirable feature revealed. In addition we
will see another good feature possessed in one of our remedy techniques: perfect
forward secrecv [8], which means that loss of a long-term key should not lead to
loss of any session key which has been established by the lost key. We will also
discuss the possibility of extending our techniques to conventional authentication
protocols. Finally, Section 5 forms our conclusion.

The remainder of this section is devoted to a brief overview of cryptanalysis
threats that we will be discussing throughout the paper. Further details may be
found in various texts such as the recent book by Schneier [22].

195

1.1 An Overview of Cryptanalysis Threats

In conventional cryptography the sender and recipient of a message share a key,
which is known to no other principals, that allows each of them to encrypt or
decrypt messages. It is inevitable that an attacker will be able to record and
analyse a large amount of the encrypted ciphertext t ransmit ted between the two
parties with the aim of extracting the plaintext or analysing the key used. The
cryptographic algorithm employed should be designed so that this is not possible
for an attacker using the resources anticipated.

However, resistance to such a cipherte~t only attack is not sufficient to guar-
antee security. It may be anticipated that the attacker will be able to obtain por-
tions of ciphertext for which he also knows the corresponding plaintext. These are
known as plaintext-ciphertext pairs. A known plaintext attack, which a t tempts to
find the shared key from a number of plaintext-ciphertext pairs, is considerably
harder to defeat. An even sterner case is the chosen plaintext attack, in which
the attacker is able to choose plaintext portions and see their encrypted ver-
sions. Recent advances in cryptanalysis [3] have shown that resilience to known
and chosen plaintext attacks is not so easy to achieve as had been previously
thought. It is particularly worth noticing that authentication protocols which
apply a challenge-response technique, if not carefully designed, can be abused
to form a substantial amount of plaintext-ciphertext pairs. In Section 2 we will
see that the authentication system Kerberos, which implements the techniques
of a category of published authentication protocols, allows an attacker to obtain
an unlimited amount of plaintext-ciphertext pairs to be used to undermine the
long-term channel between a server and a client.

Another type of cryptographic function is a one-way hash function. Such a
function has a one-way property which means that it is easy to compute hashed
values in the direction from domain to range but computationally infeasible,
given almost any hashed value, to find any input it could have come from. Typi-
cally such functions map long strings onto much shorter ones. An attractive fea-
ture due to the unequal sizes of domain and range is that plaintext-ciphertext
pairs generated on the ~:hannel are of little use for an opponent. The idea of
using one-way hash functions as the basis of cryptographic protocols appeared
quite early in the literature, e.g., Evan et al. [9], Merkle [16] and Gong [10]. Sub-
sequently the idea has been employed in the authentication and key exchange
system KryptoKnight [18]. However, in Section 3 we will see that owing to an
undesirable design feature, an attacker can force the domain and the range of
the one-way function implemented in the system to have the same size and at
the same t ime obtain an unlimited amount of plaintext-ciphertext pairs. Nor-
mal cryptanalysis techniques can then be applied to undermine the long-term
channel.

Having explained the threat scenario, it is attractive if we can guarantee that
a long-term channel will never be used to provide plaintext-ciphertext pairs.
Such a technique will be presented in this paper.

196

2 K e r b e r o s

Kerberos is based on the Needham-Schroeder protocol, but makes use of times-
tamps as nonces to remove the problem pointed out by Denning and Sacco [6].
In Kerberos, basic message exchanges between a network client A and an au-
thentication server S have the following form:

1. A --* S : request
2. S -~ A : reply

In this presentation, the line X --* Y : Z describes a message communication
directed from principal X to principal Y; Z represents the transmitted message.
Requests from clients are always sent in plalntext and replies from the server
are organised messages called tickets. A ticket is a record that helps a client
to authenticate a service. A slightly simplified form of ticket can be written as
below (cf., gerberos version 5 [14]):

t icket = version-number, addresses, names, encrypted-part

where the encrypted-part is as below:

encrypted-part = {flag-bits, session-key, address, names, timestamps,
lifetimes, host-addresses, authorization-data }gas

The notation { M } K denotes a ciphertext generated from a (symmetric)
crypto-algorithm which uses M as input data and K as encryption key. In the
above example, the key K A s is the secret key shared between the client principal
A and the server principal S; it is the basis of the long-term channel existing
between these two principals.

We see that in the encrypted part of a Kerberos ticket the messages axe non-
secret data except for the session key. To an external adversary, the principal
addresses and names are fully known, and timestamps and lifetimes have easily
guessable formats. To an internal adversary, such as the third party principal, B,
with whom A intends to share a session key by initiating an authentication run,
all data in the encrypted part of a ticket are fully known. (In this paper, B is
always viewed as a potential enemy.) We observe that the encryption algorithms
used by Kerberos (they will be discussed below) treat these data as secrets. We
regard such a treatment to be unwise. In so doing, each run of the protocol will
generate plaintext-ciphertext pairs for an adversary to analyse the long-term
secret key shared between the server and a client principal. We now explain why
in the case of Kerberos, the effect of the cryptanalysis may not be ignored.

In Kerberos, a request from a client principal to the server is sent in plalntext.
Thus the adversary's action is not limited only to passive monitoring of the
normal runs of the protocol on the network traffic, which can only allow him
to obtain a trivially small amount of plaintext-ciphertext pairs. The opponent
can in fact masquerade as A and send an unlimited number of plaintext requests

197

to S, who presumably is a node in the computer network and will prompt the
opponent by supplying tickets, i.e., plaintext-ciphertext pairs, onto the network.

In the encrypted part of a ticket, known data follow a session key which varies
in every ticket returned from the server. Thus in the case of using a chained
encryption algorithm (in Kerberos V5, the encryption algorithm used is cipher
block chaining (CBC), see Section 6.3 of [14]), the constant known plaintexts
will be "garbled" by the feedback of the previous ciphertext output. We now
look at how such a garbling will help the adversary to obtain a large amount of
plaintext-ciphertext pairs. The output of a block cipher using CBC mode is a
sequence of n-bit cipher blocks which are chained together in that each cipher
block is dependent not only on the current input plaintext block, but also on
the previous output cipher block. Let P1, P 2 , " ' , P,,~ be plaintext blocks to be
input to CBC algorithm and C1, C2,. . �9 C,~ be ciphertext blocks output from
the algorithm. Then the encryption procedure to generate a block of ciphertext
is as below:

o~ = eg(P~ �9 0~-I)

where eK() denotes an encryption algorithm keyed by K and @ denotes the
addition, bitwise modulo 2. So P~ �9 Ci-1 and Ci form a plaintext-ciphertext
pair. Now let P1 be the session key which varies in every ticket returned from
the server. Then it is easy to see that C1, C~, .. . vary in every ticket. The
consequence of this garbling is: simply repeating a constant request, the opponent
will be guaranteed to obtain varied plaintext-ciphertext pairs with which he can
build a dictionary. Notice that the correct use of CBC requires each encryption
calculation be initialised by a new "initial vector" (IV); these varied IV's can
also play the role of the session keys.

It seems there is a simple cure for the problem that we have revealed: the
server should record the requests from clients; if numerous requests from a prin-
cipal are. detected within a short period of time, the service should be denied.
However, this then allows a denial of service attack with which a malicious person
can cheat the server to stop serving innocent clients. A denial of service at tack
of this kind can only be prevented if such an attack as the above is allowed.

From our analysis so far it is apparent that the Kerberos authentication sys-
tem can be abused by an opponent to obtain an arbitrary amount of plaintext-
ciphertext pairs. It is not hard to imagine that by performing the attack in a
short period of time, the amount of pairs gathered by the opponent can exceed
the quantity of ciphertexts of a session. This forms rather a strange situation:
a session key which generates a smaller amount of ciphertext-only data is stipu-
lated to have a short lifetime while a key which can generate a larger amount of
plaintext-ciphertext pairs is, on the contrary, to be used in a much longer period
of time. Considering that cryptographic keys in modern encryption algorithms
(such as DES) have a fixed format, it cannot be that some keys are uncondition-
ally stronger than others. The stipulated difference in lifetimes of the keys is due
to the consideration of different types of data to be encrypted. Unfortunately,
in the case of Kerberos, this reasonable stipulation turns out to be a dangerous
practice.

198

3 K r y p t o K n i g h t

KryptoKnight is an authentication system developed by Molva et al. [18]. Its
technical basis is similar to that of a protocol that Gong devised [10]. In the
treatment of non-secret data, KryptoKnight is extremely different from Kerberos
where a substantial amount of non-secret data are encrypted against access. In
KryptoKnight, non-secret data are sent in plaintext. The integrity of these data
is protected by using the one-way property of a cryptographic transformation.
Such a treatment shows a better understanding of authentication mechanisms,
i.e., the required property of cryptographic services for authentication is one-
way transformation, rather than secret concealment. In the previous section we
have seen that to conceal non-secret data against access is not a good practice.
Authentication applying the one-way property has many other advantages over
applying the secret-concealment property [15].

In the message exchange for key distribution, KryptoKnight uses the image
of a one-way transformation, namely, a mechanism called a message authentica-
tion code (MAC), as a key to conceal a distributed session key in the fashion of
the one-time pad. Below is such an exchange where a client principal A requires
the authentication server S to generate and send to her a session key K to be
shared with a third party B.

1. A --~ S : A,B, NA
2. S ~ A : Ns ,NA ,B ,T , MACK~s(NA @ B, Ns,NA | S,T) @ K

In the above messages, NA is a nonce chosen by A for verifying the timeliness
of the message replied from the server, Ns is the nonce generated by the server
and T is a lifetime stating the expiration time of the distributed session key
K. The one-way transformation is denoted by MACKAs(.); it is keyed by the
long-term key KAs shared between A and S. Notice that because of the one-way
property of the MAC mechanism, the long string of plaintext input and the short
string of the MAC (64 bits, see [18]) in message line 2 do not form useful pairs
for an adversary. Furthermore, the MAC is concealed by the session key so it is
not available to an external adversary on the network. Therefore, the attacking
scenario that applies to Kerberos does not apply to KryptoKnight.

However, this clever design does not stop an internal opponent who has a
long-term channel with the server. Assume that B is such a person. The message
line 1 sent in plaintext means that B can masquerade as A, at the same time
playing his own role. By fixing (or carefully choosing) NA, he can obtain an
unlimited number of MAC's which we put in the following set:

{MACKAs(NA | B, Ns, NA @ S,T) [Ns known to B}

Notice that among the data input to these MAC's only Ns is a variable, or a
real input value; the rest of the data are constants. Therefore we can rewrite the
above set as the following one:

{MAC~KAs(Ns) INs known to B}

199

In fact, elements in this set can be viewed as outputs from a block encryption
algorithm which transforms one block of nonces, i.e., Ns, into one block of ciphers
with the same block size. A more appropriate name for such a transformation
should be ECB, the electronic code book mode of operation on a block cipher
algorithm. Algorithmically, we can see little difference between a MAC with one-
block length of input string and an ECB with the same input string. Now that
both Ns and MAC~As(Ns) are 64-bit blocks (see [18]), they form a perfect
plaintext-ciphertext pair. B can build a dictionary of such pairs for undermining
the long-term channel between A and S.

Similar to the scenario of the denial of service attack toward Kerberos that
we discussed in the previous section, it is not a good solution to stop serving
B when numerous malicious requests are detected. A desirable solution should
be some mechanism designed in the protocol which does not prevent malicious
action but instead prevents achieving the intended goal of such a malicious ac-
tion. For instance, it will be attractive if no plaintext-ciphertext pairs will be
produced against the long-term channel through sending a large amount of ma-
licious requests onto the network. Such a technique will be devised in the next
section.

4 T w o R e m e d i e s f o r K r y p t o K n i g h t

Kerberos and KryptoKnight apply encryption techniques in two extremely dif-
ferent manners. Kerberos overuses the secret-concealment property of crypto-
algorithms; it unnecessarily, even harmfully, protects the confidentiality of non-
secret data. KryptoKnight, on the other extreme end, underuses that property;
lack of a secret t ransmit ted along the long-term channel (the session key dis-
tr ibuted in KryptoKnight is not a secret to an internal attacker as the third
party) makes the channel too exposed. Naturally, we should consider a balance
between these two extreme situations. Our remedies are to design some secrets
to be passed through the long-term channel. Such a secret is protected by, and
protects, the long-term key. Two remedies for KryptoKnight using this idea are
given below.

4.1 R e m e d y S c h e m e 1

In the first remedy, the needed secret is a nonce N~ replied from the server. The
original protocol will be revised into the following version:

1. A-* S : A,B, NA
2. S -~ A: {N~s}KAs,Ns,B,T, MACKAs~N'(NA | B, Ns,NA | S,T) @ K

In this specification, the usage of the identifiers is the same as in the original
KryptoKnight, except the extra nonce N~, which is generated by the server for
each run. The server sends it to A under the protection of the long-term key KAs
with an appropriate encryption algorithm (e.g., DES ECB). Thus, N~ is a secret

200

between A and S. By adding this secret, bitwise modulo 2, to the long-term key
KAS, a "one-time" channel is formed and used to create a "one-time" MAC for
each run. Thus, if B performs the same attack that we have described in the
previous section, then each attacking run will give him one plaintext-ciphertext
pair against a "one-time" channel.

Finally, it is not difficult to see that in this revision, except that we have
eliminated the attacking scenario revealed in Section 3, the security essence of
the original KryptoKnight has not been changed and this carl be analysed anal-
ogously to that of the original KryptoKnight [18].

4.2 R e m e d y S c h e m e 2

In the second remedy, the needed secret is derived from the Diffie-Hellman expo-
nential key exchange technique [7]. Briefly, A and S each pick random exponents
RA and Rs . Assuming they agree on a common base a and modulus p, A com-
putes NA = a RA modp and S computes Ns = a Rs modp. The NA arm Ns are
used in the same way as these two identifiers are in KryptoKnight.

Now A, knowing /~A and ans modp, can compute

(aRs)aA mod p = a RsaA mod p

Similarly, S can compute

(aliA) Rz modp = a RARs modp

So A and S agree a secret

Y = a asnA modp = a naRs modp

The value Y will be used as the needed secret which is exclusively shared between
A and the server.

A message exchange for key distribution to realise this idea is given below.

1. A--~ S : A , B , NA
2. S ~ A : Ns , N's, B, T, M A C K A s e y (N A @ B, Ns , NA 0 S, T) ~ K

The protocol presentation is almost identical to KryptoKnight. In the mes-
sage returned from S, a one-time channel is used to create the MAC. This channel
is formed by adding, bitwise modulo 2, the secret Y to the long-term key K a s . It
is one-time because even if NA is a replay of an old message, the server will always
generate a new Ns, and so Y is fresh. Now let B perform the same attack that
we have described in Section 3. As above, each attacking run will give him one
plaintext-ciphertext pair against a one-time channel. So no plaintext-ciphertext
pair will be generated by this protocol against the long-term channel based on
KAs. In order to form a dictionary against the long-term channel, B faces the
well-known difficulty of computing a large amount of discrete logarithms.

The challenge-response mechanism of the original KryptoKnight based on
the exchange of freshness identifiers NA and Ns is maintained, because now

201

these two identifiers are essentially fresh and random as long as RA and Rs
are. Ns is now no longer related to NA as it is in the KryptoKnight protocol.
For message integrity and authentication purpose, the value N~ is now a cipher
of Ns under the session key K, i.e., N~ = {Ns}K. The security essence of
the original KryptoKnight will not be changed due to this revision and can be
analysed analogously to that of the original KryptoKnight [18].

A good property possessed by this version of the remedy for KryptoKnight
can be referred to as perfect forward secrecy. An authenticated key exchange
protocol provides perfect forward secrecy [8] if disclosure of long-term secret
keying material does not compromise the secrecy of the exchanged keys from
earlier runs. Here in the revised KryptoKnight, the secrecy of the session keys
established in the history of a long-term key depends on the various one-time
secrets agreed between A and S. The secrecy will not be damaged as long as these
one-time secrets have been properly disposed of. This property is inherited from
the use of the Diffie-Hellman technique for derivation of the one-time secrets.

4.3 Discuss ion

The first remedy scheme given in Section 4.1 effectively eliminates the potential
attack revealed in Section 3 which allows an adversary to accumulate an arbi-
t rary amount of plaintext-ciphertext pairs against a long-term key. The remedy
strengthens the original KryptoKnight in terms of disallowing algorithmic crypt-
analysis methods based on numerous chosen or known plaintext-ciphertext pairs.
However, we should point out that if the cryptanalysis technique is simply key-
space search by brute force, then that remedy does not strengthen the original
protocol. This is because the computing time needed for searching a key for
the first remedy protocol and that for the original KryptoKnight only differ a
polynomial function of the key size (it is reasonable to view the computing time
as a function of the key size). For instance, guessing a candidate key KAs, we
can obtain a candidate nonce N~ in the remedy protocol by a step of decryption
which takes a polynomial time; then we can further test whether KAs | Nb is
a correct keying value to have been used for creating the MAC, and this test
is the basic computation of any key-searching algorithm. Now that the time for
key search is an exponential function of the key size, the polynomial difference
due to the remedy will not count.

In the second remedy scheme, due to the use of the Diffle-Hellman exponen-
tial key derivation technique, the key searching problem now faces computing
discrete logarithms. The difficulty of this problem will depend on the size of
the prime p used. For a properly chosen large prime, the best known algorithm
to date has a sub-exponential complexity [5]; no polynomial time algorithm is
known. However, it should be noted that there is a trade-off between the extra
security gained and the consequent increase in system complexity.

There are various techniques for distributing or agreeing session keys, but the
entity authentication steps that are inevitably needed in these techniques are of-
ten very similar. In practice these are mainly achieved by using shared secret
keys or passwords in a conventional fashion (see e.g., [8, 11] for non-conventional

202

key agreeing ideas with conventional authentication methods). Similar to the
problem found in KryptoKnight, the authentication parts of these techniques
are found to have weaknesses for allowing cryptanalysis of shared keys or pass-
words. Our techniques proposed in this paper show a practical idea for preventing
potential algorithmic cryptanalysis threats based on gathering numerous chosen
or known plaintext-ciphertext pairs. In addition, the discussion supplied here
points out that cryptanalysis threats in terms of brute-force key search needs to
be countered by extra system complexities. Some authors [1, 2] have considered
methods against brute-force searching for passwords; the remedy scheme 2 can
be viewed as a different approach to a similar goal.

4.4 Appl icab i l i ty of the Strengthening T e c h n i q u e to C o n v e n t i o n a l
Authentication p ro to co l s

Finally, we point out that the techniques supplied in this paper can be applied to
strengthening conventional authentication and key distribution protocols which
employ authentication servers. Here we show an example based on using the
remedy scheme 2.

The weakness that we have discussed on Kerberos in Section 2 generally
applies to conventional protocols. For instance, in the case of the Otway-Rees
protocol [20] below:

1. A --* B : M, A, B, {NA, M, A, B}KAs
2. B ~ S : M, A, B, {NA, M, A, B}KAs, {NB, M, A, B}Kss
3. S --* B : M, {NA,KAB}KAs, {Ns,KAB}KBs
4. B ~ A: M, {NA, KAS}KAs

an opponent can repeat sending messages specified in the first line on to the
network (he can do so by varying M and using any garbage for the cipher
chunk), and B will thereby prompt messages specified in the second line. This
malicious action results in an accumulation of chosen plaintext-ciphertext pairs
in the same way as the attack on Kerberos explained above.

To make an example of a wide application of our technique, we suggest
strengthening the Otway-Rees protocol into the following version:

1. A--* B : M , A , B , NA
2. B --* S : M , A , B , NA,Ns
3. S --* B : M, NsA,{B, NA, KAB}K~s@yA,NsB,{A, NB,KAB}Kss@ys
4. B -* A: M, NsA,{B , NA,KAB}Kaseya

where
YA = a Rs•aA modp = NsA RA modp = NA asA modp

and
YB = a RsBRB modp = NsB RB modp : NB RsB modp

and a, p are appropriate elements in the DifSe-Hellman key-agreement technique.

203

5 Conclusion

Protocols need to be designed to take account of their implementation as well
as their abstract security properties. We have shown how well known protocols
allow attackers to obtain unnecessary assistance in obtaining plaintext-ciphertext
pairs for use in cryptanalysis. Finally we have illustrated that simple steps may
be taken to prevent such attacks which have very little computational cost to
the legitimate users.

Acknowledgements

We would like to thank Paul Van Oorschot for helpful comments and suggestions
on a draft of this paper which lead to the use of the Diffie-Hellman exponential
key derivation technique.

References

1. R.J. Anderson and R.M.A. Lomas. On fortifying key negotiation schemes with
poorly chosen passwords. Computer Laboratory, University of Cambridge (ob-
tained from personal contact), 1994.

2. S.M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In Proceedings of the 1992 IEEE Symposium on
Research in Security and Privacy~ 1992.

3. E. Biham and A. Shamir. Differential Cryptanalysis of the Data Eneryption Stan-
dard. Springer Verlag, 1993.

4. R. Bird, I. Gopal, A. Herzberg~ P. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic design of two-party authentication protocols. In Crypto '91, LNCS,
1991.

5. E.F. Brickell and A.M. Odlyzko. Cryptanalysis, A Survey of Recent Results, pages
501-540. IEEE Press, 1992.

6. D.E. Denning and G.M. Sacco. Timestamps in key distribution protocols. C.ACM,
24(8):533-536, August 1981.

7. W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Trans. Info.
Theory, IT-22(6):644-654, 1976.

8. W. Diffie, P.C. Van Oorschot, and M. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2:107 125, 1992.

9. E. Evan, W. Kantrowitz, and E. Weiss. A user authentication scheme not requiring
secrecy in the computer. C.ACM, 17:437-442, 1974.

10. L. Gong. Using one-way function for authentication. Computer Communication
Review, 19(5):8-11, 1989.

11. L. Gong. Authentication, key distribution, and secure broadcast in computer net-
works using no encryption or decryption. Technical Report SRI-CSL-94-08, SRI
International, 1994.

12. ISO/IEC. N 739, DIS 9798-21 information technology - security techniques - en-
tity authentication mechanisms - part 2: Entity authentication using symmetric
techniques, 1993-08-13.

204

13. ISO/IEC. CD 11770-2: Key management, part 2: Key management mechanisms
using symmetric techniques, 1993-10-03.

14. J. Kohl and C. Neuman. The Kerberos network authentication service (v5). In-
ternet Archive RFC 1510, September 1993.

15. W. Mao and C. Boyd. Development of authentication protocols: Some miscon-
ceptions and a new approach. In Computer Security Foundations Workshop VII.
IEEE Computer Society Press, 1994.

16. R.C. Merkle. Secure communications over insecure channels. C.ACM, 21:294-299,
1978.

17. S.P. Miller, C. Neuman, J.I. Schiller, and J.H. Saltzer. Kerberos authentication
and authorization system. Project Athena Technical Plan Section E.2.1, 1987.

18. R. Molva, G. Tsudik, E. van Herreweghen, and S. Zatti. Kryptoknight authenti-
cation and key distribution system. In ESORICS '92, LNCS 648, pages 155-174,
1992.

19. R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers. C.ACM, 21(12):993-999, 1978.

20. D. Otway and O. Rees. Efficient and timely mutual authentication. Operating
Systems Review, Vol 21(1):8-10, 1987.

21. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. C.ACM, 21:120-126, 1976.

22. B. Schneier. Applied Cryptography. John Wiley & Sons, 1994.

