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W h e n  an al ternat ive c o m m a n d  is executed, a branch whose guard  is passable is 
chosen. If  more  than  one guard  is passable, then any one of  the corresponding 
branches can be executed. If  no guard  is passable then the c o m m a n d  fails and 
the p rogram terminates.  On each i terat ion of  the repetit ive command ,  a b ranch  
whose guard  is passable is executed. If  more  than  one guard  is passable, then like 
for the alternative,  any one of the branches is chosen. W h e n  no guard  is passable, 
the c o m m a n d  terminates  and the p rogram continues. The  s t ructura l  opera t ional  
semantics  of  this language is defined in Figure 1. The  rules are expressed in terms 
of  rewritings of  configurations. A configurat ion is either a pair  < S,  ~ > ,  where S 
is a s t a t ement  and c~ a state, or a state o. The  lat ter  is a terminal  configuration.  

< y :=  e x p ,  ~ > -+ c r [va l ( exp ,  cr)/y] 

< t[i] :=  e x p ,  cr > --~ c~[t[i ~-- v a l ( e x p ,  c~)]/t] 

< s k i p , ~ r >  - - ,  ~r 

< $1,0" > ---+ < S~,O'I > 

< S 1 ; S 2 , ~ r >  --+ < S ~ ; S 2 , c r ' >  

< H I , ~  > --~ a b o r t  

< $ 1 ; S 2 , ~ >  --* a b o r t  

< C i , ~  > --~ t r u e  

< [ C 1  ~ S l r n C 2 - - *  S2[] . . . . . .  [~C~ ~ S , , ] , a  > - -  < S i , a  > 

< Ci  , v > ~ a b o r t  

< [C1 - - ~ S 1 Q C 2  - ~ . q 2 ~  . . . . . .  oCn- -~  S~,],cr > --~ a b o r t  

V i .  < Ci ,~r  > ~ f a l s e  

< [C1 ~ S 1 D C 2  --+ S ~ 0  . . . . . .  D C n  ~ S ,~] ,o  > ~ a b o r t  

< C i , c r  > --~ t r u e  

< *[C1 ~ S1DC_~ --~ $2[] ...... nC~ ~ S n ] , a  > 
< N ;  *[C~ -~ S~EnC2 ~ S 2 D  . . . . . .  D C ~  ~ S~] ,  ~ > 

< C i , ~ r >  --~ a b o r t  

< *[C1 --+ S 1 U C 2  --~ S 2 D  . . . . . .  O C ~  -+ S'~], a > ~ a b o r t  

V i .  < C i , c r  > --+ f a l s e  

< *[C  1 --+ S1DC2  ---+,q2D ...... [ B C n - - ~ S n ] , ~ r >  ---+ ~r 

Fig .  1. Opera t ional  semantics 



Valuat ion  of  Trust in Open  Networks  

Thomas Beth Malte Borcherding* 

European Institute for System Security 
University of Karlsruhe, Germany 

Birgit Klein 

Abst rac t .  Authentication in open networks usually requires participa- 
tion of trusted entities. Many protocols allow trust to be obtained by 
recommendation of other entities whose recommendations are known to 
be reliable. To consider an entity as being trustworthy, especially if there 
have been several mediators or contradicting recommendations, it is nec- 
essary to have a means of estimating its trustworthiness. In this paper we 
present a method for the valuation of trustworthiness which can be used 
to accept or reject an entity as being suitable for sensitive tasks. It con- 
stitutes an extension of the work of Yahalom, Klein and Beth ([YKB931). 

K e y w o r d s :  Trust values, Trust measures, Distributed systems 

1 I n t r o d u c t i o n  

Communication in open networks often requires information about the trust- 
worthiness of the participating entities, especially when authentication proto- 
cols need to be performed. If, for example, user A receives a message signed 
allegedly by user B without having B's verification data at hand 1, she can ask 
a trusted authentication server (AS) of her choice to confirm the signature. In 
large distributed networks it will frequently happen that this AS does not have 
the required data in its database and will have to ask another trusted AS for 
assistance. This AS, in turn, can repeat this procedure until eventually a suffi- 
ciently informed AS is reached and the data can be handed to A. For A to believe 
in the received data being authentic she has to trust the terminal AS and hence 
the sequence of mediating ASs (the recommendation path). The longer the path 
becomes, the less trustworthy the final entity intuitively will be. 

Depending on the task which A wants an entity of such a path to perform, she 
has to decide whether it is sufficiently trustworthy. Usually there is a maximum 
value one is willing to risk within a certain trust relationship. To determine such 
a maximum value, one has to estimate degrees of trust. 

A valuation of trustworthiness also becomes relevant when different entities 
offer different allegedly authentic data of the same entity. In such cases the 
trustworthiness of these entities needs to be compared. 

* Now working at the Institute of Computer Design and Fault Tolerance, University 
of Karlsruhe, Germany 

1 B's verification data corresponds to its public key when using a digital signature 
scheme. 



In the past there have been several approaches to describe trust  formally (e.g. 
[BAN89, GNY90, Ran92, YKB93]). The result were logics which can be used to 
draw conclusions from given initial trust  relationships like who is t rustworthy 
and which public data  belongs to whom. These logics lack the notion of degrees 
of trust; an entity is considered either trustworthy or not. 

In [TH92] Tarah  and Hui tema propose a valuation of certification paths 
(which are related to the recommendat ion paths mentioned above) and give 
some hints on how to perform such a valuation. As examples for measures they 
suggest the min imum of the involved trust  values or the length of the certification 
path.  

Some questions remain open, e.g. the meaning of an actual value of trust- 
worthiness and how different recommendations about  an entity with different 
degrees of trustworthiness can be combined to yield a unique value. 

In this paper we introduce a measure of trustworthiness based on the work of 
Yahalom, Klein and Beth ([YKB93]) and consider the aforementioned questions. 
Further work on this topic can be found in [Bor93]. 

The paper ' i s  organized as follows. In section 2 we introduce a formal rep- 
resentation of valued trust relationships, in sections 3 and 4 we show how new 
relationships and their values can be derived from already existing ones. This  
method of derivation is demonstrated by an example in section 5. In section 6 
we show how the actual decision whether to trust an entity or not can be made.  
We conclude with a summary  in section 7. 

2 F o r m a l  R e p r e s e n t a t i o n  o f  T r u s t  R e l a t i o n s h i p s  

In this section we introduce a formal representation of valued trust  relationships. 
It  is an extension of the representation used in [YKB93]. We assume the following 
underlying model of a distributed system: 

The system consists of entities which communicate via links. Each entity has 
a unique identifier and may have a secret which can be used for authentication 
purposes. The entities can generate, read and modify any message on any link. 
Entities may have some computat ional  power e.g. for the encryption and decryp- 
tion of messages. Some entities are distinguished as authentication servers (AS) 
as they support  the authentication of other entities. 

To model degrees of trust, we need the notion of numbers of positive/negative 
experiences. We assume that  an entity can assign a certain number  (value) to 
each task it entrusts to another entity. This number  can be thought of as the 
number  of ECU being lost when the task is not fulfilled. Each lost or not lost 
entrusted ECU increments the number  of positive or negative experiences by 
one. 

2.1 Trust  Class i f i ca t ion  

In [YKB93] it is pointed out that  there is no need to trust  an entity completely 
if one expects it only to perform a limited task. After examining some authen- 
tication protocols, the following classes were identified: 



- k e y  g e n e r a t i o n :  Providing good quality keys to be used with some agreed 
upon cryptographic function. 

- i d e n t i f i c a t i o n :  Correctly associating entities (respectively their unique 
identifiers) with their identifying data, e.g. public or shared keys. 

- k e e p i n g  secre t s :  Keeping classified information secret. 
- n o n  i n t e r f e r e n c e :  Not interfering in other entities' sessions (e.g. by eaves- 

dropping or impersonating). 
- c lock  s y n c h r o n i z a t i o n :  Maintaining close clock synchronization. 
- p e r f o r m i n g  a l g o r i t h m i c  s teps :  Following protocol specifications correctly. 

Trust with respect to one of these classes is independent of trust with respect 
to other classes. It may be perfectly reasonable to trust an authentication server 
in a different domain with respect to identifying entities in that  domain without 
trusting its key generation capabilities. 

2.2 D i r e c t  'Trust  a n d  R e c o m m e n d a t i o n  T r u s t  

For each of the classes of trust there are two types of trust: direct trust  and 
recommendation trust. To trust an entity directly means to believe in its capa- 
bilities with respect to the given trust class. Recommendation trust expresses the 
belief in the capability of an entity to decide whether another entity is reliable 
in the given trust class and in its honesty when recommending third entities. 

Recommendation trust can be granted in a restricted manner. Constraints 
can be imposed on the properties of the recommending entities further along 
the path as well as on the entities which are eventually recommended as being 
directly trustworthy. These properties can include the very names of entities, 
their domains or the number of entities on the path so far. The constraints are 
used to express distrust towards entities. 

Due to the different notions of direct trust and recommendation trust, we 
present their formal representations separately. 

Direct Trust 

P trusts~ eq Q value V 

A direct trust relationship exists if all experiences with Q with regard to trust 
class x which P knows about are positive experiences, seq is the sequence of 
entities who mediated the experiences 2 (the recommendation path) excluding 
P and Q. V is a value of the trust relationship which is an estimation of the 
probability that  Q behaves well when being trusted. It is based on the number 
of positive experiences with Q which P knows about. 

Let p be the number of positive experiences. The value v~ of these experiences 
is computed as follows: 

v~(p) = 1 -  ~P . (1) 

2 We regard a recommendation as propagation of positive experiences. 



This value is the probability that  Q has a reliability of more than 5, founded 
on the information P possesses about Q. The reliability is the probability that  
Q turns out to be reliable when being entrusted with a single task, i.e. a task of 
value 1. c~ should be chosen reasonably high to ensure sufficiently safe estima- 
tions. 

P r o p o s i t i o n  1: Let ok be a variable for the number of positive experiences and 
r be the reliability of an entity. Assume further that r is distributed uniformly 
over the set of all entities. Then the probability that r is greater than (~ on the 
condition that ok equals p is 1 -  ap+l. 

P r o o f :  

P ( r  > . l o k  = p) = P ( r  > 5, ok = p) f l   Pdx 
P(ok  = p) - 

(P + 1)-1(1 - av+l)  
(p "[- 1) -1 

= 1 - OL p+I (2) 

o 
We use the formula 1 - av in our model instead of 1 - c~v+l to enforce a 

trust degree of zero for an unknown entity. This slight deviation from the stated 
semantics (which is meaningless for large p) buys us a much more convenient 
model for the trust values. 

The value of direct trust has the following (realistic) property: A single ad- 
ditional positive experience has more influence on a low value than on a high 
value._ Obviously, a positive experience with a stranger offers more information 
than the same experience with a reliable friend. 

If there have been negative experiences, there is no trust relationship. We did 
not model values of distrust since a distrusted entity should not be trusted with 
anything at all, no matter  how small the non-trustworthiness may be. Instead, 
a distrusted entity can be excluded from being recommended by other entities 
by using the target constraints described in the next paragraph. 

Recommendation Trust 

P trusts.rec~ eq Q when.path Sp when.target St value V 

A recommendation trust relationship exists if P is willing to accept reports 
from Q about experiences with third parties with respect to trust class x. This 
trust is restricted to experiences with entities in St (the target constraint set) 
mediated by entities in Sp (the path constraint set). Again, seq is the sequence 
of entities who mediated the recommendation trust. V is the value of the trust 
relationship. It represents the portion of offered experiences that  P is willing 
to accept from Q and is based on the experiences P has had with the entities 
recommended by Q. 



Given numbers of positive and negative experiences p and n, respectively, 
with the recommended entities, the recommendation trust value vr is computed 
according to the following formula: 

1 - ~ P - ~  if  p > n 
v r ( p , n ) =  0 else 

This value can be regarded as a degree of similarity between P and Q, taking 
into account that  different entities may have different experiences with a third 
party. An entity which usually sends unclassified messages will less often be 
confronted with treachery than an entity which transmits secret information. 
Given such a dissimilarity, the latter entity will not put much weight on what 
the former is telling about other entities' discretion. 

The experiences with the recommending entity are formed by the experiences 
with the recommended entities. If a recommended entity behaves well, we have 
the experience of a valuable recommendation. Otherwise, the recommendation 
seems to be questionable, but we cannot deduce that  the recommending entity 
has been lying from its point of view. Hence there is no immediate reason to 
reject further recommendations; it is sufficient to state a certain dissimilarity 
and to lower the trust value. This is modeled by the following properties of the 
given formula: 

vr(p ,n)  = 0 for p m O. 
- vr (p, n) approaches 1 with growing p and fixed n. 
- v~(p, n) approaches 0 with growing n and fixed p. 

If the negative experiences outnumber the positive experiences, the value 
becomes zero and the entity is excluded from the recommendation constraint 
set. 

Representation of the Constraint Sets 
The constraint sets need not be stated explicitly. It suffices to specify predicates 
which decide the membership of an entity to the set in question. Such a pred- 
icate could be "is-child-of(x, A)" which would be true if x is a child of A in a 
given hierarchy and hence describes implicitly the set of all children of A. These 
predicates have to be decidable to be useful in this context. 

The predicates may depend on the trust expressions they are evaluated in. 
If the predicate in the example above is changed into "is-child-of(x, current- 
entity)" it defines the set of children of the trusted entity. As will be described 
later, predicates can be taken over from initial trust expressions into derived 
ones with different trusted entities so that  the same predicate applies to different 
instances of current-entity.  When used as path constraint set, the given sample 
predicate would restrict the recommendation path to a descending path  in the 
given hierarchy. 



3 Deriving Trust Relationships 

The representation of trust by trust expressions leads to rules which describe 
how new trust comes into being when recommendation is performed. With the 
help of these rules one can derive new trust relationships from a given set of 
initial relationships. Since the trust model itself offers no inherent strategy to 
derive a trust relationship between two entities, derivation algorithms need to 
be added. In this section we introduce the rules of inference and describe two 
derivation algorithms. 

3.1 D e s c r i p t i o n  o f  t h e  Ru l e s  o f  I n f e r e n c e  

(~--v!--- h v ~  " 
*" direct trust " ~  

. . . .  > teconllrlendation trust 

= >  

V l ,V3 " ' - . .  

. . . .  > recommendation trust 

Fig. 1. Derivation of Trust Relationships 

Before we introduce the rules of inference formally, we will describe them by the 
help of an example (see figure 1). 

We start with the following initial trust relationships: 

1. A trusts.rec~ ~ql B when.path Spl when.target  Stl value V1 
2. B trusts~ eq~ C value V2 
3. B trusts.rec~ eq3 D when.path Sp~ when.target S~ value V3 

Deriving Direct Trust 

From 1. and 2. a new direct trust relationship from A to C can be derived 
provided that  

- C is in St1 (C is a possible target) 
- All entities in seq2 are also in Spl (no mediator of the direct trust is excluded 

by the recommendation trust) 
- seql contains no entity from seq2 (noncyclicity) 

The new recommendation path is composed of seql, B and seq2 to seql o B o 
seq2. The value of the new relationship is computed according to the following 
formula: 



v l  o v 2  = 1 - (1  - v 2 )  . (3) 

This formula is a result of the computation of the direct trust values following 
2.2 and the semantics of the recommendation trust values. If V2 is based on p 
positive experiences, the following equation holds: 

I11q) V2= 1 - ( 1 - ( 1 - a P ) )  vl = 1 - a  VIp . 

Thus the new value is based on the equivalent of "p. VI" experiences. 

Deriv ing Recommendat ion  Trust  

From 1. and 3. a new recommendation trust relationship from A to D can be 
derived, provided that  

- D and all entities in seq3 are also in S m (D and the mediators of the trust 
in D are not excluded) 

- D and all entities in seq3 are not in seql (noncyclicity) 

The new trust relationship has a recommendation path of seql o B o seq3, a 
path constraint set of Spl F3 Sp2 , a target constrMnt set of St,  C~ St2 and a value 
of V1 �9 V3. 

The multiplication of the values ensures that the trust value descends as the 
recommendation path grows. The proposition "If someone whose recommenda- 
tions are rather useless to me recommends someone whose recommendations are 
rather useless to him, then the recommendations of the recommended one are 
even less useful to me" may not be true in all cases since the usefulness of the 
recommendation may well be higher, but it helps to stay on the safe side. 

We have required noncyclicity for the following reason: Cycles would lead 
to an infinite number of possible recommendation paths between two entities 
with trust values approaching zero as the pathlength increases. In section 4 we 
introduce a method on how to combine values of trust relationships between two 
entities which would be undermined by an arbitrary number of arbitrarily small 
trust vMues. Since cycles add no new information on who is trustworthy, they 
can safely be left out. 

The intersection of the constraint sets is intended to preserve the type of 
representation used in the original constraint sets. Thus, when using the implicit 
representation, the new set is the conjunction of the predicates in the two sets. 
This is necessary to retain the meaning of the variables which depend on the 
context (the trust expression) they are evaluated in. The intersection of explicit 
sets yields another explicit set, as one might expect. 

If the sets to be intersected are of different type, the explicit set can easily 
be transformed to an implicit representation, e.g. the explicit set "{A, B}" can 
be transformed to "x = A or x = B". 
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3.2 T h e  R u l e s  o f  I n f e r e n c e  

Here we present the rules of inference formally: 

RULEI: (NEW DIRECT TRUST) 

P trusts.rec~ eql Q when.path Sp when.target St value V1 
A Q trustsSx eq2 R value V2 
A RE~S~ 
A V X :  (X r seq2 :r (X r Sp A X  ~, P o seql)) 

P trusts seq'~176 R value (V1 | V2) 

RULE2: (NEW RECOMMENDATION TRUST) 

P trusts.rec~ eqa Q when.path Spl when.target St1 value V1 
A Q trusts.rec~ eq2 R when.path Sp2 when.target St2 value V2 

P trusts.recSx eql~176 R 
when.path (Sp~ n Sp2 ) when.target (Stl N Sty) value (VI " V2) 

The symbol o denotes concatenation of sequences or appending of elements 
to a sequence, the predicates Et and E~ denote the membership of elements to 
a sequence or to a set, respectively. 

3.3 A s s o c i a t i v i t y  o f  t h e  D e r i v a t i o n  R u l e s  

The choice of the derivation strategy has no influence on the derivable trust  
expressions. Tha t  means that  from a given sequence of trust  expressions one can 
either derive a unique trust expression from the first trusting entity to the last 
trusted entity or none at all, independent of the order of rule application. 

Thus it does not mat te r  whether one first derives the recommendations along 
a pa th  and then the desired direct trust, or whether one derives direct trust  
expressions from the end of a path  towards its beginning. 

To show this, we start  with 

D e f i n i t i o n  2: Let ~ and/9  denote the sets of recommendat ion trust  expressions 
and direct trust  expressions, respectively. We define two functions R1 : 7~ • 7) --+ 
:D and R2:7~ x 7~ -* T~ as 

Result of Rulel  when applied to rxl and dx2 if applicable 
Rl(rxl ,  dx2) := _1. else 

Result of Rule2 when applied to rxl and rx2 if applicable 
R2(rxl, rx2) := _L else 

P r o p o s i t i o n  3: For rxl,rx2, rx3 E 7"~ and dx3 E 0 the following equations 
hold: 
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(1) R l ( R 2 ( r x l ,  rx2), dx3) = R l ( rx l ,  Rl(rx2,  dx3)) 
(~) /~2(R2(rXl, rx2), rx3) = R2(rxl, R2(rXl, rx3)) 

Proof :  
For the proof of (1), we consider trust relationships rxl ,  rx2 �9 T~ and dx3 �9 :D: 

rxl  = P1 trusts.rec~ eq~ Q1 when.path Sp~ when.target St~ value V1 
rx2 = P2 trusts.rec~ eq2 Q2 when.path Sp~ when.target St~ value 1/2 
dx3 = P3 trusts~ eq3 Q3 value V3. 

First we show the equality in case the rules are applicable: 

R l ( R 2 ( r x l ,  rx~), dx3) = P1 trusts(~ ~q~~176176176 Q3 value(V1. V2) | V3 
R l ( r x l ,  Rl (rx2,  dx3)) = P1 trustsSx eq~~176 Q3 valueV1 | (V2 | V3) 

These two expressions are equal because the concatenation of sequences is asso- 
ciative and 

y~ G (v2 o y3) = v~ o (1 - (1 - v3) v~) 
= i - (I - (1 - (i - v~)V~)) v' = i - (i - v~) v~v~ 

= ( v ~  . v~) o v~. 

We now show that the conditions for /~1(1~2(rx1, rx2), dx3) ~ • are equiva- 
lent to the conditions for Rl(rxx, ]~l(rx2, dx3)) ~ A_: 

Conditions for !~2(rxl, rx2) ~ • 
(1) Q = P2 
(2) X �9 seq2 oQ2 ::~ X �9 ~Pl A x r  Pl oseql 

Additional conditions for R~(Rdrx~, rx2), dx3) ~ • 
(3) Q~ = ~'3 
(4) Q3 �9 St~ N St~ 
(5) x �9 seq3 ::~ x ~ ~p~ CI Sp~ A x r P~ o seql o Q1 o seq2 

Conditions for Rl(rx2,  dx3) ~ • 
(6) Q2 = P3 
(7) Q3 �9 s,2 

Additional conditions for Rl ( r x l ,  Rl(rx2,  dx3)) ~ • 
(9) Q1 = P2 
(lO) Q3 c s ~  
(11) x �9 seq2 o Q2 o seq3 =v x �9 Spl A X r e l  0 SCqx 

{(1) , (2) , . . . , (5)}  =~ {(6),(7) . . . .  ,(11)} holds because (3) :=~ (6), (4) ::~ 
(7), (1) A (5) ~ (8), (1) ~ (9), (4) ~ (10) and (2) A (5) :V (11). 
{(6),(7) . . . .  ,(11)} =V {(1) , (2) , . . . , (5)} holds because (9) :~ (1), (11) ::~ 
(2), (6) :=~ (3), (7) A (10) :=V (4) and (8) A (9) A (11) ==~ (5). 

The proof of proposition (2) can be carried out in a similar manner and is 
thus omitted. [] 



12 

3.4 T r u s t  D e r i v a t i o n  A l g o r i t h m s  

To track down all entities which can be trusted by an entity P with respect to 
a trust  class z, one has to go along all noncyclic paths in the network which 
consist of  trust  relationships of the desired class, start  at P ,  follow the collected 
constraints and end with a direct trust relationship. 

For this purpose a trust  derivation algorithm is proposed in [YKB93] which 
derives all possible direct trust  relationships with an entity P as trusting entity 
from a given set of initial trust  relationships. The algorithm tries for each recom- 
mendat ion trust  expression to derive as many  new trust  expressions as possible. 
Then the considered recommendat ion trust  is removed from the set and the new 
recommendat ion trusts are inserted into it. This process is continued until the 
set is empty  (which happens in finite t ime since the paths are not to contain 
cycles). 

The trusted entities in the derived direct trust  expressions are collected in an 
extra  set which finally contains all entities P may trust  in the given trust class. 

A disadvantage of this algorithm is its exponential complexity (in the number  
of nodes) with no remedy to be expected since the problem has proven to be NP- 
complete ([Bor93]). So it was necessary to make use of some sensible heuristics. 

In [YKB94] a distributed algorithm is proposed which can handle all types 
of networks but is especially designed for tree-like structures as they frequently 
appear  in the real world. In the case of a pure tree, the complexity is logarithmic. 
To accelerate the search when the tree structure is disturbed, it makes use of 
routing tables which store information about  shortcuts in the structure. 

These algorithms can easily be adopted to support  the extended model of 
valued trust  relationships. 

4 C o m b i n a t i o n  o f  T r u s t  V a l u e s  

Since there are not necessarily unique recommendat ion paths,  there will some- 
times be several (derived) trust  relationships of the same trust  class between 
two entities. They will usually have different values, so one has to find a way to 
draw a consistent conclusion. The introduced semantics of the trust  values lead 
to the result that  different values do not imply a contradiction, but can be used 
as collective information to compute a combined value. In this section we show 
how this combination can be performed. Again, we consider recommendat ion 
trust  and direct trust separately. 

4.1 R e c o m m e n d a t i o n  T r u s t  

Suppose A has several recommendat ion trust  relationships to B. Tha t  means 
it has different estimations about  its similarity with B which could have been 
derived via different recommendat ion paths. To combine these values to a unique 
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value one has a choice of possible averages. This family is represented by 

1/p 

wi th/~ E IR \ {0} as free parameter .  Special cases are m a x i m u m  and min imum 
wi th /3  --+ oo and fl ---, - o o ,  respectively, harmonic, geometric and ar i thmetic  
mean with/3  = - 1 , / 3  --+ 0 and/3 = 1, respectively. 

In order to avoid relationships with extreme values to determine the com- 
bination completely, we decided to use neither min imum nor maximum.  When 
using the m a x i m u m  of the values, a single unjustified trust  with a high value 
could override any amount  of low valued recommendations.  A similar argument  
holds for the minimum. So the best choice seemed to be the ari thmetic mean 
which regards all values equal. 

Given n values of recommendat ion trust  relationships between the' same en- 
tities and with respect to the same trust  class ld (i = 1 . . . n ) ,  I,~ r O, their 
combination Vcom is computed according to the following formula: 

,fi V:o,~ - - V~. (4) 
i = 1  

4 . 2  D i r e c t  t r u s t  

Here we have several direct trust relationships between two entities with respect 
to the same trust  class. It is necessary to classify the trust expressions with 
respect to the last reconqmending entity on the recommendat ion path  to get a 
result which conforms to the semantics of the trust values. 

Let Pi (i = 1 . . .  m) be the different last entities on the recornmendation paths 
and, in case of empty  paths, the trusting entity and I'},j (i = 1 . . .  m, j = 1 . . .  ni),  
V/,j r 0 the values of the trust relationships (with ni denoting the number  of 
relationships having Pi as last recommending entity). The V/,. represent classes 
of trust  values with each class containing the values of trust  relationships with 
the same last recommending entity Pi. 

The values of the direct trust relationships are combined according to the 
following formula: 

Vcom = 1 - (1 - V~,j) (5) 
i = 1  "= 

This formula  follows from the meaning of a recommendation:  There exists an 
entity which has had some experiences with the entity to be recommended. These 
experiences have been propagated along the recommendat ion paths, undergoing 
a reduction corresponding to the values of the recommendat ion trusts on their 
way. Since there are not necessarily unique paths from one entity to another, 
the same experiences may be propagated to an entity several t imes via different 
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paths and with different reductions. In the previous paragraph we pointed out 
that  these reductions can be averaged to yield a unique value. 

In particular, we can split the ~, j  into their inherent positive experiences Pi 

directly from entities Pi and diminishing factors I~/,j which fulfill the equation 

Vi,j = 1 - ~v~,JP' . 

The combined trust value is computed to 

v om = 1 -  I I ( 1 -  u,j)  1 -  
i=l j=l  i--1 j = l  

~* f i  n t  f l  t ~z 1 
= 1 -  a J=~ = l - a  '=1 ~=~ 

i----1 

m ni  
and hence corresponds to experiences of ~ ~ (  ~ ~, j )"Pi  which is exactly what 

i=l j = l  

we described above. 

4.3 N o n m o n o t o n i c y  o f  t h e  C o m b i n a t i o n  

The combination of values has the property of being n o n m o n o l o n i c .  If the set 
of trust relationships between two entities with respect to the same trust class 
grows, the behaviour of the combined values cannot be predicted. This property 
is a result of the averaging of the recommendation trust values. The average can 
increase or decrease as new relationships arise. 

If it is unknown whether all possible trust relationships have been derived, an 
estimation of possible effects of new relationships on the combined value would 
be necessary. Hence the combination of values would imply the consideration of 
probability densities. Otherwise, when using the "incomplete" combined value, 
one can but hope that  no significant changes will appear. 

Considering these alternatives, the combined value should only be computed 
from a complete set of trust relationships. We suppose that  in real world scenarios 
this is not a problem since the paths are few and rather determined by the 
existing hierarchies. Another, somewhat optimistic, solution would be not to use 
the arithmetic mean as average, but the maximum of the values. 

5 A n  E x a m p l e  

In this example we demonstrate the derivation of trust relationships and 
the combination of their values. Since the example focuses on the values, 
we make no use of the path constraints. For simplicity, we replace the part  
" w h e n . p a t h [ t r u e ]  w h e n . t a r g e t [ t r u e ] "  in each recommendation trust expression 
by dots ( . . . ) .  

We start  with the following trust relationships (see figure 2): 
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~3 . -  ~o "~ ~ / 

: -  direct trust 

- -  -~"  recommendation trust 

numbers  are percentages 

Fig.  2. Combination of Trust Values 

(r l)  A t rus t s . rec~  B 
(r2) A t rus t s . rec~  C .. 
(r3) A t rus t s . rec~  D .. 
(r4) B t rus t s . ree~  E .. 
(r5) C trusts.reer E .. 
(r6) D trus t s . rec~  F .. 
(dl)  E t rus t s~  G value 
(d2) F t rus t s~  G value 

value 0.83 
value 1 
value 0.30 
value 0.70 
value 0.10 
value 0.95 

).90 
P.55 

D e r i v a t i o n  o f  a D i r e c t  T r u s t  R e l a t i o n s h i p  

There are two basic strategies for the derivation of a direct trust relationship 
from A to G (e.g. via B and E): iterative and recursive. Both yield the same 
trust expressions (with the same values) as was pointed out in section 3.3. The 
values in this example are rounded to three digits. 

Iterative Derivation: We first derive a recommendation trust from A to E, fol- 
lowed by the derivation of the direct trust from A to G: 

(rl) ,  (r4), Rule2 ::~ (rT) A trusts .recgz E . . .  value 0.83~ 0.7 

= 0 . 5 8 1  

(r7), (dl) ,  Rulel  =:> (d3) A t r u s t s f  ~ G value 0.581(i) 0.9 

----0.738 

Recursive Derivation: Here we start with the derivation of the direct trust from 
B to G which is then used to derive the direct trust from A to G: 

(r4), (dl) ,  Rulel  ::~ (d4) B t r u s t s  E G value 0.7 | 0.9 

=0.800 
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(rl) ,  (d4), Rulel  ~ (d5) A t rus t s  B~ G value o.8,3  o.8oo 
: 0 . 7 3 8  

Combinat ion of  Direct Trust Relationships: 

The following direct trust  relationships from A to G can be derived using either 
strategy: 

(d3) A t rus t s  B~ G value 0.738 
(d4) A t rus t s  c~ G value 0.206 
(db) A t rus t s  D~ G value 0.204 

There are two different entities at the end of the recommendat ion paths: E 
and F.  So we identify two classes of trust  expressions, the first consisting of (d3) 
and (d4), the second being solely (db). 

The computat ion of the combined value yields 

Vcom = 1 - X/(1 - 0.738). (1 - 0.206). (1 - 0.204) = 0.637. 

6 H o w  t o  U s e  t h e  V a l u e s  

In this section we show how the introduced values can be used to decide whether 
or not an entity is sufficiently trustworthy with respect to a certain task. 

As mentioned earlier, we assume that  the value of each task can be measured 
in units, e.g. in ECU which are lost when the task is performed incorrectly. Our 
est imations about  the reliability of entities were made relative to tasks consisting 
of a single unit. If  we wish to entrust a task consisting of T units, the trusted 
entity has to fulfill T "atomic" tasks in order to complete the whole task. Bearing 
that  in mind, we can est imate the risk when entrusting a task to an entity. 

Let f denote the density of an enti ty 's  reliability r provided it passed p tests 
successfully (ok = p). Since P(r  <_ a[ok = p) = ol p + I  (see equation (2)), we have 
that  f = (p + 1)r p. From this equation and equation (1) follows that  when T 
units are entrusted to an entity with trust  value v, the average loss / is 

jr0 
1 

v, T)  = (/og (1 - v) + 1 ) . / o g o ( 1 - v ) .  T .  (1 - r T) 

T 2 

log~(1 - v) + T +  1" 

If, for example, a = 0.99, v = 0.637 and we wish to entrust a task worth 100 
units then we must  be willing to risk/(0.99, 0.637,100) = 49.5 units. 
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7 Summary 

In this paper  we introduced the notion of valuated trust  as an extension of the 
t rust  model of Yahalom, Klein and Beth [YKB93]. We pointed out that  the 
semantics of direct trust  values differ from that  of recommendat ion trust  values: 
the former expresses the probabili ty tha t  an entity is working with a certain 
min imum reliability, the latter states how useful the recommendat ions of the 
t rusted entity are expected to be. 

The  introduction of trust  values gives rise to the problem that  recommen- 
dations about  one entity can differ in value, depending on the recommending 
entities. We have shown that  these different values are not contradictory but  
can be combined to a single value which considers the information of all the 
respective recommending entities. 

When trust  values are to be used in real systems, it is necessary to evaluate 
the entrusted tasks. We have shown how the trust  values can be used to est imate 
the risk when such a task is to be assigned to an entity. 

Using the trust  values, a flexible policy can be applied which allows to select 
appropriately trustworthy entities depending on the task 's  value. Combined with 
the notion of different trust classes the requirements for trusted entities can be 
kept to a minimum. 
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