
M e a s u r e s

57

W h e n an al ternat ive c o m m a n d is executed, a branch whose guard is passable is
chosen. If more than one guard is passable, then any one of the corresponding
branches can be executed. If no guard is passable then the c o m m a n d fails and
the p rogram terminates. On each i terat ion of the repetit ive command , a b ranch
whose guard is passable is executed. If more than one guard is passable, then like
for the alternative, any one of the branches is chosen. W h e n no guard is passable,
the c o m m a n d terminates and the p rogram continues. The s t ructura l opera t ional
semantics of this language is defined in Figure 1. The rules are expressed in terms
of rewritings of configurations. A configurat ion is either a pair < S, ~ > , where S
is a s t a t ement and c~ a state, or a state o. The lat ter is a terminal configuration.

< y := e x p , ~ > -+ c r [va l (exp , cr)/y]

< t[i] := e x p , cr > --~ c~[t[i ~-- v a l (e x p , c~)]/t]

< s k i p , ~ r > - - , ~r

< $1,0" > ---+ < S~,O'I >

< S 1 ; S 2 , ~ r > --+ < S ~ ; S 2 , c r ' >

< H I , ~ > --~ a b o r t

< $ 1 ; S 2 , ~ > --* a b o r t

< C i , ~ > --~ t r u e

< [C 1 ~ S l r n C 2 - - * S2[] [~C~ ~ S , ,] , a > - - < S i , a >

< Ci , v > ~ a b o r t

< [C1 - - ~ S 1 Q C 2 - ~ . q 2 ~ oCn- -~ S~,],cr > --~ a b o r t

V i . < Ci ,~r > ~ f a l s e

< [C1 ~ S 1 D C 2 --+ S ~ 0 D C n ~ S ,~] ,o > ~ a b o r t

< C i , c r > --~ t r u e

< *[C1 ~ S1DC_~ --~ $2[] nC~ ~ S n] , a >
< N ; *[C~ -~ S~EnC2 ~ S 2 D D C ~ ~ S~] , ~ >

< C i , ~ r > --~ a b o r t

< *[C1 --+ S 1 U C 2 --~ S 2 D O C ~ -+ S'~], a > ~ a b o r t

V i . < C i , c r > --+ f a l s e

< *[C 1 --+ S1DC2 ---+,q2D [B C n - - ~ S n] , ~ r > ---+ ~r

Fig . 1. Opera t ional semantics

Valuat ion of Trust in Open Networks

Thomas Beth Malte Borcherding*

European Institute for System Security
University of Karlsruhe, Germany

Birgit Klein

Abst rac t . Authentication in open networks usually requires participa-
tion of trusted entities. Many protocols allow trust to be obtained by
recommendation of other entities whose recommendations are known to
be reliable. To consider an entity as being trustworthy, especially if there
have been several mediators or contradicting recommendations, it is nec-
essary to have a means of estimating its trustworthiness. In this paper we
present a method for the valuation of trustworthiness which can be used
to accept or reject an entity as being suitable for sensitive tasks. It con-
stitutes an extension of the work of Yahalom, Klein and Beth ([YKB931).

K e y w o r d s : Trust values, Trust measures, Distributed systems

1 I n t r o d u c t i o n

Communication in open networks often requires information about the trust-
worthiness of the participating entities, especially when authentication proto-
cols need to be performed. If, for example, user A receives a message signed
allegedly by user B without having B's verification data at hand 1, she can ask
a trusted authentication server (AS) of her choice to confirm the signature. In
large distributed networks it will frequently happen that this AS does not have
the required data in its database and will have to ask another trusted AS for
assistance. This AS, in turn, can repeat this procedure until eventually a suffi-
ciently informed AS is reached and the data can be handed to A. For A to believe
in the received data being authentic she has to trust the terminal AS and hence
the sequence of mediating ASs (the recommendation path). The longer the path
becomes, the less trustworthy the final entity intuitively will be.

Depending on the task which A wants an entity of such a path to perform, she
has to decide whether it is sufficiently trustworthy. Usually there is a maximum
value one is willing to risk within a certain trust relationship. To determine such
a maximum value, one has to estimate degrees of trust.

A valuation of trustworthiness also becomes relevant when different entities
offer different allegedly authentic data of the same entity. In such cases the
trustworthiness of these entities needs to be compared.

* Now working at the Institute of Computer Design and Fault Tolerance, University
of Karlsruhe, Germany

1 B's verification data corresponds to its public key when using a digital signature
scheme.

In the past there have been several approaches to describe trust formally (e.g.
[BAN89, GNY90, Ran92, YKB93]). The result were logics which can be used to
draw conclusions from given initial trust relationships like who is t rustworthy
and which public data belongs to whom. These logics lack the notion of degrees
of trust; an entity is considered either trustworthy or not.

In [TH92] Tarah and Hui tema propose a valuation of certification paths
(which are related to the recommendat ion paths mentioned above) and give
some hints on how to perform such a valuation. As examples for measures they
suggest the min imum of the involved trust values or the length of the certification
path.

Some questions remain open, e.g. the meaning of an actual value of trust-
worthiness and how different recommendations about an entity with different
degrees of trustworthiness can be combined to yield a unique value.

In this paper we introduce a measure of trustworthiness based on the work of
Yahalom, Klein and Beth ([YKB93]) and consider the aforementioned questions.
Further work on this topic can be found in [Bor93].

The paper ' i s organized as follows. In section 2 we introduce a formal rep-
resentation of valued trust relationships, in sections 3 and 4 we show how new
relationships and their values can be derived from already existing ones. This
method of derivation is demonstrated by an example in section 5. In section 6
we show how the actual decision whether to trust an entity or not can be made.
We conclude with a summary in section 7.

2 F o r m a l R e p r e s e n t a t i o n o f T r u s t R e l a t i o n s h i p s

In this section we introduce a formal representation of valued trust relationships.
It is an extension of the representation used in [YKB93]. We assume the following
underlying model of a distributed system:

The system consists of entities which communicate via links. Each entity has
a unique identifier and may have a secret which can be used for authentication
purposes. The entities can generate, read and modify any message on any link.
Entities may have some computat ional power e.g. for the encryption and decryp-
tion of messages. Some entities are distinguished as authentication servers (AS)
as they support the authentication of other entities.

To model degrees of trust, we need the notion of numbers of positive/negative
experiences. We assume that an entity can assign a certain number (value) to
each task it entrusts to another entity. This number can be thought of as the
number of ECU being lost when the task is not fulfilled. Each lost or not lost
entrusted ECU increments the number of positive or negative experiences by
one.

2.1 Trust Class i f i ca t ion

In [YKB93] it is pointed out that there is no need to trust an entity completely
if one expects it only to perform a limited task. After examining some authen-
tication protocols, the following classes were identified:

- k e y g e n e r a t i o n : Providing good quality keys to be used with some agreed
upon cryptographic function.

- i d e n t i f i c a t i o n : Correctly associating entities (respectively their unique
identifiers) with their identifying data, e.g. public or shared keys.

- k e e p i n g secre t s : Keeping classified information secret.
- n o n i n t e r f e r e n c e : Not interfering in other entities' sessions (e.g. by eaves-

dropping or impersonating).
- c lock s y n c h r o n i z a t i o n : Maintaining close clock synchronization.
- p e r f o r m i n g a l g o r i t h m i c s teps : Following protocol specifications correctly.

Trust with respect to one of these classes is independent of trust with respect
to other classes. It may be perfectly reasonable to trust an authentication server
in a different domain with respect to identifying entities in that domain without
trusting its key generation capabilities.

2.2 D i r e c t 'Trust a n d R e c o m m e n d a t i o n T r u s t

For each of the classes of trust there are two types of trust: direct trust and
recommendation trust. To trust an entity directly means to believe in its capa-
bilities with respect to the given trust class. Recommendation trust expresses the
belief in the capability of an entity to decide whether another entity is reliable
in the given trust class and in its honesty when recommending third entities.

Recommendation trust can be granted in a restricted manner. Constraints
can be imposed on the properties of the recommending entities further along
the path as well as on the entities which are eventually recommended as being
directly trustworthy. These properties can include the very names of entities,
their domains or the number of entities on the path so far. The constraints are
used to express distrust towards entities.

Due to the different notions of direct trust and recommendation trust, we
present their formal representations separately.

Direct Trust

P trusts~ eq Q value V

A direct trust relationship exists if all experiences with Q with regard to trust
class x which P knows about are positive experiences, seq is the sequence of
entities who mediated the experiences 2 (the recommendation path) excluding
P and Q. V is a value of the trust relationship which is an estimation of the
probability that Q behaves well when being trusted. It is based on the number
of positive experiences with Q which P knows about.

Let p be the number of positive experiences. The value v~ of these experiences
is computed as follows:

v~(p) = 1 - ~P . (1)

2 We regard a recommendation as propagation of positive experiences.

This value is the probability that Q has a reliability of more than 5, founded
on the information P possesses about Q. The reliability is the probability that
Q turns out to be reliable when being entrusted with a single task, i.e. a task of
value 1. c~ should be chosen reasonably high to ensure sufficiently safe estima-
tions.

P r o p o s i t i o n 1: Let ok be a variable for the number of positive experiences and
r be the reliability of an entity. Assume further that r is distributed uniformly
over the set of all entities. Then the probability that r is greater than (~ on the
condition that ok equals p is 1 - ap+l.

P r o o f :

P (r > . l o k = p) = P (r > 5, ok = p) f l Pdx
P(ok = p) -

(P + 1)-1(1 - av+l)
(p "[- 1) -1

= 1 - OL p+I (2)

o
We use the formula 1 - av in our model instead of 1 - c~v+l to enforce a

trust degree of zero for an unknown entity. This slight deviation from the stated
semantics (which is meaningless for large p) buys us a much more convenient
model for the trust values.

The value of direct trust has the following (realistic) property: A single ad-
ditional positive experience has more influence on a low value than on a high
value._ Obviously, a positive experience with a stranger offers more information
than the same experience with a reliable friend.

If there have been negative experiences, there is no trust relationship. We did
not model values of distrust since a distrusted entity should not be trusted with
anything at all, no matter how small the non-trustworthiness may be. Instead,
a distrusted entity can be excluded from being recommended by other entities
by using the target constraints described in the next paragraph.

Recommendation Trust

P trusts.rec~ eq Q when.path Sp when.target St value V

A recommendation trust relationship exists if P is willing to accept reports
from Q about experiences with third parties with respect to trust class x. This
trust is restricted to experiences with entities in St (the target constraint set)
mediated by entities in Sp (the path constraint set). Again, seq is the sequence
of entities who mediated the recommendation trust. V is the value of the trust
relationship. It represents the portion of offered experiences that P is willing
to accept from Q and is based on the experiences P has had with the entities
recommended by Q.

Given numbers of positive and negative experiences p and n, respectively,
with the recommended entities, the recommendation trust value vr is computed
according to the following formula:

1 - ~ P - ~ if p > n
v r (p , n) = 0 else

This value can be regarded as a degree of similarity between P and Q, taking
into account that different entities may have different experiences with a third
party. An entity which usually sends unclassified messages will less often be
confronted with treachery than an entity which transmits secret information.
Given such a dissimilarity, the latter entity will not put much weight on what
the former is telling about other entities' discretion.

The experiences with the recommending entity are formed by the experiences
with the recommended entities. If a recommended entity behaves well, we have
the experience of a valuable recommendation. Otherwise, the recommendation
seems to be questionable, but we cannot deduce that the recommending entity
has been lying from its point of view. Hence there is no immediate reason to
reject further recommendations; it is sufficient to state a certain dissimilarity
and to lower the trust value. This is modeled by the following properties of the
given formula:

vr(p ,n) = 0 for p m O.
- vr (p, n) approaches 1 with growing p and fixed n.
- v~(p, n) approaches 0 with growing n and fixed p.

If the negative experiences outnumber the positive experiences, the value
becomes zero and the entity is excluded from the recommendation constraint
set.

Representation of the Constraint Sets
The constraint sets need not be stated explicitly. It suffices to specify predicates
which decide the membership of an entity to the set in question. Such a pred-
icate could be "is-child-of(x, A)" which would be true if x is a child of A in a
given hierarchy and hence describes implicitly the set of all children of A. These
predicates have to be decidable to be useful in this context.

The predicates may depend on the trust expressions they are evaluated in.
If the predicate in the example above is changed into "is-child-of(x, current-
entity)" it defines the set of children of the trusted entity. As will be described
later, predicates can be taken over from initial trust expressions into derived
ones with different trusted entities so that the same predicate applies to different
instances of current-entity. When used as path constraint set, the given sample
predicate would restrict the recommendation path to a descending path in the
given hierarchy.

3 Deriving Trust Relationships

The representation of trust by trust expressions leads to rules which describe
how new trust comes into being when recommendation is performed. With the
help of these rules one can derive new trust relationships from a given set of
initial relationships. Since the trust model itself offers no inherent strategy to
derive a trust relationship between two entities, derivation algorithms need to
be added. In this section we introduce the rules of inference and describe two
derivation algorithms.

3.1 D e s c r i p t i o n o f t h e Ru l e s o f I n f e r e n c e

(~--v!--- h v ~ "
*" direct trust " ~

. . . . > teconllrlendation trust

= >

V l ,V3 " ' - . .

. . . . > recommendation trust

Fig. 1. Derivation of Trust Relationships

Before we introduce the rules of inference formally, we will describe them by the
help of an example (see figure 1).

We start with the following initial trust relationships:

1. A trusts.rec~ ~ql B when.path Spl when.target Stl value V1
2. B trusts~ eq~ C value V2
3. B trusts.rec~ eq3 D when.path Sp~ when.target S~ value V3

Deriving Direct Trust

From 1. and 2. a new direct trust relationship from A to C can be derived
provided that

- C is in St1 (C is a possible target)
- All entities in seq2 are also in Spl (no mediator of the direct trust is excluded

by the recommendation trust)
- seql contains no entity from seq2 (noncyclicity)

The new recommendation path is composed of seql, B and seq2 to seql o B o
seq2. The value of the new relationship is computed according to the following
formula:

v l o v 2 = 1 - (1 - v 2) . (3)

This formula is a result of the computation of the direct trust values following
2.2 and the semantics of the recommendation trust values. If V2 is based on p
positive experiences, the following equation holds:

I11q) V2= 1 - (1 - (1 - a P)) vl = 1 - a VIp .

Thus the new value is based on the equivalent of "p. VI" experiences.

Deriv ing Recommendat ion Trust

From 1. and 3. a new recommendation trust relationship from A to D can be
derived, provided that

- D and all entities in seq3 are also in S m (D and the mediators of the trust
in D are not excluded)

- D and all entities in seq3 are not in seql (noncyclicity)

The new trust relationship has a recommendation path of seql o B o seq3, a
path constraint set of Spl F3 Sp2 , a target constrMnt set of St, C~ St2 and a value
of V1 �9 V3.

The multiplication of the values ensures that the trust value descends as the
recommendation path grows. The proposition "If someone whose recommenda-
tions are rather useless to me recommends someone whose recommendations are
rather useless to him, then the recommendations of the recommended one are
even less useful to me" may not be true in all cases since the usefulness of the
recommendation may well be higher, but it helps to stay on the safe side.

We have required noncyclicity for the following reason: Cycles would lead
to an infinite number of possible recommendation paths between two entities
with trust values approaching zero as the pathlength increases. In section 4 we
introduce a method on how to combine values of trust relationships between two
entities which would be undermined by an arbitrary number of arbitrarily small
trust vMues. Since cycles add no new information on who is trustworthy, they
can safely be left out.

The intersection of the constraint sets is intended to preserve the type of
representation used in the original constraint sets. Thus, when using the implicit
representation, the new set is the conjunction of the predicates in the two sets.
This is necessary to retain the meaning of the variables which depend on the
context (the trust expression) they are evaluated in. The intersection of explicit
sets yields another explicit set, as one might expect.

If the sets to be intersected are of different type, the explicit set can easily
be transformed to an implicit representation, e.g. the explicit set "{A, B}" can
be transformed to "x = A or x = B".

10

3.2 T h e R u l e s o f I n f e r e n c e

Here we present the rules of inference formally:

RULEI: (NEW DIRECT TRUST)

P trusts.rec~ eql Q when.path Sp when.target St value V1
A Q trustsSx eq2 R value V2
A RE~S~
A V X : (X r seq2 :r (X r Sp A X ~, P o seql))

P trusts seq'~176 R value (V1 | V2)

RULE2: (NEW RECOMMENDATION TRUST)

P trusts.rec~ eqa Q when.path Spl when.target St1 value V1
A Q trusts.rec~ eq2 R when.path Sp2 when.target St2 value V2

P trusts.recSx eql~176 R
when.path (Sp~ n Sp2) when.target (Stl N Sty) value (VI " V2)

The symbol o denotes concatenation of sequences or appending of elements
to a sequence, the predicates Et and E~ denote the membership of elements to
a sequence or to a set, respectively.

3.3 A s s o c i a t i v i t y o f t h e D e r i v a t i o n R u l e s

The choice of the derivation strategy has no influence on the derivable trust
expressions. Tha t means that from a given sequence of trust expressions one can
either derive a unique trust expression from the first trusting entity to the last
trusted entity or none at all, independent of the order of rule application.

Thus it does not mat te r whether one first derives the recommendations along
a pa th and then the desired direct trust, or whether one derives direct trust
expressions from the end of a path towards its beginning.

To show this, we start with

D e f i n i t i o n 2: Let ~ and/9 denote the sets of recommendat ion trust expressions
and direct trust expressions, respectively. We define two functions R1 : 7~ • 7) --+
:D and R2:7~ x 7~ -* T~ as

Result of Rulel when applied to rxl and dx2 if applicable
Rl(rxl , dx2) := _1. else

Result of Rule2 when applied to rxl and rx2 if applicable
R2(rxl, rx2) := _L else

P r o p o s i t i o n 3: For rxl,rx2, rx3 E 7"~ and dx3 E 0 the following equations
hold:

11

(1) R l (R 2 (r x l , rx2), dx3) = R l (rx l , Rl(rx2, dx3))
(~) /~2(R2(rXl, rx2), rx3) = R2(rxl, R2(rXl, rx3))

Proof :
For the proof of (1), we consider trust relationships rxl , rx2 �9 T~ and dx3 �9 :D:

rxl = P1 trusts.rec~ eq~ Q1 when.path Sp~ when.target St~ value V1
rx2 = P2 trusts.rec~ eq2 Q2 when.path Sp~ when.target St~ value 1/2
dx3 = P3 trusts~ eq3 Q3 value V3.

First we show the equality in case the rules are applicable:

R l (R 2 (r x l , rx~), dx3) = P1 trusts(~ ~q~~176176176 Q3 value(V1. V2) | V3
R l (r x l , Rl (rx2, dx3)) = P1 trustsSx eq~~176 Q3 valueV1 | (V2 | V3)

These two expressions are equal because the concatenation of sequences is asso-
ciative and

y~ G (v2 o y3) = v~ o (1 - (1 - v3) v~)
= i - (I - (1 - (i - v~)V~)) v' = i - (i - v~) v~v~

= (v ~ . v~) o v~.

We now show that the conditions for /~1(1~2(rx1, rx2), dx3) ~ • are equiva-
lent to the conditions for Rl(rxx,]~l(rx2, dx3)) ~ A_:

Conditions for !~2(rxl, rx2) ~ •
(1) Q = P2
(2) X �9 seq2 oQ2 ::~ X �9 ~Pl A x r Pl oseql

Additional conditions for R~(Rdrx~, rx2), dx3) ~ •
(3) Q~ = ~'3
(4) Q3 �9 St~ N St~
(5) x �9 seq3 ::~ x ~ ~p~ CI Sp~ A x r P~ o seql o Q1 o seq2

Conditions for Rl(rx2, dx3) ~ •
(6) Q2 = P3
(7) Q3 �9 s,2

Additional conditions for Rl (r x l , Rl(rx2, dx3)) ~ •
(9) Q1 = P2
(lO) Q3 c s ~
(11) x �9 seq2 o Q2 o seq3 =v x �9 Spl A X r e l 0 SCqx

{(1) , (2) , . . . , (5)} =~ {(6),(7) ,(11)} holds because (3) :=~ (6), (4) ::~
(7), (1) A (5) ~ (8), (1) ~ (9), (4) ~ (10) and (2) A (5) :V (11).
{(6),(7) ,(11)} =V {(1) , (2) , . . . , (5)} holds because (9) :~ (1), (11) ::~
(2), (6) :=~ (3), (7) A (10) :=V (4) and (8) A (9) A (11) ==~ (5).

The proof of proposition (2) can be carried out in a similar manner and is
thus omitted. []

12

3.4 T r u s t D e r i v a t i o n A l g o r i t h m s

To track down all entities which can be trusted by an entity P with respect to
a trust class z, one has to go along all noncyclic paths in the network which
consist of trust relationships of the desired class, start at P , follow the collected
constraints and end with a direct trust relationship.

For this purpose a trust derivation algorithm is proposed in [YKB93] which
derives all possible direct trust relationships with an entity P as trusting entity
from a given set of initial trust relationships. The algorithm tries for each recom-
mendat ion trust expression to derive as many new trust expressions as possible.
Then the considered recommendat ion trust is removed from the set and the new
recommendat ion trusts are inserted into it. This process is continued until the
set is empty (which happens in finite t ime since the paths are not to contain
cycles).

The trusted entities in the derived direct trust expressions are collected in an
extra set which finally contains all entities P may trust in the given trust class.

A disadvantage of this algorithm is its exponential complexity (in the number
of nodes) with no remedy to be expected since the problem has proven to be NP-
complete ([Bor93]). So it was necessary to make use of some sensible heuristics.

In [YKB94] a distributed algorithm is proposed which can handle all types
of networks but is especially designed for tree-like structures as they frequently
appear in the real world. In the case of a pure tree, the complexity is logarithmic.
To accelerate the search when the tree structure is disturbed, it makes use of
routing tables which store information about shortcuts in the structure.

These algorithms can easily be adopted to support the extended model of
valued trust relationships.

4 C o m b i n a t i o n o f T r u s t V a l u e s

Since there are not necessarily unique recommendat ion paths, there will some-
times be several (derived) trust relationships of the same trust class between
two entities. They will usually have different values, so one has to find a way to
draw a consistent conclusion. The introduced semantics of the trust values lead
to the result that different values do not imply a contradiction, but can be used
as collective information to compute a combined value. In this section we show
how this combination can be performed. Again, we consider recommendat ion
trust and direct trust separately.

4.1 R e c o m m e n d a t i o n T r u s t

Suppose A has several recommendat ion trust relationships to B. Tha t means
it has different estimations about its similarity with B which could have been
derived via different recommendat ion paths. To combine these values to a unique

13

value one has a choice of possible averages. This family is represented by

1/p

wi th/~ E IR \ {0} as free parameter . Special cases are m a x i m u m and min imum
wi th /3 --+ oo and fl ---, - o o , respectively, harmonic, geometric and ar i thmetic
mean with/3 = - 1 , / 3 --+ 0 and/3 = 1, respectively.

In order to avoid relationships with extreme values to determine the com-
bination completely, we decided to use neither min imum nor maximum. When
using the m a x i m u m of the values, a single unjustified trust with a high value
could override any amount of low valued recommendations. A similar argument
holds for the minimum. So the best choice seemed to be the ari thmetic mean
which regards all values equal.

Given n values of recommendat ion trust relationships between the' same en-
tities and with respect to the same trust class ld (i = 1 . . . n) , I,~ r O, their
combination Vcom is computed according to the following formula:

,fi V:o,~ - - V~. (4)
i = 1

4 . 2 D i r e c t t r u s t

Here we have several direct trust relationships between two entities with respect
to the same trust class. It is necessary to classify the trust expressions with
respect to the last reconqmending entity on the recommendat ion path to get a
result which conforms to the semantics of the trust values.

Let Pi (i = 1 . . . m) be the different last entities on the recornmendation paths
and, in case of empty paths, the trusting entity and I'},j (i = 1 . . . m, j = 1 . . . ni),
V/,j r 0 the values of the trust relationships (with ni denoting the number of
relationships having Pi as last recommending entity). The V/,. represent classes
of trust values with each class containing the values of trust relationships with
the same last recommending entity Pi.

The values of the direct trust relationships are combined according to the
following formula:

Vcom = 1 - (1 - V~,j) (5)
i = 1 "=

This formula follows from the meaning of a recommendation: There exists an
entity which has had some experiences with the entity to be recommended. These
experiences have been propagated along the recommendat ion paths, undergoing
a reduction corresponding to the values of the recommendat ion trusts on their
way. Since there are not necessarily unique paths from one entity to another,
the same experiences may be propagated to an entity several t imes via different

14

paths and with different reductions. In the previous paragraph we pointed out
that these reductions can be averaged to yield a unique value.

In particular, we can split the ~, j into their inherent positive experiences Pi

directly from entities Pi and diminishing factors I~/,j which fulfill the equation

Vi,j = 1 - ~v~,JP' .

The combined trust value is computed to

v om = 1 - I I (1 - u,j) 1 -
i=l j=l i--1 j = l

~* f i n t f l t ~z 1
= 1 - a J=~ = l - a '=1 ~=~

i----1

m ni
and hence corresponds to experiences of ~ ~ (~ ~, j)"Pi which is exactly what

i=l j = l

we described above.

4.3 N o n m o n o t o n i c y o f t h e C o m b i n a t i o n

The combination of values has the property of being n o n m o n o l o n i c . If the set
of trust relationships between two entities with respect to the same trust class
grows, the behaviour of the combined values cannot be predicted. This property
is a result of the averaging of the recommendation trust values. The average can
increase or decrease as new relationships arise.

If it is unknown whether all possible trust relationships have been derived, an
estimation of possible effects of new relationships on the combined value would
be necessary. Hence the combination of values would imply the consideration of
probability densities. Otherwise, when using the "incomplete" combined value,
one can but hope that no significant changes will appear.

Considering these alternatives, the combined value should only be computed
from a complete set of trust relationships. We suppose that in real world scenarios
this is not a problem since the paths are few and rather determined by the
existing hierarchies. Another, somewhat optimistic, solution would be not to use
the arithmetic mean as average, but the maximum of the values.

5 A n E x a m p l e

In this example we demonstrate the derivation of trust relationships and
the combination of their values. Since the example focuses on the values,
we make no use of the path constraints. For simplicity, we replace the part
" w h e n . p a t h [t r u e] w h e n . t a r g e t [t r u e] " in each recommendation trust expression
by dots (. . .) .

We start with the following trust relationships (see figure 2):

i 5

~3 . - ~o "~ ~ /

: - direct trust

- - -~" recommendation trust

numbers are percentages

Fig. 2. Combination of Trust Values

(r l) A t rus t s . rec~ B
(r2) A t rus t s . rec~ C ..
(r3) A t rus t s . rec~ D ..
(r4) B t rus t s . ree~ E ..
(r5) C trusts.reer E ..
(r6) D trus t s . rec~ F ..
(dl) E t rus t s~ G value
(d2) F t rus t s~ G value

value 0.83
value 1
value 0.30
value 0.70
value 0.10
value 0.95

).90
P.55

D e r i v a t i o n o f a D i r e c t T r u s t R e l a t i o n s h i p

There are two basic strategies for the derivation of a direct trust relationship
from A to G (e.g. via B and E): iterative and recursive. Both yield the same
trust expressions (with the same values) as was pointed out in section 3.3. The
values in this example are rounded to three digits.

Iterative Derivation: We first derive a recommendation trust from A to E, fol-
lowed by the derivation of the direct trust from A to G:

(rl) , (r4), Rule2 ::~ (rT) A trusts .recgz E . . . value 0.83~ 0.7

= 0 . 5 8 1

(r7), (dl) , Rulel =:> (d3) A t r u s t s f ~ G value 0.581(i) 0.9

----0.738

Recursive Derivation: Here we start with the derivation of the direct trust from
B to G which is then used to derive the direct trust from A to G:

(r4), (dl) , Rulel ::~ (d4) B t r u s t s E G value 0.7 | 0.9

=0.800

16

(rl) , (d4), Rulel ~ (d5) A t rus t s B~ G value o.8,3 o.8oo
: 0 . 7 3 8

Combinat ion of Direct Trust Relationships:

The following direct trust relationships from A to G can be derived using either
strategy:

(d3) A t rus t s B~ G value 0.738
(d4) A t rus t s c~ G value 0.206
(db) A t rus t s D~ G value 0.204

There are two different entities at the end of the recommendat ion paths: E
and F. So we identify two classes of trust expressions, the first consisting of (d3)
and (d4), the second being solely (db).

The computat ion of the combined value yields

Vcom = 1 - X/(1 - 0.738). (1 - 0.206). (1 - 0.204) = 0.637.

6 H o w t o U s e t h e V a l u e s

In this section we show how the introduced values can be used to decide whether
or not an entity is sufficiently trustworthy with respect to a certain task.

As mentioned earlier, we assume that the value of each task can be measured
in units, e.g. in ECU which are lost when the task is performed incorrectly. Our
est imations about the reliability of entities were made relative to tasks consisting
of a single unit. If we wish to entrust a task consisting of T units, the trusted
entity has to fulfill T "atomic" tasks in order to complete the whole task. Bearing
that in mind, we can est imate the risk when entrusting a task to an entity.

Let f denote the density of an enti ty 's reliability r provided it passed p tests
successfully (ok = p). Since P(r <_ a[ok = p) = ol p + I (see equation (2)), we have
that f = (p + 1)r p. From this equation and equation (1) follows that when T
units are entrusted to an entity with trust value v, the average loss / is

jr0
1

v, T) = (/og (1 - v) + 1) . / o g o (1 - v) . T . (1 - r T)

T 2

log~(1 - v) + T + 1"

If, for example, a = 0.99, v = 0.637 and we wish to entrust a task worth 100
units then we must be willing to risk/(0.99, 0.637,100) = 49.5 units.

17

7 Summary

In this paper we introduced the notion of valuated trust as an extension of the
t rust model of Yahalom, Klein and Beth [YKB93]. We pointed out that the
semantics of direct trust values differ from that of recommendat ion trust values:
the former expresses the probabili ty tha t an entity is working with a certain
min imum reliability, the latter states how useful the recommendat ions of the
t rusted entity are expected to be.

The introduction of trust values gives rise to the problem that recommen-
dations about one entity can differ in value, depending on the recommending
entities. We have shown that these different values are not contradictory but
can be combined to a single value which considers the information of all the
respective recommending entities.

When trust values are to be used in real systems, it is necessary to evaluate
the entrusted tasks. We have shown how the trust values can be used to est imate
the risk when such a task is to be assigned to an entity.

Using the trust values, a flexible policy can be applied which allows to select
appropriately trustworthy entities depending on the task 's value. Combined with
the notion of different trust classes the requirements for trusted entities can be
kept to a minimum.

A c k n o w l e d g m e n t

We would like to thank Raphael Yahalom and the anonymous referees for their
valuable comments.

References

[BAN89]

[Bor93]

[GNY90]

[Ran92]

[TU92]

[YKB93]

M. Burrows, M. Abadi, R. Needham, "A Logic of Authentication", Proc.
oJ the 12 th ACM Symposium on Operating Systems Principles, Litchfield
Park, Arizona, 1989. Published as ACM Operating Systems Review, 23 no
5 (1989).
M. Borcherding, "Ermittlung verschieden vertrauenswiirdiger Pfade in offe-
nen Netzen", Diploma thesis at the European Institute for System Security,
University of Karlsruhe, 1993 (in German).
L. Gong, R. Needham, R. Yahalom, "Reasoning about Belief in Crypto-
graphic Protocols", Proc. 1990 IEEE Symp. on Research in Security and
Privacy, 234-248.
P. V. Rangan, "An Axiomatic Theory of Trust in Secure Communication
Protocols", Computers and Security 11 (1992) 163-172, Elsevier Science
Publishers Ltd., Oxford 1992.
A. Tarah, Ch. ltuitema, "Associating Metrics to CertiIication Paths", Pro-
ceedings of the Second European Symposium on Research in Computer Se-
curity (ESORICS) 1992, 175-189, Springer LNCS 648, Berlin 1992.
R. Yahalom, B. Klein, Th. Beth, "Trust Relationships in Secure Systems
- A Distributed Authentication Perspective", Proc. 1993 IEEE Syrup. on
Research in Security and Privacy, 150-164.

[YKB94]

18

R. Yahalom, B. Klein, Th. Beth, "Trust-based Navigation in Distributed
Systems", to appear in: Special issue "Security and Integrity of Open Sys~
terns" of the journal "Computing Systems", 1994.

