
Model Checking Using
Adaptive State and Data Abstraction

(extended abstract)

Dennis Dams 1, Rob Gerth I t,
Gert Drhmen 1~ , Ronald Herrmann 2, Peter Kelb 2,

Hergen Pargmann 3w

Eindhoven University of Technology, Dept. of Math. and Computing Science, EO. Box 513,
5600 MB Eindhoven, The Netherlands. Email: {wsindd, robg} @win. t u e . n l

20FFIS, Westerstral3e 10-12, 26111 Oldenburg, Germany. Emaih
Peter. Kelb@arbi. in formatik, uni -oldenburg. de

3 University of Oldenburg, 26121 Oldenburg, Germany

Abstract. We present a partitioning algorithm for checking ACTL specifications
that distinguishes between states only if this is necessary to ascertain the specifi-
cation. This algorithm is then generalized to also abstract from the variable values
in the states. Here, too, the values between which the algorithm distinguishes are
determined by what is needed to decide whether or not the specification holds.
The resulting algorithm is being implemented in an ROBDD based model checker
for VHDL/S.

Keywords: model checking, ACTL, abstract interpretation, state partitioning,
binary decision diagrams (BDDs)

1 Introduction

The major stumbling block for successful application of model checking to complex
systems is the size of the state graphs of these systems. This is the so-called state explo-
sion problem. Although an impressive step forward has been made by the introduction
of ROBDD based techniques [BCM+90], this step has not moved us beyond the block;
rather, it has pushed it further ahead. In order to deal with the state explosion problem
in a fundamental way, we need versatile abstraction methods, that allow the abstraction
from any details that are not relevant to the property being checked.

Examples of such methods are the reduction of models by collapsing states which
are bisimulation equivalent [BFH+92] and the partial order approaches that allow parts
of the state graph caused by different interleavings of independent, parallel actions to
be ignored [Val91, GW91, Pe193]. These methods are safe for large classes of specifi-
cations. The first one applies to any property that cannot distinguish between bisimilar
states - - which is in fact the case for most common specification languages. The latter
methods basically apply to linear temporal logic specifications; but also see [GKPP94].

However, if the specific set of properties to be verfied is known beforehand, many
more details will become irrelevant and much better reductions can in principle be

t Currently working in ESPRIT project P6021 "Building Correct Reactive Systems (REACT)".
Currently working in ESPRIT project P6128 "Formal Methods in Hardware Design (FORMAT)".

w Currently working in Projekt "Informationssysteme".

456

effected. The problem then is to find out which are the relevant details needed to check
some given set of properties. In the light of the quest for automated methods, we need
efficient algorithms to perform this task.

In [DGG93], these problems are dealt with by an approach which is based on iterative
refinement of the model under construction by constructing ever finer partitions of the
concrete state space; as such, it generalizes the state partitioning method of [BFH+92].
Starting with an ACTL specification 4 ~ to be verified, the full model C and an abstract
model that contains no details, the model is successively refined until it contains enough
information to either prove or disprove the formula. Each of the models that is generated
in such a sequence of iterative refinements has the property that it preserves 9; i.e.,
whenever ~ holds in the abstract model .A, it also holds in the full model C, called
the concrete model henceforth. When ~:does not hold however, there are two possible
reasons. One is that the abstract model does not yet contain enough detail, although
does hold in the concrete; the other is that ~ does not hold in the concrete model. Further
refinement of the model will then bear out which one of these cases is true: either there
will be a point in the refinement process where ~ becomes true in the abstract model, or
at some point no further refinement is possible--the model fias become stable---while

is still false. It is shown that in the latter case, ~ is false in the concrete model as well;
i.e., stable models strongly preserve satisfaction of specifications.

An obvious factor determining the success of an abstraction methodology is the pos-
sibility it provides to construct abstractions in a direct fashion, i.e., without intermediate
construction of the complete detailed model. Otherwise, the target of avoiding the state
explosion would clearly be missed. Yet, all the above mentioned abstraction meth-
ods require access to the concrete transition relation, which still may be prohibitively
expensive for the state partitioning based methods.

This paper starts by formulating a state partitioning algorithm for ACTL within
an abstract interpretation framework. The basic algorithm is then generalized so that
the concrete transition relation can be abstracted as well; but in such a way that the
algorithm will automatically adapt the abstraction until it can decide truth or falsehood
of the specification. Both the state splittings as well as the abstractions of the transition
relation are governed by what is needed to establish the validity of the specification.

We obtain a two level approach. On the first level, an abstraction Rd of the concrete
transition relation Rc is choosen, yielding abstract transition systems 79, in such a way
that satisfaction of the specification ~ is preserved. Then, on the second level, the
partitioning algorithm constructs models .,4 that, in their turn, are abstractions of 79.
This algorithm terminates either if the specification ~ is satisfied in the model .,4 just
constructed, or if..4 becomes stable. In the latter case ~ may still not hold, from which
we conclude that ~ is invalid in 79 as well. However, 79 itself is an abstraction of the
concrete model C and we cannot immediately conclude that ~ is false in C. Thus we face
the problem of separating 'true' counter examples to the satisfaction of ~ from artifacts
caused by the first level abstraction. In the paper we show that it is possible to determine
whether a counter example is genuine or not. Assuming we do not have a true counter
example, we must change the first-level abstra6tion 7) so as to include more detail; i.e.,
the choosen abstraction 7) must be refined. Then the second-level partitioning algorithm

4 ACTL is the universal fragment of CTL.

457

again will iteratively construct models that now are abstractions of the new 7). As we
obviously want to retain what we have computed--7) and the stable -4 - - two other
problems are raised: how can the previously stable model .4 be used as the starting point
for the partitioning algorithm and how can a first-level abstraction 7) be adapted rather
than recomputed. We provide answers by defining a family of abstractions--depth-k
abstractions--and by concretely showing how models can be adapted and re-used.

The algorithm is being implemented in a tool for the verification of VHDL/S code.
VHDL/S [HSD+93] is a language developed in the ESPRIT project 6128 FORMAT. The
goal of FORMAT is to provide an environment for the efficient development of correct
VHDL designs, where correctness is pursued along two different lines: by synthesis and
verification. VHDL/S integrates four different and self-contained linguistic paradigms:
VHDL, state based specifications [Har87], symbolic timing diagrams [SD93], and tem-
poral logic. The former two are operational, the latter two are declarative in nature. State
based specifications are translated into ROBDDs [HK94], while specifications written
in VHDL are first translated into Petri Nets, which have actions (e.g., assignments) as-
sociated with their transitions. In a second step, these nets are translated into ROBDDs
so that symbolic model checking can be applied. The iterative refinement algorithm is
fit into this second translation phase, as this is the point at Which the state explosion
occurs.

The implementation of the state partitioning algorithm is also ROBDD-based, with
the obvious advantage that many previously implemented modules of the system can
be reused. A key point here is that the first-level abstraction allows us to approximate
the concrete model. We exploit this by limiting the size of ROBDDs, so that concrete
states are approximated by sets of states. Furthermore, by interpreting the actions that
are associated with transitions in nets over such abstract states, an approximation of the
transition relation is obtained.

The next section gives some background material. In Sect. 3 we develop the ACTL
partitioning algorithm and extend it to use data abstraction in Sect. 4. A sketch of an
ROBDD implementation embedded in a VHDL/S model checker would have occupied
the penultimate section, were it not for the page limitation imposed by Springer. Finally,
in Sect. 5 we draw some conclusions and point to future work.

2 Preliminaries

ACTLandECTL We assume some countable set of local propositional symbols Prop :
{p, q , . . .} . We define ACTL (universal Computation Tree Logic) in its positive normal
form in which negations only apply to propositions. The set of well-formed formulae
(written wff) is defined as follows

- - for p E Prop, p and -~p are wff,
- - if ~ and ~b are wff, then so are ~ V ~ and ~ A ~b,
- - i f ~ and ~b are wff, then so are AXe, AU(~, ~b) and AV(~, ~b).

ECTL (existential Computation Tree Logic) is defined as { - ~ I ~ E ACTL}.
The AV-modality is needed because the use of negation is constrained. Otherwise,

we would have had AV(~, ~b) = A-~U(-~, -~b) as can be gleaned from the satisfaction
definition below. Write AW to denote either AU or AV. Let Atoms(p) be the set of
subformulae of ~o that are either propositions or of the form AX~b or AW(~b, ~bl).

458

Transition systems and satisfaction ACTL is intended to express properties about com-
putations which are generated by transition systems T = (V, I , R) where V is some
set of states, I C V is the set of initial states and R is the transition relation which
is always assumed to be total to circumvent some technicalities. A.path cr in T is an
infinite sequence ~r = sos1 �9 �9 �9 of states such that si R si+l for every i. Write a , for
state sn in a. An s-path is a path that starts at state s. Define the precondition function,
pretr associated with R by preR(D) = {c I 3d E D c R d}. Write pre if the transition
relation is clear.

As usual, we need a valuation function V: V ~ 2 Pr~ to define which propositions
are true in which states. A (Kripke) model M is a pair (T, V) of a transition system and
a valuation function. M, s ~ 9 denotes that the formula 9 is true at the state s in the
transition system T with valuation V. Its inductive definition follows:

- - M, s ~ p i f fp E V(s) , forp E Prop,
- - M , s ~ -~piff p f~ V(s) , forp E Prop,
- - M , s ~ 9 V r i f fM, s ~ 9 o r M, s ~ r
- - M , s 9 / \ r iffM, s 9 a n d M , s r
- - M, s ~ AX 9 iff M, ~rn ~ 9 for every s-path a,
- - M, s ~ AU(9, r iff for every s-path ~r there is a k > 0 such that

M, r ~ r and M, cri ~ 9 for every i < k,
- - M, s ~ AV(~p, r iff there is no s-path ~r such that for some k > 0

M, crk ~ -~r and M, ai ~ 7 9 for every i < k.

ForS_C V, def ineM, S ~ 9 b y V s E S M , s ~ 9. M ~ 9 d e n o t e s M , I ~ 9.
When clear from the context, we omit M.

For AU(9 , r and AV(9 , r we define approximants as follows:

AUo(9, "r = false AUi+n(9, r = r V (9 A AXAUi(9, r
AV0(9, r = true AVi+,(9, r = r A (9 V AXAVi(9 , r

I f the transition system T has N states then for every state s

M,s# (AU(9 , r V AU,(9,r A (AV(9,r A Av,(9,r . (1)
i<N i<N

So, we also have M, s ~ AWN(9, r - AWN+i(9, r for any i > 0. In other words,
on finite transition systems the truth of AW-formulae is determined by a finite set of
approximants.

Abstract Interpretation Many of the results and constructions below are most easily
expressed using the language of Abstract Interpretation [CC77]; a general framework to
define static analyses of programs. The basic tenet is that the operations of a program-
ming language which operate on concrete values can be mimicked by corresponding
abstract operations defined over abstract values that describe sets of concrete values.

The starting point is choosing a set of abstract states, V~. Each abstract state a E V~
describes a set of concrete states. Conversely, every set C C_ Vc of concrete states has
a 'best' , or most precise description. This is formalized via a concretization function
7: Va --~ 2 vc and an abstraction function ct: 2 vo ---, Va. For each a, 7(a) is the set of all
concrete states described by a; for each C C_ Vc, c~(C) is the most precise description

459

in the sense that C C_ 7(c~(C)) and C C_ 7(a) implies 7(c~(C)) C_ 7(a) for any a EVa.
Thus, c~(C) is the least description of C w.r.t, the approximation ordering -'< on Vc
defined by a _ b iff 7(a) C 7(b). A given 7 uniquely determines an appropriate c~ (if
it exists) by setting c~(C) to be the least a such that 7(a) D C. The a thus defined is
written 7 b . We mention that, similarly, c~ determines a unique appropriate 7 as well.

These requirements are often captured by saying that (a, 7) is a Galois insertion from
(2 vo, C_) to (Va, __): (i) a and 7 are total and monotonic, (ii) for every C E 2 vc we have
(3' o a) (C) _D C, and (iii) for every a EVa we have (a o 7)(a) = a.

Given such an abstract interpretation of the data, functions f : Vc --+ V~ can be de-
scribed by safe abstract interpretations f~: V~ ---* ga that satisfy f~ (a) __ c~(f(7(a)).5
In particular, there is a precise abstract interpretation of f defined by fa = ~ o f o 7
and fa is safe just in case fa __ fa (pointwise). Safeness means that given a description
of the parameter, fa yields a description of the result value.

A static analysis can then be viewed as an abstract execution of the program in which
data and operations are abstractly interpreted, yielding a description of any concrete
execution.

Binary decision diagrams Reduced Ordered BBDs [Bry86, Bry92] are a way to eco-
nomically represent boolean functions in a canonical way. Although for most boolean
functions the size of their ROBDD representation is exponentially large, in most prac-
tical cases the ROBDDs are sufficiently small. This, together with the fact that boolean
operations, equivalence and tautology checking can be done very efficiently on ROB-
DDs, is the reason why ROBDDs are so popular. ROBDDs only supply a canonical
representation relative to an arbitrary but fixed ordering on the boolean (input) variables
and this ordering greatly influences the size of the ROBDDs.

The use of ROBDDs in model checking is based on coding transition relations as
boolean functions. Given a transition system (V, I, R), take vectors x, x' of boolean
variables long enough to code for all states in V (e.g., take [x[, Ix'l _> 2log(IV])). Then,

�9 F "1 t 6 define a boolean function R (x, x) by

rR't(x,x ~)= 1 r 3x, x tE V x R x t & f l (x) = x & f l (x ') = x ' ,

where fl is the coding function that maps states to bit strings.
Symbolic model checking is based on such ROBDD representations [BCM+90].

The basic operation that needs to be done is computing preconditions, pre(C), which
translates into computing relational products 3x'(rRl(x, x') A rC'l(x')). Obviously, to
represent a set as an ROBDD we use its characteristic predicate.

3 A C T L P a r t i t i o n i n g

The aim is to develop an algorithm that allows verifying an ACTL-specification without
generating the complete state-graph of the system to be verified. Specifically, we want to
verify the specification using an abstraction of the state-graph. The type of abstraction

5 f (C) = {f(c) I c E G}.
6 We usually do not make a distinction between the boolean function rRn and its ROBDD

representation.

460

that we have in mind is characterized by the following statement based on results
from [DGG94].

An abstraction o f t = (Vc, I~, R,) is a transition system ,4 = (Va, Ia, Ra) for
which there is a concretization function 7: Va --~ 2 v~ such that Ra satisfies

Va, b E V a (3 C e T (a) 3dET(b) c R c d =:~ a r a b)

and Ia satisfies Vc E I,3a E la c E 7(a). Satisfaction o f a propositionp in an
abstract state a is defined by

a ~ p iff 7(a) ~ p . (2)

Satisfaction of other formulae is then defined as usual.
For such abstract systems, the logic ACTL is weakly preserved:

V~ E ACTL, a E Va ..4, a ~ 9 ::=> C, 7(a) ~ W (3)

Write 7c to explicitly indicate that the transition system C is being abstracted.
If 7 is part o f a Galois Insertion (c~, 7) (as will always be the case in this paper), then

we may rephrase the above statement by saying that in our context the proper notion of
precise abstraction of a (transition)relation Re w.r.t. (c~, 7) is defined by

Ra = {(a,b) 13c,dE Vc c E 7 (a) & c n c d & o ~ (d) = b } .

Again, see [DGG94] for more details.
As every transition system trivially is an abstraction of itself (up to the difference

between states c and singletons {c}, which is irrelevant in this context), there is no
formal distinction between 'concrete' and 'abstract' transition systems. The existence
of the concretization function implies that we can view the states in an abstraction as
predicates over the concrete states; which we shall often do (and, hence, take Va = 2v~
By this interpretation, the concretization function is fixed as the standard interpretation
of predicates over V,.

3.1 The Basic Partitioning Algorithm
Since abstractions only weakly preserve ACTL (i.e., in (3) the implication in the other
direction does not hold in general), there is a potential problem if a specification
happens not to be satisfied in the concrete system, because in general we cannot draw
that conclusion given some abstraction. The reason can be gleaned from (2)7: we may
well have that .,4, a ~ ~ while there is a concrete state c E 7(a) for which C, c ~ 9.
Such a formula is said to be not determined in a.

Is it possible to decide whether C ~= ~ by analysing an abstraction .,4? The induc-
tive nature of the satisfaction definition suggests that this should be possible in case
all subformulae of ~ are determined in (all states in) .4. A closer look reveals the
following [DGG93]:

7 We stress that this definition of satisfaction is forced by the aim to have weak preservation.

461

Define the companion of ~, Comp(~) as

Atoms(~) \ {AW(~b, r [~b, ~b' E ACTL}

U {AWi(~b, ~b') [i > 0, AW(r r E Atoms(~)} .

If every formula in Comp(~) is determined in .,4, then ~ is strongly preserved
in A:

.A, a ~ ~ r162 C, 7(c~) ~ ~p. (4)

Such companion sets can be stratified: on the lowest level are the propositions; on each
higher level one finds formulae of the form AXr where ~ is some boolean combination
of formulae of lower levels.

This suggests a strategy to construct an abstract model for some given ~ in which ~ is
strongly preserved: start with some abstraction and 'add' more detail by partitioning, or
splitting, states in which some formula is not determined, into parts in which it is; one
part in which the formula holds and the other part in which it does not. The structure of
Comp(~) ensures that one can always partition states relative to formulae of the form
AXe with ~ already determined (except for the first step during which the splitting
is relative to propositions). In [DGG93] we developed algorithms along this line for
constructing minimal abstractions in which every ~ E ACTL is determined and also for
single formulae. Figure 1 gives a generalized version of the single-formulaepartitioning
algorithm.

The pseudo code uses a number of primitive operations, that must satisfy certain
requirements.

.4 := "Initial abstraction"
for p E Atoms(~)n Prop do.4 := split(.4, p, pre)od
F :--- Comp(~) \ Prop
repeat

piek~ E minA(F); F := F \ {4}
s := splitter(pre, r .4 := split(.A, s, pre)

until stable~ (.A)

Fig. 1. Partitioning algorithm for ~ E ACTL

Ordering on F The algorithm splits states with respect to the minimal elements of
F. So, the requirement on the ordering is that if AX~b E min~t(F) then ~ should be
determined in .4.

An abstraction is partitioned w.r.t, a formula ~ in two steps.

Splitter This function determines the states in which ~ holds. Consequently, it satisfies
a = spli t ter(pre,r 7(a) -- {c I C,c ~ ~}. As ~ = AXe', we can compute
splitter(pre,~) as the characteristic predicate of {c I Vd c R c d ~ d E "r(llr

462

Here, we have confused abstract states and predicates; furthermore, [[r denotes the
characteristic predicate of r which has been computed in a previous iteration. Define
the precondition function pre by pre(b) = a i f fT(a) = {c [3d c Rc dA d E 7(b)}, or,
more abstractly, as 7 k o pre c o 3,. 8 Thus, there is essentially no distinction between pre
and pr%. Later on this will change. Now we can define splitter(pre, ~) = -~pre(--,r

Splitting Next, we split all abstract states and compute the abstract transition relation.
We have split(A, s, pre) = (V~, ' ' Ia ,Ra) where V" = {a A s, a A ~ s [a E Va}, l~a =

I ~_. b I {a' I "r(a') n I # O, a' ~ v ' } and R a {(a ' , b') I a ' A pre(b') # false, a ' , E Va~}.
I f we expand definitions, we find that a ' A pre(b') # false rewrites to 3c E 7 (a ') 3d E
7(b ') c /~r d as should be the case. Here, too, we have confused abstract states and
predicates.

Termination We may stop partitioning states either when ~ becomes valid in some
abstraction or when Comp(~) becomes determined. Hence, we may take

stable~(A) = (.,4 ~ ~) V (Comp(~) is determined in .,4) .

Even ifC ~ ~, thepartitioning algorithm will terminate for finite-state systems: although
it is true that any atom AW(~b, ~b') will contribute an infinite set of approximants to the
companion, by (1) there will only be finitely many among them which will cause states
to split; i.e., at most the first N aproximants, where N is the number of concrete states.

Comp(~) is determined if no companion formula causes an additional split. Satisfac-
tion of ~ can be checked with any ACTL (or CTL) model checker.

Optimizations Even on this abstract level there are some optimizations to the basic
algorithm possible. We briefly mention some. It is possible to update the abstract
transition relation after a splitting instead ofrecomput ing it and if the transition relation
is deterministic then the computation of splitters simplifies.

More importantly, as there is a notion of initial state in which specifications should
hold, it pays off to do a simultaneous reachability analysis while splitting. The reason
is that abstractions preserve non-reachability; i.e., if some abstract state a becomes

unreachable in an abstraction then every concrete state in 7(a) will be unreachable in the
concrete model. This is expected to greatly reduce the size of the models. See [DGG93]
for details.

4 Data Abstraction
The above method abstracts from the concrete states which induces an abstraction of the
transition relation, However, to compute pre, (parts of) the concrete transition relation
is needed and this can be quite expensive in terms of both space and time. On the
other hand, we may perform the partitioning algorithm w.r.t, an underlying transition
that is already an abstraction of C, thus making computing pre easier. Transitivity of
abstractions guarantees weak preservation. We obtain two levels of abstraction: the
concrete transition system C is first 'data abstracted' into 7) = (Vd, Rd); the partitioning

s Formally speaking, we have thus defined pro to be the precise abstract interpretation of pre c
(i.e., ofpreRc) w.r.t the Galois insertion (7 ~, 7).

463

algorithm then computes an abstraction of 79 (w.r.t. a pre that is determined by Rd). An
abstract transition between two abstract states A and A I is illustrated in the picture on
this page.

The stable abstraction of 7) computed by the partitioning algorithm for some spec-
ification ~ is strongly preserving w.r.t. 79 (i.e., (4) holds when 7) is substituted for
C). Unfortunately, this does not imply that there is strong preservation w.r.t.C. More
precisely, we have strong preservation w.r.t, a larger transition relation on the concrete
states:

Let .4 be a stable abstraction of 79 as computed by the algorithm and let 79 be an
abstraction of C with concretization function 7 a. Define Rpre= {(el d) I e, d E

V~, e E 7~(pre(('rd)~(d))}. Note that R, C Rpre. We have
(i) (V~, Rpre) is an abstraction o f t , and
(ii) .4 ~ ~ iff (V,, Rpre) ~ ~.

An iterative process is suggested: choose some initial data abstraction 7) and compute a
stable abstraction .4. If it does not satisfy the specification, choose a new data abstraction
79~ that is more detailed in the sense that Rpre, C_ Rpre (obviously, we still should have
safeness: Rpre, __D Re) and start the algorithm again, but now with the (previously)
stable model .4 as initial abstraction.

If C ~ ~, then it seems that in the end we still need to choose pre to be precise in
order to draw that conclusion. However, it turns out that stable abstractions satisfy one
more property.

Let 7) be a data abstraction of C and let.4 be a stable abstraction of 79 as obtained
by partitioning. An edge (A, A') ERa in .4 is called exact if it satisfies

VaE729(A) VcETd(a) 3 a ' ~ 7 ~ (A ') 3 d E T d (a ') c R c d .

A path A = AoA~ ... is exact if every edge (Ai, Ai+I) on A is. Then C ~:
provided there is an exact path A in ,4 which is a counterexample for W and
such that the propositions appearing in W are determined in the states on A.

The exactness condition is illustrated
in the picture to the right. Note that for A A ~ eachaandcacorrespondinga'andd ~ ~
must be found.

As the algorithm performs its first
model check only after the abstract
model has been split w.r.t, the proposi-
tions, the determinacy constraint is au-
tomatically satisfied. Hence, if we can
detect whether or not a transition is exact when computing/~ during a split(`4, s, pre)
operation, then we may still be able to conclude that C ~: ~, without splitting w.r.t, the
precise pre.

This leads to the algorithm in Fig. 2. In the exit condition we have written .,4- for
the abstraction in which only the marked (exact) edges have been retained. As - ~ is an
ECTL-formula, `4- ~ ~ can only hold if there is a path A in `4- that witnesses ~
and, hence, is a counterexample to .4 ~ ~. By construction of .4 - , A only contains
marked edges and hence is exact.

464

Choose initial data abstraction and a corresponding safe pre
do

Execute the partitioning algorithm (while marking exact edges)
exit if (,4 ~ ~) V (.,4- ~= ~)

Choose a new data abstraction and corresponding safe pro
Unmark the edges of,4

od

Fig. 2. Partitioning algorithm for ~ E ACTL with data abstraction

Remaining questions are how to mark edges and how to choose pre's. Especially to
the latter question there is obviously no univocal answer. We discuss one possibility.

4.1 Depth-k Abstraction
The precondition function pre c of C is determined by its transition relation: prec(D) =
{c] 3d E D c / ~ d}. So, the choice of abstraction is determined by the aim to lessen
the complexity of calculating Re, and the requirements that it supports the detection of
exact edges and that it should be possible to change pre by 'adapting' the current one
rather than by recomputing it afresh.

Now, (concrete) transition systems arise as the interpretation of programs. Programs
can be abstractly viewed as defining state-transformers t(x, x') where x is a vector
of program variables and t specifies the relation between the new values x' of these
variables and the old ones that a program step enforces. A program's state is thus a
tuple of values in some domain Val (an n-tuple i fx contains n variables). The transition
relation associated with it is t h e n / ~ = {(v, v') I v, v' E Val n , t(v, r For ease of
exposition we take Val C_ [q. Obviously, if the program is finite state, i.e., if Rt is finite,
then Val is included in some initial segment of N.

Abstraction The abstractions that we propose to use are based on restricting the preci-
sion with which variable values are recorded. The idea behind this is that the ROBDDs
used to represent sets of states will have a limited depth. To support edge marking we
need to know whether a variable's abstract value is precise or not. This leads to abstract
value domains Val~ = {r, (r, O) [r < 2 k, r E Val} U {T} for k > 0 where 0 indi-
cates an 'overflow' in the sense that the value is too large to be represented with k bits;
Val~ = {T). Abstract values of the form r represent concrete values smaller than 2 ~
precisely; a value (r, O) means that there is overflow but that the least k bits are correct
and have value r; and T indicates absence of any knowledge. The concretization and
abstraction function (i.e., the 76 and (Ta) b from before) for k > 0 are

{ { (} ' l } ifa < 2k { r ,
7ck(a)= n n > 2 k, i f a = (r , O) , a ~ (N) = (r,O),

n mod 2 k = r '
N, if a = T T,

i f N = { r } & r < 2 k
i f N m o d 2 ~ = { r }

&-~(N < 2 k)
otherwise

In fact, a~ as just defined equals (7~)~.

465

Partitioning algorithm Our implementation of the algorithm in Fig. 2 will use these
depth-k abstractions: each variable value is represented in Valka for some k. It uses
the precise abstract interpretation t k of t on Val~a: tk(a, b) iff qe, d E Vc e E
7 k (a) & t (c, d) & ak (d) = b. To be precise, given the concrete system C = (V~, I, , Re)
(with V~ C_ Iq"), define-A k = (V),Ika,R~) by Vf = (Vai~)", I~ = {c~k(c) [e E I~}
and R~= {(a, a') Itk(a, a')}. The algorithm constructs models stable w.r.t..Ak for ever
larger values of k; whence, pre k = 7~k o preRk a o 7~tk is the precondition function used

when splitting w.r.t..Ak.

Correctness It works, because not only are the -Ak abstractions of C, but they also form
a hierarchy in the sense that -Ak is an abstraction of .A t if k < I. This follows from
Valka being an abstract interpretation of Valta for k < l via the concretization function

7tk: Val~ --~ 2 vafla defined as

{a},

7 ~ (a) = { n] 2 k < n < 2 ' , n m o d 2 k = r) t0
T,{(n, O) I 2k < n < 2 l, n mod 2 k = r},

if a < 2 k

if a = (r, O)
a = T

We also have 3 ,k = 7 z o 7~. Hence, an abstraction of -A~ can be transformed into a
transition system over Vat by replacing every Vf state a by the Vat states in 7~ (a). Thus
we obtain the initalization for the next iteration of the partitioning algorithm.

As for termination, consider -AK where K is chosen such that concrete values are at
most 2 g . (If C is finite state then such a K obviously exists.) We have l f f = lc, i.e.,
the abstractions are precise, and Ra K restricted to the precise abstract values coincides
with Re. Hence, the parts of C and -AK that are reachable from the initial nodes are
isomorphic. Because furthermore the stable abstraction computed by the partitioning
algorithm w.r.t, pre K is strongly preserving w.r.t. -AK, we have ,4 ~ 9 iff C ~ 9.

This seems to prove termination of the algorithm but there is a catch: If C ~: 9, then
the algorithm terminates not if-A ~ 9 but if-A- ~ 9 (where ,4 is the stable abstraction
of -AK). In other words, the algorithm terminates if marking satisfies the following
property:

If .,4 is a stable abstraction of .A K as computed by the partitioning
algorithm, and if the concrete values are at most 2 K, then every edge in
the reachable part of-A is marked.

(5)

Marking states The stable model that the algorithm attempts to construct is in its turn
an abstraction of -Ak. Hence, the abstract states A will in fact be subsets of (formally:
predicates over) (Vale) ~. It is edges between these subsets that are possibly going
to be marked. Given two abstract states A and B, there is an edge between them
if A N prek(B) # false. From this we can only conclude that 3a E 7.ak(A) 3b E
7.ak(B) a Ra k b, while a Ra k b gives that 3c C 7k(a) 3d E 7k(b) c Re d.

I fA _C prek(B) then we know that

Va e 3c e ? (a) 3b �9 3a �9 ? (b) d.

466

Comparing this with the definition of exactness of an edge, the relevant question is:
'when can we replace 3c E .),k (a) by Vc E 7 k (a) in this formula?' One obvious answer
is when 17k(a)l = 1, i.e., when the concrete values of the variable are represented
precisely. Another case in which we can replace it, is when we have a state transformer
such as z ~ = 0. I f A 'is ' the predicate z = (1, O) A V = 2 and B equals x = 0A V = 2,
then the edge from A to B is exact although A contains abstract overflow values. Call a
variable z a don't care for B just in case pre k (B) is independent of z (interpreted as a
predicate). Then, the criterion for marking an edge (A, B) becomes

A C_ pre k (B) and for any variable z, either z is represented precisely in every
a E 7.,tk (A) or x is a don't care for pre k (B).

It is straightforward to show that under this marking condition every reachable edge will
be marked if the depth-k abstraction gives enough precision as expressed in Property (5).

Note that marking as defined here is a 'safe' approximation of exactness. I.e., a
marked edge is guaranteed to be exact but not necessarily vice versa. Clearly, marking
every exact edge can only be done if the concrete transition relation is known.

Computing abstract relations As for ease of computation, obviously, the fewer bits
we use to represent the values, the more efficient computing the abstraction becomes.
Also, note that if t k (a, a ') holds for 'precise' abstract values, i.e., for values not of the
form (r, O) or T, then tZ(a, a ') holds as well for any 1 > k. Moreover, for operations
like addition or multiplication even if the result of the operation must be represented as
(r, O) in Valka, the lower bits r stay the same if the operation is interpreted in a more
precise Val~. Hence, it is possible to 'extend' pre k to pre z rather than to recompute it.

5 Conclusions and Future Work

We have presented an ACTL state partitioning algorithm that, for a given formula 9,
computes the 'coarsest' abstraction that allows the truth of ~ to be determined. This
algorithm has been extended with a second orthogonal abstraction scheme that allows
the automated choice of data abstraction relative to which the states are partitioned.

The algorithm described above is being implemented as part of a VHDL/S verifier
developed in ESPRIT project 6128 FORMAT. After the total realization of the algorithm,
practical experience has to show how far the existing limits of automatic verification
have been pushed ahead. We should also investigate how already computed information
can be reused more extensively. We are thinking not only of incrementally extending the
ROBDDs that describe the effect of the VHDL/S code fragments when the algorithm
changes the depth-k abstraction, but also of integrating model checking the specification

with the partitioningprocess: each partitioning step causes an additional subformula
of ~ to be determined; the model checker needs to do the same. Finally, although the
depth-k abstraction seems to be a good candidate for step-wise refinement of abstraction
schemes, there may be good alternatives as well. The work done on the field of abstract
interpretation of programs for static analysis can help for future applications in the area
of automatic verification.

467

Acknowledgments The first two authors wish to thank OFFIS and the University of
Oldenburg for their hospitality. We also thank Werner Darnm for the intensive 'bull
session' he organized and participated in, during which the ideas on which this paper is
based were developed.

References
[BCM + 90] J. R. Burch, E. M. Clarke, K. L. Mcmillan, D. L. Dill, and J. Hwang. Symbolic

model checking: l0 ~ states and beyond. In Proceedings of the Fifth Anual IEEE
Symposium on Logic in Computer Science (LICS), 1990.

[BFH+92] A. Bouajjani, J,-C. Fernandez, N. Halbwachs, E Raymond, and C. Ratel. Minimal
state graph generation. Science of Computer Programmming, 18(3):247-27 l, 1992.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation. Transac-
tions on Computers, C-35:677-691, 1986.

[Bry92] R.E. Bryant. Symbolic boolean manipulation with orderedbinary-decisiondiagrams.
ACM Computing Surveys, 24(3):293-318, 1992.

[CC77] E Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by constructing or approximation of fixed points. In Proceedings
of the Fourth Annual ACM Symposium on Principles of Programming Languages
(POPL), pages 238-252. ACM, 1977.

[DGG93] D. Dams, R. Gerth, and O. Grumberg. Generation of reduced models for checking
fragments of CTL. In C. Courcoubetis, editor, Proceedings of the Fifth Conference
on Computer-Aided Verification, volume 697 of Lecture Notes in Computer Science.
Springer-Vedag, 1993.

[DGG94] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
abstractions preserving VCTL*, 3CTL* and CTL*. In Proceedings of PROCOMET,
IFIE North-Holland, 1994. To appear.

[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branching
time logic model checking, 1994. Submitted.

[GW91] E Godefroid and E Wolper. A partial approach to model checking. In Proceedings
of the Sixth Anual IEEE Symposium on Logic in Computer Science (LICS), 1991.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 1987.

[HK94] J. Helbig and E Kelb. An OBDD representation of statecharts, 1994. To appear in
EDAC94.

[HSD+93] J. Helbig, R. Schl6r, W. Damm, G. D6hmen, and E Kelb. VHDL/S--integrating
statecharts, timing diagrams and VHDL. Microprocessing and Microprogramming,
38:571-580, 1993.

[Pel93] D. Peled. All from one, one for all, on model-checking using representatives. In
Proceedings of the Fifth International Conference on Computer-Aided Veri~cation,
Lecture Notes in Computer Science, pages 409-423. Springer-Verlag, 1993.

[SD93] R. Schl6r and W. Datum. Specification and verification of system-level hardware
designs using timing diagrams. In EDAC93, 1993.

[Val91] A. Valmari. A stubborn attack on state explosion. In Proceedings of the Second
Conference on Computer-Aided Veritication, Lecture Notes in Computer Science.
Springer-Verlag, 1991.

