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Abstract. We present a partitioning algorithm for checking ACTL specifications 
that distinguishes between states only if this is necessary to ascertain the specifi- 
cation. This algorithm is then generalized to also abstract from the variable values 
in the states. Here, too, the values between which the algorithm distinguishes are 
determined by what is needed to decide whether or not the specification holds. 
The resulting algorithm is being implemented in an ROBDD based model checker 
for VHDL/S. 

Keywords: model checking, ACTL, abstract interpretation, state partitioning, 
binary decision diagrams (BDDs) 

1 Introduction 

The major stumbling block for successful application of model checking to complex 
systems is the size of the state graphs of these systems. This is the so-called state explo- 
sion problem. Although an impressive step forward has been made by the introduction 
of ROBDD based techniques [BCM+90], this step has not moved us beyond the block; 
rather, it has pushed it further ahead. In order to deal with the state explosion problem 
in a fundamental way, we need versatile abstraction methods, that allow the abstraction 
from any details that are not relevant to the property being checked. 

Examples of such methods are the reduction of models by collapsing states which 
are bisimulation equivalent [BFH+92] and the partial order approaches that allow parts 
of the state graph caused by different interleavings of independent, parallel actions to 
be ignored [Val91, GW91, Pe193]. These methods are safe for large classes of specifi- 
cations. The first one applies to any property that cannot distinguish between bisimilar 
states - -  which is in fact the case for most common specification languages. The latter 
methods basically apply to linear temporal logic specifications; but also see [GKPP94]. 

However, if the specific set of properties to be verfied is known beforehand, many 
more details will become irrelevant and much better reductions can in principle be 

t Currently working in ESPRIT project P6021 "Building Correct Reactive Systems (REACT)". 
Currently working in ESPRIT project P6128 "Formal Methods in Hardware Design (FORMAT)". 
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effected. The problem then is to find out which are the relevant details needed to check 
some given set of properties. In the light of the quest for automated methods, we need 
efficient algorithms to perform this task. 

In [DGG93], these problems are dealt with by an approach which is based on iterative 
refinement of the model under construction by constructing ever finer partitions of the 
concrete state space; as such, it generalizes the state partitioning method of [BFH+92]. 
Starting with an ACTL specification 4 ~ to be verified, the full model C and an abstract 
model that contains no details, the model is successively refined until it contains enough 
information to either prove or disprove the formula. Each of the models that is generated 
in such a sequence of iterative refinements has the property that it preserves 9; i.e., 
whenever ~ holds in the abstract model .A, it also holds in the full model C, called 
the concrete model henceforth. When ~:does not hold however, there are two possible 
reasons. One is that the abstract model does not yet contain enough detail, although 
does hold in the concrete; the other is that ~ does not hold in the concrete model. Further 
refinement of the model will then bear out which one of these cases is true: either there 
will be a point in the refinement process where ~ becomes true in the abstract model, or 
at some point no further refinement is possible--the model fias become stable---while 

is still false. It is shown that in the latter case, ~ is false in the concrete model as well; 
i.e., stable models strongly preserve satisfaction of specifications. 

An obvious factor determining the success of an abstraction methodology is the pos- 
sibility it provides to construct abstractions in a direct fashion, i.e., without intermediate 
construction of the complete detailed model. Otherwise, the target of avoiding the state 
explosion would clearly be missed. Yet, all the above mentioned abstraction meth- 
ods require access to the concrete transition relation, which still may be prohibitively 
expensive for the state partitioning based methods. 

This paper starts by formulating a state partitioning algorithm for ACTL within 
an abstract interpretation framework. The basic algorithm is then generalized so that 
the concrete transition relation can be abstracted as well; but in such a way that the 
algorithm will automatically adapt the abstraction until it can decide truth or falsehood 
of the specification. Both the state splittings as well as the abstractions of the transition 
relation are governed by what is needed to establish the validity of  the specification. 

We obtain a two level approach. On the first level, an abstraction Rd of the concrete 
transition relation Rc is choosen, yielding abstract transition systems 79, in such a way 
that satisfaction of the specification ~ is preserved. Then, on the second level, the 
partitioning algorithm constructs models .,4 that, in their turn, are abstractions of 79. 
This algorithm terminates either if the specification ~ is satisfied in the model .,4 just 
constructed, or if..4 becomes stable. In the latter case ~ may still not hold, from which 
we conclude that ~ is invalid in 79 as well. However, 79 itself is an abstraction of the 
concrete model C and we cannot immediately conclude that ~ is false in C. Thus we face 
the problem of separating 'true' counter examples to the satisfaction of ~ from artifacts 
caused by the first level abstraction. In the paper we show that it is possible to determine 
whether a counter example is genuine or not. Assuming we do not have a true counter 
example, we must change the first-level abstra6tion 7) so as to include more detail; i.e., 
the choosen abstraction 7) must be refined. Then the second-level partitioning algorithm 

4 ACTL is the universal fragment of CTL. 
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again will iteratively construct models that now are abstractions of the new 7). As we 
obviously want to retain what we have computed--7) and the stable -4 - - two other 
problems are raised: how can the previously stable model .4 be used as the starting point 
for the partitioning algorithm and how can a first-level abstraction 7) be adapted rather 
than recomputed. We provide answers by defining a family of abstractions--depth-k 
abstractions--and by concretely showing how models can be adapted and re-used. 

The algorithm is being implemented in a tool for the verification of VHDL/S code. 
VHDL/S [HSD+93] is a language developed in the ESPRIT project 6128 FORMAT. The 
goal of FORMAT is to provide an environment for the efficient development of correct 
VHDL designs, where correctness is pursued along two different lines: by synthesis and 
verification. VHDL/S integrates four different and self-contained linguistic paradigms: 
VHDL, state based specifications [Har87], symbolic timing diagrams [SD93], and tem- 
poral logic. The former two are operational, the latter two are declarative in nature. State 
based specifications are translated into ROBDDs [HK94], while specifications written 
in VHDL are first translated into Petri Nets, which have actions (e.g., assignments) as- 
sociated with their transitions. In a second step, these nets are translated into ROBDDs 
so that symbolic model checking can be applied. The iterative refinement algorithm is 
fit into this second translation phase, as this is the point at Which the state explosion 
occurs. 

The implementation of the state partitioning algorithm is also ROBDD-based, with 
the obvious advantage that many previously implemented modules of the system can 
be reused. A key point here is that the first-level abstraction allows us to approximate 
the concrete model. We exploit this by limiting the size of  ROBDDs, so that concrete 
states are approximated by sets of states. Furthermore, by interpreting the actions that 
are associated with transitions in nets over such abstract states, an approximation of the 
transition relation is obtained. 

The next section gives some background material. In Sect. 3 we develop the ACTL 
partitioning algorithm and extend it to use data abstraction in Sect. 4. A sketch of an 
ROBDD implementation embedded in a VHDL/S model checker would have occupied 
the penultimate section, were it not for the page limitation imposed by Springer. Finally, 
in Sect. 5 we draw some conclusions and point to future work. 

2 Preliminaries 

ACTLandECTL We assume some countable set of local propositional symbols Prop : 
{p, q , . . .} .  We define ACTL (universal Computation Tree Logic) in its positive normal 
form in which negations only apply to propositions. The set of well-formed formulae 
(written wff) is defined as follows 

- -  for p E Prop, p and -~p are wff, 
- -  if ~ and ~b are wff, then so are ~ V ~ and ~ A ~b, 
- -  i f ~  and ~b are wff, then so are AXe, AU(~, ~b) and AV(~, ~b). 

ECTL (existential Computation Tree Logic) is defined as { - ~  I ~ E ACTL}. 
The AV-modality is needed because the use of negation is constrained. Otherwise, 

we would have had AV(~, ~b) = A-~U(-~, -~b) as can be gleaned from the satisfaction 
definition below. Write AW to denote either AU or AV. Let Atoms(p) be the set of 
subformulae of ~o that are either propositions or of the form AX~b or AW(~b, ~bl). 
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Transition systems and satisfaction ACTL is intended to express properties about com- 
putations which are generated by transition systems T = (V, I ,  R) where V is some 
set of states, I C V is the set of initial states and R is the transition relation which 
is always assumed to be total to circumvent some technicalities. A.path cr in T is an 
infinite sequence ~r = sos1 �9 �9 �9 of states such that si R si+l for every i. Write a ,  for 
state sn in a. An s-path is a path that starts at state s. Define the precondition function, 
pretr associated with R by preR( D) = {c I 3d E D c R d}. Write pre if the transition 
relation is clear. 

As usual, we need a valuation function V: V ~ 2 Pr~ to define which propositions 
are true in which states. A (Kripke) model M is a pair (T, V)  of a transition system and 
a valuation function. M, s ~ 9 denotes that the formula 9 is true at the state s in the 
transition system T with valuation V. Its inductive definition follows: 

- -  M, s ~ p i f fp  E V(s) ,  forp  E Prop, 
- -  M , s  ~ -~piff p f~ V(s) ,  forp E Prop, 
- - M , s  ~ 9 V r  i f fM,  s ~ 9 o r  M,  s ~ r 
- - M , s  9 / \  r iffM, s 9 a n d M ,  s r 
- -  M, s ~ AX 9 iff M, ~rn ~ 9 for every s-path a, 
- -  M, s ~ AU(9, r iff for every s-path ~r there is a k > 0 such that 

M, r ~ r and M, cri ~ 9 for every i < k, 
- -  M, s ~ AV(~p, r iff there is no s-path ~r such that for some k > 0 

M, crk ~ -~r and M,  ai ~ 7 9  for every i < k. 

ForS_C V, def ineM, S ~ 9 b y V s  E S M , s  ~ 9. M ~ 9 d e n o t e s M ,  I ~ 9. 
When clear from the context, we omit M. 

For AU(9 , r  and AV(9 , r we define approximants as follows: 

AUo(9, "r = false AUi+n(9, r = r V (9 A AXAUi(9, r 
AV0(9, r = true AVi+,(9, r  = r A (9 V AXAVi(9 , r  

I f  the transition system T has N states then for every state s 

M,s# (AU(9 , r  V AU,(9,r A (AV(9,r A Av,(9,r . (1) 
i<N i<N 

So, we also have M, s ~ AWN(9, r - AWN+i(9, r  for any i > 0. In other words, 
on finite transition systems the truth of AW-formulae is determined by a finite set of 
approximants. 

Abstract Interpretation Many of the results and constructions below are most easily 
expressed using the language of Abstract Interpretation [CC77]; a general framework to 
define static analyses of programs. The basic tenet is that the operations of a program- 
ming language which operate on concrete values can be mimicked by corresponding 
abstract operations defined over abstract values that describe sets of concrete values. 

The starting point is choosing a set of abstract states, V~. Each abstract state a E V~ 
describes a set of concrete states. Conversely, every set C C_ Vc of concrete states has 
a 'best' ,  or most precise description. This is formalized via a concretization function 
7: Va --~ 2 vc and an abstraction function ct: 2 vo ---, Va. For each a, 7(a) is the set of all 
concrete states described by a; for each C C_ Vc, c~(C) is the most precise description 
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in the sense that C C_ 7(c~(C)) and C C_ 7(a) implies 7(c~(C)) C_ 7(a) for any a EVa. 
Thus, c~(C) is the least description of C w.r.t, the approximation ordering -'< on Vc 
defined by a _ b iff 7(a) C 7(b). A given 7 uniquely determines an appropriate c~ (if 
it exists) by setting c~(C) to be the least a such that 7(a) D C. The a thus defined is 
written 7 b . We mention that, similarly, c~ determines a unique appropriate 7 as well. 

These requirements are often captured by saying that (a, 7) is a Galois insertion from 
(2 vo, C_) to (Va, __): (i) a and 7 are total and monotonic, (ii) for every C E 2 vc we have 
(3' o a ) (C)  _D C, and (iii) for every a EVa we have (a o 7)(a) = a. 

Given such an abstract interpretation of the data, functions f :  Vc --+ V~ can be de- 
scribed by safe abstract interpretations f~: V~ ---* ga that satisfy f~ (a) __ c~(f(7(a)).5 
In particular, there is a precise abstract interpretation of f defined by fa = ~ o f o 7 
and fa is safe just in case fa __ fa (pointwise). Safeness means that given a description 
of the parameter, fa yields a description of the result value. 

A static analysis can then be viewed as an abstract execution of the program in which 
data and operations are abstractly interpreted, yielding a description of any concrete 
execution. 

Binary decision diagrams Reduced Ordered BBDs [Bry86, Bry92] are a way to eco- 
nomically represent boolean functions in a canonical way. Although for most boolean 
functions the size of their ROBDD representation is exponentially large, in most prac- 
tical cases the ROBDDs are sufficiently small. This, together with the fact that boolean 
operations, equivalence and tautology checking can be done very efficiently on ROB- 
DDs, is the reason why ROBDDs are so popular. ROBDDs only supply a canonical 
representation relative to an arbitrary but fixed ordering on the boolean (input) variables 
and this ordering greatly influences the size of the ROBDDs. 

The use of ROBDDs in model checking is based on coding transition relations as 
boolean functions. Given a transition system (V, I, R), take vectors x, x' of boolean 
variables long enough to code for all states in V (e.g., take [x[, Ix'l _> 2log(IV])). Then, 

�9 F "1 t 6 define a boolean function R (x, x ) by 

rR't(x,x ~)= 1 r 3x, x tE  V x R x t & f l ( x ) = x & f l ( x ' ) = x ' ,  

where fl is the coding function that maps states to bit strings. 
Symbolic model checking is based on such ROBDD representations [BCM+90]. 

The basic operation that needs to be done is computing preconditions, pre(C), which 
translates into computing relational products 3x'(  rRl(x,  x') A rC'l(x')). Obviously, to 
represent a set as an ROBDD we use its characteristic predicate. 

3 A C T L  P a r t i t i o n i n g  

The aim is to develop an algorithm that allows verifying an ACTL-specification without 
generating the complete state-graph of the system to be verified. Specifically, we want to 
verify the specification using an abstraction of the state-graph. The type of abstraction 

5 f (C)  = {f(c) I c E G}. 
6 We usually do not make a distinction between the boolean function rRn and its ROBDD 

representation. 
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that we have in mind is characterized by the following statement based on results 
from [DGG94]. 

An abstraction o f t  = (Vc, I~, R,)  is a transition system ,4 = (Va, Ia, Ra) for 
which there is a concretization function 7: Va --~ 2 v~ such that Ra satisfies 

Va, b E V a ( 3 C e T ( a )  3dET(b) c R c d  =:~ a r a b )  

and Ia satisfies Vc E I,3a E la c E 7(a). Satisfaction o f a  propositionp in an 
abstract state a is defined by 

a ~ p  iff 7(a) ~ p .  (2) 

Satisfaction of other formulae is then defined as usual. 
For such abstract systems, the logic ACTL is weakly preserved: 

V~ E ACTL, a E Va ..4, a ~ 9 ::=> C, 7(a) ~ W  (3) 

Write 7c to explicitly indicate that the transition system C is being abstracted. 
If  7 is part o f a  Galois Insertion (c~, 7) (as will always be the case in this paper), then 

we may rephrase the above statement by saying that in our context the proper notion of 
precise abstraction of a (transition)relation Re w.r.t. (c~, 7) is defined by 

Ra = {(a,b) 13c,dE Vc c E 7 ( a ) & c n c d & o ~ ( d ) = b } .  

Again, see [DGG94] for more details. 
As every transition system trivially is an abstraction of itself (up to the difference 

between states c and singletons {c}, which is irrelevant in this context), there is no 
formal distinction between 'concrete' and 'abstract' transition systems. The existence 
of the concretization function implies that we can view the states in an abstraction as 
predicates over the concrete states; which we shall often do (and, hence, take Va = 2v~ 
By this interpretation, the concretization function is fixed as the standard interpretation 
of predicates over V,. 

3.1 The Basic Partitioning Algorithm 
Since abstractions only weakly preserve ACTL (i.e., in (3) the implication in the other 
direction does not hold in general), there is a potential problem if a specification 
happens not to be satisfied in the concrete system, because in general we cannot draw 
that conclusion given some abstraction. The reason can be gleaned from (2)7: we may 
well have that .,4, a ~ ~ while there is a concrete state c E 7(a) for which C, c ~ 9. 
Such a formula is said to be not determined in a. 

Is it possible to decide whether C ~= ~ by analysing an abstraction .,4? The induc- 
tive nature of the satisfaction definition suggests that this should be possible in case 
all subformulae of ~ are determined in (all states in) .4. A closer look reveals the 
following [DGG93]: 

7 We stress that this definition of satisfaction is forced by the aim to have weak preservation. 
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Define the companion of ~, Comp(~) as 

Atoms(~) \ {AW(~b, r  [ ~b, ~b' E ACTL} 

U {AWi(~b, ~b') [ i > 0, AW(r r  E Atoms(~)} . 

If every formula in Comp(~) is determined in .,4, then ~ is strongly preserved 
in A: 

.A, a ~ ~ r162 C, 7(c~) ~ ~p. (4) 

Such companion sets can be stratified: on the lowest level are the propositions; on each 
higher level one finds formulae of the form AXr where ~ is some boolean combination 
of formulae of lower levels. 

This suggests a strategy to construct an abstract model for some given ~ in which ~ is 
strongly preserved: start with some abstraction and 'add' more detail by partitioning, or 
splitting, states in which some formula is not determined, into parts in which it is; one 
part in which the formula holds and the other part in which it does not. The structure of 
Comp(~) ensures that one can always partition states relative to formulae of the form 
AXe with ~ already determined (except for the first step during which the splitting 
is relative to propositions). In [DGG93] we developed algorithms along this line for 
constructing minimal abstractions in which every ~ E ACTL is determined and also for 
single formulae. Figure 1 gives a generalized version of the single-formulaepartitioning 
algorithm. 

The pseudo code uses a number of primitive operations, that must satisfy certain 
requirements. 

.4 := "Initial abstraction" 
for p E Atoms(~)n Prop do.4 := split(.4, p, pre)od 
F :--- Comp(~) \ Prop 
repeat 

piek~ E minA(F); F := F \ {4} 
s := splitter(pre, r .4 := split(.A, s, pre) 

until stable~ (.A) 

Fig. 1. Partitioning algorithm for ~ E ACTL 

Ordering on F The algorithm splits states with respect to the minimal elements of 
F. So, the requirement on the ordering is that if AX~b E min~t(F) then ~ should be 
determined in .4. 

An abstraction is partitioned w.r.t, a formula ~ in two steps. 

Splitter This function determines the states in which ~ holds. Consequently, it satisfies 
a = spli t ter(pre,r  7(a) -- {c I C,c ~ ~}. As ~ = AXe', we can compute 
splitter(pre,~) as the characteristic predicate of {c I Vd c R c d  ~ d E "r(llr 
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Here, we have confused abstract states and predicates; furthermore, [[r denotes the 
characteristic predicate of  r  which has been computed in a previous iteration. Define 
the precondition function pre by pre(b) = a i f fT(a)  = {c [ 3d c Rc dA d E 7(b)}, or, 
more abstractly, as 7 k o pre c o 3,. 8 Thus, there is essentially no distinction between pre 
and pr%. Later on this will change. Now we can define splitter(pre, ~)  = -~pre(--,r 

Splitting Next, we split all abstract states and compute the abstract transition relation. 
We have split(A, s, pre) = (V~, ' ' Ia ,Ra)  where V" = {a A s, a A ~ s  [ a E Va}, l~a = 

I ~_. b I {a'  I "r(a') n I # O, a' ~ v ' }  and R a {(a ' ,  b') I a '  A pre(b') # false, a ' ,  E Va~}. 
I f  we expand definitions, we find that a '  A pre(b') # false rewrites to 3c E 7 (a ' )  3d E 
7(b ')  c /~r d as should be the case. Here, too, we have confused abstract states and 
predicates. 

Termination We may stop partitioning states either when ~ becomes valid in some 
abstraction or when Comp(~)  becomes determined. Hence, we may take 

stable~(A) = (.,4 ~ ~) V (Comp(~)  is determined in .,4) . 

Even ifC ~ ~, thepartitioning algorithm will terminate for finite-state systems: although 
it is true that any atom AW(~b, ~b') will contribute an infinite set of  approximants to the 
companion, by (1) there will only be finitely many among them which will cause states 
to split; i.e., at most the first N aproximants, where N is the number of  concrete states. 

Comp(~)  is determined if no companion formula causes an additional split. Satisfac- 
tion of ~ can be checked with any ACTL (or CTL) model checker. 

Optimizations Even on this abstract level there are some optimizations to the basic 
algorithm possible. We briefly mention some. It is possible to update the abstract 
transition relation after a splitting instead ofrecomput ing it and if the transition relation 
is deterministic then the computation of  splitters simplifies. 

More importantly, as there is a notion of initial state in which specifications should 
hold, it pays off  to do a simultaneous reachability analysis while splitting. The reason 
is that abstractions preserve non-reachability; i.e., if some abstract state a becomes 

unreachable  in an abstraction then every concrete state in 7(a)  will be unreachable in the 
concrete model. This is expected to greatly reduce the size of  the models. See [DGG93] 
for details. 

4 Data Abstraction 
The above method abstracts from the concrete states which induces an abstraction of the 
transition relation, However, to compute pre, (parts of) the concrete transition relation 
is needed and this can be quite expensive in terms of  both space and time. On the 
other hand, we may perform the partitioning algorithm w.r.t, an underlying transition 
that is already an abstraction of  C, thus making computing pre easier. Transitivity of  
abstractions guarantees weak preservation. We obtain two levels of  abstraction: the 
concrete transition system C is first 'data abstracted' into 7) = (Vd, Rd); the partitioning 

s Formally speaking, we have thus defined pro to be the precise abstract interpretation of pre c 
(i.e., ofpreRc) w.r.t the Galois insertion (7 ~, 7). 
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algorithm then computes an abstraction of 79 (w.r.t. a pre that is determined by Rd). An 
abstract transition between two abstract states A and A I is illustrated in the picture on 
this page. 

The stable abstraction of 7) computed by the partitioning algorithm for some spec- 
ification ~ is strongly preserving w.r.t. 79 (i.e., (4) holds when 7) is substituted for 
C). Unfortunately, this does not imply that there is strong preservation w.r.t.C. More 
precisely, we have strong preservation w.r.t, a larger transition relation on the concrete 
states: 

Let .4 be a stable abstraction of 79 as computed by the algorithm and let 79 be an 
abstraction of C with concretization function 7 a. Define Rpre= {(el d) I e, d E 

V~, e E 7~(pre(('rd)~(d))}. Note that R, C Rpre. We have 
(i) (V~, Rpre) is an abstraction o f t ,  and 
(ii) .4 ~ ~ iff (V,, Rpre) ~ ~. 

An iterative process is suggested: choose some initial data abstraction 7) and compute a 
stable abstraction .4. If it does not satisfy the specification, choose a new data abstraction 
79~ that is more detailed in the sense that Rpre, C_ Rpre (obviously, we still should have 
safeness: Rpre, __D Re) and start the algorithm again, but now with the (previously) 
stable model .4 as initial abstraction. 

If C ~ ~, then it seems that in the end we still need to choose pre to be precise in 
order to draw that conclusion. However, it turns out that stable abstractions satisfy one 
more property. 

Let 7) be a data abstraction of C and let.4 be a stable abstraction of 79 as obtained 
by partitioning. An edge (A, A') ERa in .4 is called exact if it satisfies 

VaE729(A) VcETd(a)  3 a ' ~ 7 ~ ( A ' )  3 d E T d ( a  ') c R c d .  

A path A = AoA~ ... is exact if every edge (Ai, Ai+I) on A is. Then C ~: 
provided there is an exact path A in ,4 which is a counterexample for W and 
such that the propositions appearing in W are determined in the states on A. 

The exactness condition is illustrated 
in the picture to the right. Note that for A A ~ eachaandcacorrespondinga'andd ~ ~  
must be found. 

As the algorithm performs its first 
model check only after the abstract 
model has been split w.r.t, the proposi- 
tions, the determinacy constraint is au- 
tomatically satisfied. Hence, if we can 
detect whether or not a transition is exact when computing/~ during a split(`4, s, pre) 
operation, then we may still be able to conclude that C ~: ~, without splitting w.r.t, the 
precise pre. 

This leads to the algorithm in Fig. 2. In the exit condition we have written .,4- for 
the abstraction in which only the marked (exact) edges have been retained. As - ~  is an 
ECTL-formula, `4- ~ ~ can only hold if there is a path A in `4- that witnesses ~ 
and, hence, is a counterexample to .4 ~ ~. By construction of .4 - ,  A only contains 
marked edges and hence is exact. 
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Choose initial data abstraction and a corresponding safe pre 
do 

Execute the partitioning algorithm (while marking exact edges) 
exit if (,4 ~ ~) V (.,4- ~= ~) 

Choose a new data abstraction and corresponding safe pro 
Unmark the edges of,4 

od 

Fig. 2. Partitioning algorithm for ~ E ACTL with data abstraction 

Remaining questions are how to mark edges and how to choose pre's. Especially to 
the latter question there is obviously no univocal answer. We discuss one possibility. 

4.1 Depth-k Abstraction 
The precondition function pre c of C is determined by its transition relation: prec(D) = 
{c ] 3d E D c / ~  d}. So, the choice of abstraction is determined by the aim to lessen 
the complexity of calculating Re, and the requirements that it supports the detection of 
exact edges and that it should be possible to change pre by 'adapting' the current one 
rather than by recomputing it afresh. 

Now, (concrete) transition systems arise as the interpretation of programs. Programs 
can be abstractly viewed as defining state-transformers t(x, x') where x is a vector 
of program variables and t specifies the relation between the new values x' of these 
variables and the old ones that a program step enforces. A program's state is thus a 
tuple of values in some domain Val (an n-tuple i fx  contains n variables). The transition 
relation associated with it is t h e n / ~ =  {(v, v') I v, v' E Val n , t(v, r  For ease of 
exposition we take Val C_ [q. Obviously, if the program is finite state, i.e., if Rt is finite, 
then Val is included in some initial segment of N. 

Abstraction The abstractions that we propose to use are based on restricting the preci- 
sion with which variable values are recorded. The idea behind this is that the ROBDDs 
used to represent sets of states will have a limited depth. To support edge marking we 
need to know whether a variable's abstract value is precise or not. This leads to abstract 
value domains Val~ = {r, (r, O) [ r < 2 k, r E Val} U {T} for k > 0 where 0 indi- 
cates an 'overflow' in the sense that the value is too large to be represented with k bits; 
Val~ = {T). Abstract values of the form r represent concrete values smaller than 2 ~ 
precisely; a value (r, O) means that there is overflow but that the least k bits are correct 
and have value r; and T indicates absence of any knowledge. The concretization and 
abstraction function (i.e., the 76 and (Ta) b from before) for k > 0 are 

{ { ( } ' l  } ifa < 2k { r ,  
7ck(a)= n n > 2  k, i f a = ( r , O )  , a ~ ( N ) =  (r,O), 

n mod 2 k = r ' 
N, if a = T T, 

i f N = { r } & r < 2  k 
i f N m o d 2  ~ = { r }  

&-~(N < 2 k) 
otherwise 

In fact, a~ as just defined equals (7~)~. 
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Partitioning algorithm Our implementation of the algorithm in Fig. 2 will use these 
depth-k abstractions: each variable value is represented in Valka for some k. It uses 
the precise abstract interpretation t k of t on Val~a: tk(a, b) iff qe, d E Vc e E 
7 k (a) & t (c, d) & ak (d) = b. To be precise, given the concrete system C = (V~, I, ,  Re) 
(with V~ C_ Iq"), define-A k = (V),Ika,R~) by Vf = (Vai~)", I~ = {c~k(c) [e E I~} 
and R~= {(a, a') Itk( a, a')}. The algorithm constructs models stable w.r.t..Ak for ever 
larger values of k; whence, pre k = 7~k o preRk a o 7~tk is the precondition function used 

when splitting w.r.t..Ak. 

Correctness It works, because not only are the -Ak abstractions of C, but they also form 
a hierarchy in the sense that -Ak is an abstraction of .A t if k < I. This follows from 
Valka being an abstract interpretation of Valta for k < l via the concretization function 

7tk: Val~ --~ 2 vafla defined as 

{a}, 

7 ~ ( a ) =  { n ] 2  k < n < 2 ' ,  n m o d 2  k = r )  t0 
T,{(n, O) I 2k < n < 2 l, n mod 2 k = r}, 

if a < 2 k 

if a = (r, O) 
a = T  

We also have 3 ,k = 7 z o 7~. Hence, an abstraction of -A~ can be transformed into a 
transition system over Vat by replacing every Vf state a by the Vat states in 7~ (a). Thus 
we obtain the initalization for the next iteration of the partitioning algorithm. 

As for termination, consider -AK where K is chosen such that concrete values are at 
most 2 g .  (If C is finite state then such a K obviously exists.) We have l f f  = lc, i.e., 
the abstractions are precise, and Ra K restricted to the precise abstract values coincides 
with Re. Hence, the parts of C and -AK that are reachable from the initial nodes are 
isomorphic. Because furthermore the stable abstraction computed by the partitioning 
algorithm w.r.t, pre K is strongly preserving w.r.t. -AK, we have ,4 ~ 9 iff C ~ 9. 

This seems to prove termination of the algorithm but there is a catch: If C ~: 9, then 
the algorithm terminates not if-A ~ 9 but if-A- ~ 9 (where ,4 is the stable abstraction 
of -AK). In other words, the algorithm terminates if marking satisfies the following 
property: 

If .,4 is a stable abstraction of .A K as computed by the partitioning 
algorithm, and if the concrete values are at most 2 K, then every edge in 
the reachable part of-A is marked. 

(5) 

Marking states The stable model that the algorithm attempts to construct is in its turn 
an abstraction of -Ak. Hence, the abstract states A will in fact be subsets of (formally: 
predicates over) (Vale) ~. It is edges between these subsets that are possibly going 
to be marked. Given two abstract states A and B, there is an edge between them 
if A N prek(B) # false. From this we can only conclude that 3a E 7.ak(A) 3b E 
7.ak(B) a Ra k b, while a Ra k b gives that 3c C 7k(a) 3d E 7k(b) c Re d. 

I fA _C prek(B) then we know that 

Va e 3c e ? ( a )  3b �9 3a �9 ? ( b )  d. 
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Comparing this with the definition of exactness of an edge, the relevant question is: 
'when can we replace 3c E .),k (a) by Vc E 7 k (a) in this formula?' One obvious answer 
is when 17k(a)l = 1, i.e., when the concrete values of the variable are represented 
precisely. Another case in which we can replace it, is when we have a state transformer 
such as z ~ = 0. I f A  'is '  the predicate z = (1, O) A V = 2 and B equals x = 0A V = 2, 
then the edge from A to B is exact although A contains abstract overflow values. Call a 
variable z a don't care for B just in case pre k (B) is independent of z (interpreted as a 
predicate). Then, the criterion for marking an edge (A, B) becomes 

A C_ pre k (B) and for any variable z, either z is represented precisely in every 
a E 7.,tk (A) or x is a don't care for pre k (B). 

It is straightforward to show that under this marking condition every reachable edge will 
be marked if the depth-k abstraction gives enough precision as expressed in Property (5). 

Note that marking as defined here is a 'safe' approximation of exactness. I.e., a 
marked edge is guaranteed to be exact but not necessarily vice versa. Clearly, marking 
every exact edge can only be done if the concrete transition relation is known. 

Computing abstract relations As for ease of computation, obviously, the fewer bits 
we use to represent the values, the more efficient computing the abstraction becomes. 
Also, note that if t k (a, a ')  holds for 'precise' abstract values, i.e., for values not of the 
form (r, O) or T, then tZ(a, a ')  holds as well for any 1 > k. Moreover, for operations 
like addition or multiplication even if the result of the operation must be represented as 
(r, O) in Valka, the lower bits r stay the same if the operation is interpreted in a more 
precise Val~. Hence, it is possible to 'extend' pre k to pre z rather than to recompute it. 

5 Conclusions and Future Work 

We have presented an ACTL state partitioning algorithm that, for a given formula 9, 
computes the 'coarsest' abstraction that allows the truth of ~ to be determined. This 
algorithm has been extended with a second orthogonal abstraction scheme that allows 
the automated choice of data abstraction relative to which the states are partitioned. 

The algorithm described above is being implemented as part of a VHDL/S verifier 
developed in ESPRIT project 6128 FORMAT. After the total realization of the algorithm, 
practical experience has to show how far the existing limits of automatic verification 
have been pushed ahead. We should also investigate how already computed information 
can be reused more extensively. We are thinking not only of incrementally extending the 
ROBDDs that describe the effect of the VHDL/S code fragments when the algorithm 
changes the depth-k abstraction, but also of integrating model checking the specification 

with the partitioningprocess: each partitioning step causes an additional subformula 
of ~ to be determined; the model checker needs to do the same. Finally, although the 
depth-k abstraction seems to be a good candidate for step-wise refinement of abstraction 
schemes, there may be good alternatives as well. The work done on the field of abstract 
interpretation of programs for static analysis can help for future applications in the area 
of automatic verification. 
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