
Incremental Model Checking in the
Modal Mu-Calculus*

Oleg V. Sokolsky Scott A. Smolka
Department of Computer Science

SUNY at Stony Brook
Stony Brook, NY 11794-4400
{oleg,sas}Osbcs.sunysb.edu

A b s t r a c t . We present an incremental algorithm for model checking in the alter-
natlon-free fragment of the modal mu-calculus, the first incremental algorithm
for model checking of which we are aware. The basis for oar algorithm, which
we call MCI (for Model Checking Incrementally), is a linear-time algorithm due
to Cleaveland and Steffen that performs global (non-incremental) computation
of fixed points. MCI takes as input a set A of changes to the labeled transition
system under investigation, where a change constitutes an inserted or deleted
transition; with virtually no additional cost, inserted and deleted states can also
be accommodated. Like the Cleaveland-Steffen algorithm, MCI requires time
linear in the size of the LTS in the worst case, but only time linear in A in the
best case. We give several examples to illustrate MCI in action, and discuss its
implementation in the Concurrency Factory, an interactive design environment
for concurrent systems.

1 I n t r o d u c t i o n

The Concurrency Factory [CGL+94] is a joint project between the State University of
New York at Stony Brook and North Carolina State University to develop an inte-
grated toolset for the specification, verification~ and implementation of concurrent and
distr ibuted systems. Like the Concurrency Workbench [CPS93], the Factory employs
bisimulation, preorder, and model checking as its main avenues of analysis.

A major underlying goal of the project is that the Factory be suitable for industrial
application. One manner in which we are striving to achieve such applicability is through
the use of incremental computation, which is basically an a t tempt to avoid repeating
lengthy analyses of a system specification after the specification has undergone some
relatively minor change.

This current paper is concerned with the incrementalization of the model checking
routine of the Concurrency Factory, or, more generally, incremental model checking in
the modal mu-calculus. The modal mu-ealeulus [Koz83] is a highly expressive logic that
can be used to specify safety and liveness properties of concurrent systems represented
as labeled transit ion systems (LTSs). Our focus here is on the alternation-free fragment
of the modal mu-calculus [EL86] which, intuitively, means that the "level" of mutually
recursive greatest and least fixed-point operators is one.

Our main result is an incremental algorithm for model checking in the alternation-
free modal mu-ealeulus, which we call MCI (for Model Checking Incrementally). To
our knowledge, MCI is the first incremental algorithm for model checking, of any logic,

* Research supported in part by NSF Grants CCR-9120995 and CCR-9208585, and AFOSR
Grant F49620-93-1-025ODEF.

352

to be proposed in the literature. The basis for MCI is a lineax-time algorithm due to
Cleaveland and Steffen (henceforth referred to as the CS algorithm) which performs
global (non-incremental) computation of fixed points.

MCI takes as input a set A of change8 to the LTS under investigation. An element of
A corresponds to an inserted or deleted transition, although with virtually no additional
cost, inserted and deleted states can also be accommodated. Its output is a variable
assignment, representing the desired fixed-point solution.

The main technique utilized by MCI is to first compute the immediate effects of A
on the results of the previous computation and then restart the fixed-point iteration.
As part of the correctness proof of MCI, we show that it is safe to restart the iterations
only after making certain adjustments to the current variable assignment -- raising it
sufficiently high in the lattice of all variable assignments when computing greatest fixed
points, and, dually, lowering it sufficiently when computing least fixed points.

The required adjustments to the variable assignment are realized by making certain
assumptions about the connectivity of nodes in the product graph, a data structure
capturing all dependencies between pairs of the form (s, X~), for LTS state s and logical
variable Xi. We show that it is the presence of strongly connected components in the
product graph that leads to the existence of distinct greatest and least fixed point
solutions. MCI later checks that the assumptions it made were correct, and undoes the
effects of any that turned out to be invalid.

In terms of its computational complexity, MCI's worst-case behavior is asymptoti-
cally the same as that of CS. This is to be expected for it is easy to construct an example
in which the value of every variable changes as the result of adding a transition to the
LTS. Thus, every node of the product graph must be visited during the incremental run.
In fact we prove, via a reduction from SS-REACHABILITY (see [Ram93]), that model
checking is an unbounded problem, meaning that the running time of an incremental
update cannot, in general, be expressed solely in terms of A.

In the best case, however, MCI requires time linear only in the size of A, which is typ-
ically constant with respect to the size of the LTS. We show that MCI exhibits this kind
of performance on an incremental computation involving Milner's scheduler [Mil80], an
oft-used benchmark for verification tools.

The closest related work we are aware of is that of Ryder et al. [RMP88] which treats
incremental solutions to graph problems in a very general setting. However, they only
give sufficient conditions to ensure it is safe to restart iterations of the original algorithm
after an incremental update. In practice, these conditions axe very restrictive and, in
general, an additional computation is needed before iterations can be safely restarted.
An informal discussion of the role of cycles in fixed-point incremental computation on
graphs is presented in [PS89].

The structure of the rest of the paper is as follows. Section 2 defines the syntax and
semantics of the modal mu-calculus and the corresponding model checking problem.
Section 3 contains our description of the CS algorithm, while Section 4 presents our
MCI algorithm. Section 5 proves the correctness of MCI and analyzes its complex-
ity. Section 6 discusses our implementation of MCI in the Concurrency Factory and
illustrates the algorithm in action through examples. Finally, Section 7 concludes and
outlines directions for future work.

2 S y n t a x a n d S e m a n t i c s o f t h e M o d a l M u - C a l c u l u s

A Labeled Transition System (LTS) is a 4-tuple (S, Act,-% so) where S is the set of
states, Act is the set of actions, --,_C S x Act x S is the transition relation, and so is
the start state.

353

We next give the syntax and semantics of a version of the alternation-free modal
mu-calculus defined in [CS93], which we refer to as C..q-logic. Formulas in CS-logic axe
of two types: basic formulas and equational blocks. The syntax of basic formulas is
given by the following grammar:

: :=A IX I~v~l~^~l[,,]~l (,~)~

where A E .47 ~, a fixed set of atomic propositions, and X E Vat, a countably infinite
set of variables.

Basic formulas are interpreted with respect to an LTS s = (S, Act,--% s0), a val-
uation mapping F : ,47 ~ --, 7>(,S), relating every atomic proposition A to the set of
states in which A holds, and an environment e : Vat -* 7>(~q), mapping each variable
X to the set of states that satisfy X. For a fixed environment e, the meaning of basic
formulas is given by the semantical function [.]e : $ --, 7~(~q), defined in Figure 1.

An equational block B is formed by applying operator rnin or m a z to a set E of
mutually recursive equations of the form

Xt = ~1

X,, = ~ , , ,

where each ~i is a basic formula and the X~ are pairwise distinct. Operators rain and
maz are understood respectively as the least and greatest fixed points of E. Follow-
ing [CS93], we assume that the ~i are simple, i.e., an atomic proposition, or constructed
by the application of exactly one operator to variables. Every formula can be made sim-
ple with at most a linear blow-up in size.

Semantically blocks are understood as functions from environments to envizonments.
Let a block B contain a set of equations E with variables X1 , . . . , X~ defined as left-
hand sides. Let S : ($1 , . . . , S,~) E (2s) '~ and let e~ : e[X1 ~-* S t , . . . , Xn ~-* S,]. Then
the function

=

defined on the lattice of tuples of sets of states ordered by point-wise set inclusion is
monotonic. By the Tarski-Knaster fixed-point theorem, f~ has both least and greatest
fixed points given by:

/ / e = c_

= e ' S __

Blocks can now be interpreted in the following fashion:

[mazE]e -- e.I~

[mlnE]e = e~,];.

Finally, a formula 13-- { B t , . . . , B,,,} is a set of blocks, with the foflowing syntactic
restrictions: all variables appearing on the left-hand sides in the set of blocks are distinct,
and the formula's block graph is acyclic. The block graph of B is the directed graph
with nodes B1, .. . , B,,, and edges (B~, Bj/whenever a variable appearing as a left-hand
side of an equation in B~ is used in Bj (we say that Bj depends on B~ in this case).

354

[Ale = V(A)
[X]e = e(X)
[~, ^ 12]e = [~ ,] , n [~ ,] ,

[[=]~l, = {~ I v , ' . , ~ , ' ~ , ' �9 [~]e}
l (,~) i l , = (~, 13,'.o A , ' ^ , ' �9 I l l , ,)

Fig. 1. Semantics of basic formulas.

Restricting the block graph to be acyclie ensures that no alternating fixed points [EL86]
can OCCUr.

The meaning [B]e of the formula B containing blocks B1 , . . . , Bin, topologically
sorted by the dependency relation, can be computed through a sequence of environments

el = [B d e

with [B]e = e,~. Due to the acycllcity restriction on block graphs, we are ensured that

If B is a dosed formula, i.e., every variable mentioned in the right-hand side of some
equation appears on the left-hand side of an equation in one of the blockst then for
every two environments e and e l, we have ~B]e = [B]e I. Now, for every variable X
defined in the formula we can compute the set of states in which X holds as [X][B].
When the LTS is finlte-state, f~ is continuous and the fixed points also have itezative
characterizations which are used by the CS and MCI algorithms to compute fixed
points.

The problem of model checking in CS-logic can now be defined as follows: given an
LTS s = (~q, A, --% so) and a CS-logic formula/3 with a designated variable X defined
within it, determine whether so E [X][B].

3 T h e Cleaveland-Stef l 'en M o d e l C h e c k i n g A l g o r i t h m

The CS algorithm performs (non-incremental) global computation of fixed-points, i.e.,
the value of every variable is computed in every state. Due to the acycllcity restriction
on block graphs (see Section 2), computation can proceed block-by-block: once the
fixed point of a block is computed, the variable assignments in that block can no longer
change due to dependencies on other blocks. Blocks are processed in the order resulting
from topologically sorting the block graph.

The CS algorithm, as well as our incremental algorithm, uses an elaborate set of data
structures to achieve its linear running time. To simplify its presentation, we describe
the CS algorithm in terms of an intuitive structure called the "product graph" (cf.
boolean graphs in IAnd92]). For efficiency reasons, the product graph is not computed
by the algorithm explicitly, although its construction would not affect the asymptotic
complexity. The correspondence between the product-graph-based presentation and the
original CS algorithm is straightforward.

355

The product graph of an LTS s = {8, Act, --% so) and a mu-calculus formula B is a
directed graph with set of vertices {(s, X~) Is E ..q, Xr E Ira,'} and set of edges given by
the following rules:

- if Xr : Xj V Xk or Xi : X s A Xk, then for every s E r (s, Xj) --* (s,X~) and
(s, x,) - , <s, x,)

- if s-~s ' and Xi = (a)Xj or X, = [a]Xj, then (s', Xj) ~ (s, Xi).

If operator V or (a) is used to define Xi, the node <s, Xi) is called an or-node of the
product graph; otherwise, it is calhd an and-node. Note that the direction of edges is
reversed compared to the LTS. The intuition for this comes from the fact that the truth
of a variable in a node of the product graph is determined by truth of its immediate
predecessors in the product graph, which, according to the semantics of the modal
operators, is dependent on the immediate successors of the current state in the LTS.

For each node (s, Xi) of the product graph, the CS algorithm maintains the following
variables:

- A boolean variable indicating whether or not variable X~ is true of state s in the
current stage of the analysis. We simply use the name of the product graph node,
i.e, (s,X~), as the name of this variable, and sometimes refer to it as the value of
the node. (s, X~) is initiali~.ed to true if X~ is defined in a mar-block, and, dually,
is initialized to false if X~ is defined in a rain block (we refer to these initializations
as trivial), with the following exceptions:

�9 The right-hand side of the equation for X~ is an atomic proposition A. Then
(s, X d = true if s E P(A), and false otherwise.

�9 If state s has no a-derivatives and X~ is defined by (a)Xi, then (s, X~) = false,
and if Xi is defined by [a]Xi, then (s, Xl) = true.

- A counter C(,,xd that keeps track of the immediate predecessors of (s, Xi) in the
product graph: if Xi is defined in a maz-block and (s, Xi) is an or-node, then
C(,,xd records how many immediate predecessors of (s, Xi> are currently true.
C(,,x,) is used dually in the case that Xi is defined a rain-block and (s, Xi) is an
and-node; i.e., it records how many immediate predecessors are currently false. In
either ease, C(,,x,) is initialized to the number of immediate predecessors of (s, Xi)
in the product graph. These are the only cases in which counters are used.

Also, for every block B s of the formula, a llst Mj of nodes of the product graph is
maintained, such that Is, Xi) is in M s ff Xi is defined in Bj, (8, X~ / recently changed its
value, and the effect of this change on other nodes has yet to be determined. Initially,
M s contains all nodes (s, Xi) that were initialized non-trivi~Uy (see above).

The GS algorithm is captured by the following procedure, where • is a finite-state
LTS and B is a CS-logic formula.

p r o c e d u r e US(s B)
topologically sort the blocks of B
initialize the (8, Xi), C(,,xd, and Mj as described above
for each Bj E B in topological order do

i f B j is of type m a r t h e n MAX(Bj)
else Mm(BS)

Procedure MAX, invoked on a block Bj, proceeds as follows:

356

p r o c e d u r e MAX(Bs)
whi le M S not empty do

delete some (s, X~) from M S
DOWN((s,X,))

fo r each (s, X,) such that Xi is defined in B S and (s, X,) is true do
~P((s,x,))

Procedure MIN is dual to it, with all occurrences of UP and DOWN, as well as true
and false, interchanged. MAX first propagates the changes to the variable assignment
for block B S recorded in M S by repeatedly calling the procedure DOWN (given below).
When M S is finally empty, the greatest fixed point for B S will have been computed.
MAX then invokes UP on each variable (s, X~) such that X~ is defined in B S and (s, Xi)
was not falsified during the preceding while loop. This is necessary because there may
exist variables (s ~, XS/ in rain-blocks, trivially initialized to false and dependent on
(s, Xi), whose values should now be true. The calls to UP will produce the desired
effect.

Procedure DOWN takes as a parameter a product graph node that has just changed
its value from true to false, and cheeks whether any of its successors are affected by the
change. 2

p r o c e d u r e DOWN((s, X~I):
fo r each or-node (s~,Xs) such that (s,X~ / --~ (s~ ,Xs/and (s~,XsI is true do

decrement C(,o,xj) by 1
i f C0, xt) = 0, t h e n

(s I, XS) := false
add (s', XS) to Ms /* X S is defined in Bs */

fo r e a c h and-node (s',Xs) such that (s,X~) ---, (s',Xs) and (s ' ,Xj) is true do
(a', XS):= false
add (8 ' ,Xs) to Ms /* X S is defined in Bs */

The name of the procedure stresses the fact that the function 6 on the environ-
ment (variable assignment) computed by DOWN satisfies 5(e) ~_ e; i.e., the resulting
assignment moves down in the lattice of tuples of sets of states described in Section 2.
Procedure UP is dual to DOWN and can be obtained by syntactically interchanging
all occurrences of and and or, and true and false.

4 The Incremental Model Checking Algorithm

In this section, we modify the CS algorithm to obtain our MCI algorithm. MCI works
incrementally in the following sense: Let s and B constitute s given instance of the
model checking problem, and assume that the desired variable assignment has been
previously computed (say, by an application of CS). Given a set A of changes to the
LTS, where a change may correspond to either an inserted or deleted transition, MCI
computes the new variable assignment by judiciously using the previously computed
one as the "starting point" of the computation.

2 Note that the change to is, X~) will affect (s', Xj) only if is, X~) is an immediate predecessor
of is', Xj) in the product graph and/ j ' , Xj) wws true. Collectively, these two conditions, and
the fact that the block graph is acycllc, ensure that Bk, the block in which Xj is defined, is
a maz-block, as desired. See [CS93] for further details.

357

The top-level structure of MCI is basically the same as in CS: an initialization phase,
in which the immediate effects of ZI on the previously computed variable assignment are
ascertained, is followed by a for-loop in which blocks are processed in topological order of
the block graph by calling modified MAX and MIN procedures. In the incremental case,
however, it is necessary to start off the fixed-polnt computation of a block by making
certain adjustments to the current variable assignment to ensure that the proper fixed
point is computed.

As discussed in greater detail below, the adjustments will raise the variable assign-
ment in the case of a maz-block (by calling a modified UP procedure), and lower it
in the case of a rain-block (by c Alllng a modified DOWN procedure). Like before, it-
erations of the fixed-point computation will then lower the assignment in the case of a
mar-block, and raise it in the case of a rain-block.

Since, for either type of block, we may need to shift the variable assignment up
or down the lattice, it is no longer sufficient to provide procedures MAX and MIN,
invoked on a block Bj, a single "work list" Mj, as in the non-incremental case. Rather,
two such lists are now required, for both types of blocks: downj, which records variables
that change their values from true to false, and upj, containing variables that change
their values from false to true. Moreover, every product graph and- and or-node now
has an associated counter, regardless of the type of the block they are defined in.

The initialization phase uses A to update both the product graph and the vari-
able assignment of the previous computation, s Changes to the product graph reflect
the semantics of basic formulas, in particular, the modal operators (the insertion and
deletion of LTS transitions has no immediate effect on basic formulas constructed out
of logical operators). When a transition s-~*s ~ is inserted into the LTS, for every pair
of variables Xi, Xj such that Xj = [a]X~ or Xj = (a)Xi, the edge (d, Xi) ---, (s, Xj) is
inserted into the product graph. Conversely, when a transition is deleted from the LTS,
the corresponding set of edges is deleted from the product graph.

In response to changes in the product graph, counters are updated as one would
expect. If (s~,Xj) is an or-node and (s,X~) is true, then C(,,,x~) is incremented by 1 if
the edge (s, Xi) -+ (s', Xj) is inserted into the product graph, and is decremented by 1
if this edge is deleted. The situation is dual for and-nodes.

The following eases require changing the value of a variable as an immediate result
of inserting or deleting a product graph edge, independent of the block type. In each
case, assume that Xj is defined in block Bk.

- An edge (,, X,) --, (d, X~) such that (d, Xj) is an and-node is added to the product
graph. If (s', Xj) is true and (,, X,) is false, then (s', Xy) is changed to false and
(s I, Xd) is added to downl,.

- An edge (,, X,> ~ (s', Xi> such that <s', Xi> is an or-node is added to the product
graph. If <s', Xj) is false and (s, Xi) is true, then (s', Xj) is changed to true and
(s', Xi) is added to upk.

- An edge (s, Xi) -~ (d, Xj) such that (d, Xj) is an and-node is deleted from the
product graph. If (s, Xi) is false and the node (d, Xj) had only one false predecessor
(this number is recorded in C(,,,xA), then (d, Xj) is changed to true and (s', Xj)
is added to uph.

- An edge (s, Xi) --, (s ' ,Xj) such that (s ' ,Xj) is an or-node is deleted from the
product graph. If (s, Xi) is true and the node (s', Xj) had only one true predecessor,

s Because MCI accepts as input a set of changes to the LTS, updates to the variable assign-
ment made during initialization can potentially "overlap." Care needs to be taken to avoid
unnecessary computations.

358

then (s', Xj) is chznged to false and (s ' ,Xj) is added to down~.

The initializations described above depend only on the semantics of basic formu-
las and are therefore independent of the type of fixed point being computed. Simply
restarting the flxed-point iteration (e.g., caLls to DOWN in the case of a mar-block) at
this point would bring us to a fixed point, but not necessarily the required fixed point!
Rather, we must conclude the initialization phase by making certain assumptions about
the existence of strongly connected components (SCCs) in the product graph. Assump-
tions made during initialization and their subsequent propagation through the product
graph, will serve to adjust the variable assignment to a level where fixed-point iteration
can be safely restarted.

To motivate our use of assumptions, consider the following scenario. The insertion
of a transition in the LTS has resulted in the formation of a new SCC, call it C,
in the product graph. Assume that O is contained in the subgraph of the product
graph pertaining to a mar-block Bj, and according to the results of the previous fixed-
point computation, all nodes in C are false. Further assume that U is free of "external
interference," that is, there is no edge ~s, Xi) --~ (s ' ,Xj) entering C such that the
value of (s, Xi) uniquely determines the value of (s', Xj). For example, if (s', Xj) is an
and-node and (s, Xi) is false, then (s, X~) would be a source of external interference. 4
Then it is not difficult to see that the variable assignment in which all nodes in C are
uniformly set to true or false is a fixed point. The point is, however, that the required
fixed point for C is the largest one, i.e., the one in which all nodes are assigned the
value true.

We will therefore, in general, assume that when an edge (a, Xi) ~ (s ~, Xj) is added
to the product graph such that (s, X~) and (s', Xj) are defined in the same maz-block
B~ and both are false, that a new SCC, free of external interference, has been created.
We record this assumption by setting (s, X~) to true and adding it to uPh and a new list
called assumpZionsk. 6 Note that the counter C(,,xd is not updated to reflect (s, X~)'s
new value and thus an inconsistency is introduced. This is intentional and will be used
later to determine whether the assumption was a valid one.

The case of a rain-block is dual: when an edge is added between two true nodes
corresponding to variables defined in the same mln-block, we change one of them to
false and update the block's assumptions list. The changed value is reflected in the
down list.

Deleted edges can also cause us to make assumptions during initialization. Sup-
pose that a mar-block SCC had only one source of external interference, which was
eliminated when an edge was ddeted from the product graph. The desired variable
assignment in this case has all nodes in the SCC uniformly set to true. We therefore
assume that whenever an edge (s, Xi) ---* /s ~, Xj) is deleted from the product graph
such that Xj is defined in a mar-block Bk and both nodes are false, (s, Xi) constituted
the only source of external interference in the SCC containing (s ~, Xj). We record this
assumption by setting (8', Xj) to true and adding it to both upk and a88umptionsh.

Consider now the propagation of the changes made to the variable assignment during
initialization. These are recorded in upj and downj, for each block Bj. As before, blocks
are processed in topological order of the block graph, by calling a modified MAX or MI2V

4 Because U is strongly connected, each node in U has at least one incoming edge and is
therefore either an and- or or-node.

s A number of small optimlzations can be made here to prevent obviously false assumptions,
e.g. do not make the assumption ffeither of the nodes has no incoming edges or no outgoing
edges, and thus cannot be on a cycle. We leave these to careful implementors.

359

procedure depending on the type of the block. MAX and MIN now commence with an
adjustment phase, during which the variable assignment is shifted up (in the case of a
m a r block) or down (in the case of a rain block) in the lattice of assignments to ensure
that the fixed-point computation can proceed normally. The new MAX procedure is
given by:

p r o c e d u r e MAX(Bj)
while upj not empty do /* Adjustment Phase */

delete some (s, X i / f r o m upj
~P((,,xd)

whi le assumptionsj not empty do /* Check validity of assumptions */
delete some Is, Xi) from assumptionsj
i f (s, X~) is an and-node t h e n

i f C0 ,x ,) # 0 t h e n
<~,Xd := f~e
add (s, Xi) to downj

if(s,X~) is an or-node t h e n
if C(o,Xd = 0 t h e n

O, Xd := false
add (s, Xi) to down/

whi le downj not empty do /* Iteration Phase */
delete some (s, Xi) from downj
DOWN((s,X,))

The adjustment phase makes as many variables true as possible by iteratively invok-
ing UP. As shown in Section 5, the resulting variable assignment will be high enough in
the lattice to contain every fixed point of the semantic function. At this point, the va-
lidity of any previously made assumptions is determined by checking whether the value
of (s, Xi) is consistent with C(o,Xd, for each node (s, Xi) on the list of assumptions.
If an inconsistency is detected, i.e., according to C(o,Xd, (s, Xi) should be false, we
reset the variable and let DOWN undo the effects of the assumption. When finished,
the fixed-point iteration (applications of DOWN) can be safely restarted. Procedure
DOWN is modified as follows:

p r o c e d u r e DOWN((s, X,)):
for each or-node (d, Xj) such that (s, Xi) -4 (s', Xj) , Xj defined in BI, do

decrement C(,,,xj) by 1
if (g,Xi) = true and C(,,,xj) = 0 t h e n

(s', x~) := false
add (d, Xj) to downi /* Xj is defined in Bh */

else ifCio,,X~) ~ O, (s',Xi) = true and Bh is a rain-block t h e n
(s', Xj) : = fa l se

add (s',Xj) to downk /* Xj is defined in Bk */
add (d, Xi) to assuraptions~

fo r each and-node <s',Xj) such that (s, Xi) --, (d, Xj), Xj defined in Bh do
increment C(o,,Xi} by 1
i f (s', Xi) = true t h e n

(s', Xi) := false
add (s', Xi) to dowm, /* X i is defined in Bh */

The overall structure of DOWN is rettdned, except that eountezs ate updated in
both cases and an assumption is made when DOWN encounters a true variable in a

360

m/n-block. The intuition for the assumption is somewhat different from the one for
assumptions made at initialization. Here we are assuming that (s I, Xj) is a part of an
SCC and the change to (s, Xi) eliminated a source of external interference for the SCC.
As before, procedures MIN and UP are dual to those given above and are obtained by
interchanging all occurrences of UP and D O W N , up and down, and and and or.

So far we have assumed that the changes to the LTS only concern transitions. States,
however, can be added and deleted with almost no extra effort. The basic idea is to
assume that the variable assignment for an isolated state, i.e., one devoid of incident
transitions, is known - - it can be computed during the first, noninczemental run of
the algorithm. During incremental runs, state additions are processed before any other
changes by setting variables of the form (s, X~), where s is a new state, in accordance
to the variable assignment of an isolated state. The processing of inserted and deleted
transitions can now proceed as before. For state deletions, we assume that any incident
transitions are deleted as well.

5 C o r r e c t n e s s a n d C o m p l e x i t y

The proof of correctness of the MCI algorithm is given by the following theorem.

T h e o r e m 1. Let s be an LTS, 13 a CS.logie formula, A a set of changes to s in the
form of inserted and deleted transitions, and s the LTS obtained by applying A to s
Furthermore, let e be the variable assignment obtained by algorithm CS on input s and
13, and, similarly, let e I be the variable assignment obtained by CS on input s and I3.
Then MCI, using e as the initial variable assignment, terminates on input s 13, and
A with variable assignment e I.

Proof Sketch: Consider a block B in 13. Without loss of generality, assume that B is a
maz-block; the case where B is a rain-block is completely dual and therefore omitted.
For 0 an arbitrary topological order of 13's block graph, the proof is by induction on
the position of B in O and proceeds in two main steps.

We first show that when B's up list is empty, the current variable assignment is
higher in the lattice of variable assignments than any fixed point of B's recursive equa-
tions. In particular, it contains B's greatest fixed point. For this purpose it is convenient
to define B's subgraph, the subgraph of the product graph induced by the set of nodes
{<s, X,) IX, is defined in B}.

The proof now proceeds by induction on the topological order of the strongly con-
nected components of B's subgraph (this is wen defined since the acyclicity of the block
graph guarantees that every SCC appears within one block). That is, fix an SCC C
and assume the result for any SCC having edges leading into C. There are two cases to
consider depending on whether or not C is a trivial SCC (consisting of one node). For
the case when C is non-trivial, we have to worry about cycles of false nodes in it. The
details of the case analysis are omitted but the crucial point is showing that no such
cycle can exist unless some of its nodes are uniqudy determined by the values of nodes
outside C.

Now that we have established that when the up list has been emptied the current
variable assignment contains B's greatest fixed point, the second step of the proof basi-
cally coincides with the proof of correctness of the CS algorithm. That is, we show that
the processing of entries in B's down list monotonically lowers the variable assignment,
and, when the list is empty, the greatest fixed point will have been reached (see [CS93]
for details). []

361

Consider now the computational complexity of the MCI algorithm. In the worst
ease, its complexity is the same as that of the CS algorithm: linear in the product of
the size of the LTS and the size of the formula, where the size of the LTS is taken to
be the total number of states and transitions, and the size of the formula is the total
number of equations over all blocks. The proof is similar to that of [CS93], and is based
on the fact that a product-graph node (s, Xi) can appear at most once in each llst
up/ and downj, for Xi defined in block Bj. We ensure this property by checking (in
constant time) ff a node is already present in a list, before attempting to add it to the
list. Thus UP and DOWN can only be invoked on a node at most once each, and each
such invocation traverses each outgoing edge once.

We have also shown that the problem of model checking in the alternation-free
fragment of the modal mu-ealcuius falls into the category of ur~bounded problems, i.e.,
the running time of an incremental update cannot be expressed solely in terms of
the size of the change to the input. The proof of the unboundedness of the model
checking problem is via a reduction from the single-source reachability problem (SS-
REACHABILITY): given a directed graph (V, E) and a fixed vertex s E V, determine,
for every vertex v E V, whether r is reachable from s.

In [RRgl], it is shown that SS-REACHABILITY is unbounded in the locally per-
sistent model of computation [AHR+90], which, intuitively, comprises all incremental
algorithms in which no global information is maintained between updates. It is straight-
forward to show that MCI is locally persistent, and it thus follows that the performance
of the algorithm is the best one could hope for in an incremental setting.

6 I m p l e m e n t a t i o n a n d E x a m p l e s

The MCI algorithm has been implemented as part of the Concurrency Factory project.
We started with the implementation of CS, which we later modified to make use of
incremental computation. Although the non-incremental version is still needed for the
initial computation of fixed points, we were able to avoid unnecessary duplication of
code. In particular, with only minor changes, the incremental versions of UP and DOWN
produce correct results in the initial computation.

We now consider an example of MCI in action, which is intended to demonstrate the
best-ease behavior of the algorithm. The assumptions concerning the design process,
however, seem to be realistic. The system in question is Milner's scheduler [Mil80], con-
sisting of a circular chain of simple "cycler" processes Co, . . . , C,~-1. Milner's scheduler
is often used as a benchmark for verification tools, partly because its state space grows
exponentially with the size of the scheduler (number of eyelets).

Each Ci is initiated by the previous one in the chain by means of action gl, after
which it carries out the sequence of observable actions al, bi "in parallel" with initiating
Ci+l. The LTS for Ci is depicted in Figure 2. Co must be furnished with a transition
labeled by action ~ (the dashed line in Figure 2) that allows it to be initiated by a
separate starter process.

Imagine that the designer has completed the scheduler and cheeks it for the absence
of deadlocks. The property "there is a reachable deadlocked state" is expressed by X1
in the following rain-block, where ' - ' stands for "any action:"

rain{ Xl = X2 V Xa
x~ = (-) x l
x3 = [-] x 4
X4 = f f }.

Fig. 2. The LTS for cycler Ci

362

gl§ , ,

.So

The scheduler is correct and thus the formula is not satisfied. Imagine now that
the designer, in an attempt to simplify the implementation, decides to omit the 8ta~'$
transition from Co and then checks the scheduler again. The scheduler is now deadlocked
in the start state, which disconnects the start state from the rest of the scheduler.

The second, incremental run of MCI finds the deadlock. Intuitively, the effects of the
update to Co should not propagate very far, and Table 1 reveals this to indeed be the
case. There, three rows of results are presented: (1) execution times of our implementa-
tion of MCI on the original, deadlock-free scheduler for increasing numbers of cyclers;
(2) execution times for incremental runs of MCI on the updated, deadlocked sched-
uleI; and (3) execution times of our implementation of CS on the original scheduler.
The second row shows that the verification of the updated scheduler can be performed
incrementally in constant time, independent of the number of cyclers. The third row
allows us to compare how the MCI and CS algorithms perform on the first, necessarily
non-incremental verification of the scheduler. As can be seen, the difference in execution
times is negligible and, thus, the extra information we maintain in the incremental case
does not significantly affect the constant factors of the algorithm.

We have also considered an example of the worst-case behavior of the incremental
computation, involving a linear chain of transitions which we again test for deadlock.
The update to the LTS is to extend the chain with yet another transition. Obviously,
the LTS still has a deadlock, but the assumption made during the initialization phase of
the incremental computation results in a wave of changes to the values of the variables
that reaches the start state. At this point, it is determined that the assumption was
wrong, so the wave of changes reverses direction and traverses the whole length of the
chain again. The second application of MCI ends up taking about 75% more time than
the first application.

7 C o n c l u s i o n s a n d F u t u r e W o r k

We have modified the algorithm of [CS93] to obtain MCI, an incremental algorithm
for model checking in the alternation-free fragment of the modal mu-calculus. MCI
can be easily modified to handle various kinds of incremental updates to the logical
formula, such as the inversion of logical and modal connectives (e.g., changing In] to
(a)). Such updates affect the semantics of basic formulas but not the strongly connected
components of the product graph.

We believe that our results on the non-uniqueness of fixed points of functions on
graphs and their applications to incremental computation have wider applicability than
just model checking CS-logic. For example, the MCI algorithm can be easily general-
ized to perform (global) incremental evaluation of boolean equation systems [Lar92].
Furthermore, if we do not confine ourselves to boolean variables in each node of the
graph, then it appears that a variety of graph problems can be accommodated, includ-
ing those pertaining to data-flow analysis [Hec77] (the relationship between data-flow

363

No. of cyclers 2 3 4 5 6 7 8 9 10
incr.]st pass 0.01 0.02 0.05 0.19 0.48 1.36 3.06 7.52 18.90

2ndpass 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
non-incr. 0.01 0.02 0.07 0.19 0.47 1.22 3.07 7.50 18.65

Table 1. Execution times, in seconds, for the scheduler example

analysis and model checking is investigated in [Stegl]).
Other directions for future work include the pursuit of incremental algorithms

for model checking in the full modal mu-ealcuius [EL86] and for local model cheek-
ing [SW91].

References

[AHR+90]

IAnd92]

[CGL+94]

[CPS93]

[CS93]

[EL86]

[Hec77]
[Ko~SS]

[Lar92]

[M~8o]
[PS89]

[Ram93]

[RMP88]

[R~91]

[Ste91]

CSW91]

B. Alpern, R. Hoover, B. K. Rosen, P. F. Sweeney, and F. K. Zadeck. "Incremental
Evaluation of Computational Circuits". In Proc. of the 1st Annual ACM-SIAM
Symposium on Discrete Algorithms, 1990.
H.R. Andersen. "Model Checking and Boolean Graphs". In Proceedings of
ESOP'92. LNCS 582, 1992.
R. Cleaveland, J.N. Gada, P.M. Lewis, S.A. Smolka, O.V. Sokolsky, and
S. Zhang. "The Concurrency Factory - Practical Tools for Specification, Simu-
lation, Verification and Implementation of Concurrent Systems". In Proceedings
of the DIMACS Workshop on Specification Techniques for Concurrent Systems,
Princeton, NJ., May 1994.
R. Clesveland, J. Parrow, and B. Stefien. "The Concurrency Workbench: A
Semantics-Based Tool for the Verification of Concurrent Systems". ACM TOPLAS,
15(1), 1993.
R. Cleaveland and B. Stefien. "A Linear-Time Model Checking Algorithm for the
Alternation-Free Modal Mu-Calculus". Formal Methods in System Design, 2, 1993.
E. A. Emerson and C.-L. Lei. "Efficient Model Checking in Fragments of the Propo-
sitional Mu-Calculus". In Proc. LICS '86. IEEE Computer Society Press, t986.
S. M. Hecht. Flow Analysis o] Computer Programs. Elsevier, North Holland, 1977.
D. Kozen. "Results on the Propositional Mu-Calculus". Theoretical Computer
Science, 27:333-354, 1983.
K. G. Larsen. "Efficient Local Correctness Checking". In Proceedings of CAV'9~,
1992.
R. Miiner. A Calculus of Communicating Systems. LNCS 92, 1980.
L. L. Pollock and M. L. Sofia. "An Incremental Version of Iterative Data Flow
Analysis". IEEE Trans. Software Engineering, 15(12), 1989.
G. Ramalingam. Bounded Incremental Computation. PhD thesis, Computer Sci-
ences Dept., University of Wisconsin-Madison, 1993.
B. G. Ryder, T. J. Marlowe, and M. C. Paull. "Conditions for Incremental Itera-
tion: Examples and Counterexamples'. Sci. Program., 11(1), 1988.
G. Rarnalingam and T. Reps. "On the Computational Complexity of Incremental
Algorithms". Technical Report TR-1033, Computer Sciences Dept., University of
Wisconsin-Madison, 1991.
B. Stefien. "Data Flow Analysis as Model Checking". In Proc. TACS'91. LNCS
526, 1991.
C. Stirllng and D. Walker. "Local Model Checking in the Modal Mu-Calculus".
Theoretical Computer Science, 89(1), 1991.

