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A b s t r a c t .  Many automated finite-state verification procedures can be 
viewed as fixpoint computations over a finite lattice (typically the pow- 
erset of the set of system states). Hence, fixpoint calculi such as the 
propositional y-calculus have proven useful, both as ways to describe 
verification algorithms and as specification formalisms in their own right. 
We consider the problem of evaluating expressions in a fixpoint calculus 
over a given model. A naive algorithm for this task may require time n q, 

where n is the maximum length of a chain in the lattice and q is the 
depth of fixpoint nesting. In 1986, Emerson and Lei presented a method 
requiring about n d steps, where d is the number of alternations between 
least and greatest fixpoints. More recent algorithms have reduced the 
exponent by one or two, but the complexity has remained at about n d. 

In this paper, we present a new algorithm that makes extensive use of 
monotonicity considerations to solve the problem in about n d/2 steps. 
Thus, the time required by our method is only about the square root of 
the time required by the earlier algorithms. 

1 I n t r o d u c t i o n  

Many a u t o m a t e d  finite-state verification algori thms can be viewed as fixpoint 
computa t ions  over a finite lattice. Examples  include: model  checking procedures 
for logics such as CT L  [6] and P D L  [12], me thods  for comput ing  s trong and weak 
bisimulation equivalence in CCS [16], and language conta inment  and emptiness 
a lgori thms for w-au toma ta  [5]. Approaches  based on fixpoint logics such as the 
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propositional It-calculus [13] are tied even more directly to fixpoint computation. 
With the increasing use of binary decision diagrams (BDDs) [3] for finite-state 
verification [4, 10], algorithms based on set manipulations and fixpoints have 
become even more important, since methods that require the manipulation of 
individual states do not take advantage of the representation. In this paper, we 
consider the complexity of evaluating fixpoint expressions over finite lattices. 
Our main result is a new algorithm that makes extensive use of monotonicity 
considerations to reduce the complexity of evaluation. The number of steps re- 
quired by our method is roughly the square root of the number of steps required 
by the best previously known algorithms. 

Our ideas are independent of the particular fixpoint calculus used, but for 
concreteness, we will be using the propositional/z-calculus of Kozen [13]. This 
logic is designed for expressing properties of transition systems, and formulas in 
the logic (with no free propositional variables) evaluate to sets of states. There 
have been many algorithms proposed for evaluating a formula of the logic with 
respect to a given transition system. These mostly fall into two categories: local 
and global. Local procedures, like those developed by Cleaveland [7], Stirling 
and Walker [17], and Winskel [19], are designed for proving that a specific state 
of the transition system satisfies the given formula. Because of this, it is not al- 
ways necessary to examine all the states in the transition system. However, the 
worst-case complexity of these approaches is generally larger than the complex- 
ity of the global methods, though recent work by Andersen [1], Larsen [14], and 
Mader [15] has improved the bounds. Global procedures generally work bottom- 
up through the formula, evaluating each subformula based on the value of its 
subformulas. Iteration is used to compute the fixpoints. Because of fixpoint nest- 
ing, a naive global algorithm may require about n q steps to evaluate a formula, 
where n is the number of states in the transition system and q is the depth of 
nesting of the fixpoints. Emerson and Lei [11] improved on this by observing 
that the complexity of evaluating a formula really depends only on the number 
of alternations d of least and greatest fixpoints. Emerson and Lei gave an al- 
gorithm requiring only about n d steps. Subsequent work by Cleaveland, Klein, 
Steffen, and Andersen [1, 8, 9] has reduced the overhead, but the overall number 
of steps has remained at about n d. Our new algorithm is also a global method. 
By using extensive monotonicity considerations, we are able to show that only 
about n all2 steps are required to evaluate a formula with d alternations. 

The remainder of this paper is organized as follows. Section 2 summarizes the 
syntax and semantics of the propositional p-calculus and reviews Emerson and 
Lei's work. In Sect. 3 we present our new algorithm and discuss its complexity. 
We consider some open questions and directions for future research in Sect. 4. 

2 The Propositional #-Calculus 

In the propositional It-calculus, formulas are built up from: 

1. atomic propositions p ,  P l ,  p 2 ,  . . .  ; 
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2. atomic propositional variables R, R1, R2, . . .  ; 
3. logical connectives �9 A �9 and �9 V .; 
4. modal operators (a). and [a]-, where a is one of a set of program letters a, b, 

al, a2, �9 �9 �9 ; and 
5. fixpoint operators/zRi. (..-) and vRi. ( . . .) .  

Formulas in this calculus are interpreted relative to a transition system that  
consists of: 

1. a nonempty set of states T; 
2. a mapping L that  takes each atomic proposition to some subset of T (the 

states where the proposition is true); and 
3. a mapping T that  takes each program letter to a binary relation over T (the 

state changes that can result from executing the program). 

The intuitive meaning of the formula (a)r is "it is possible to execute a and 
transition to a state where r holds." [.] is the dual of (.); for [a]r the intended 
meaning is that  "r holds in all states reachable (in one step) by executing a." The 
# and v operators are used to express least and greatest fixpoints, respectively. 
We could also allow negation (with some restrictions); in this case, greatest 
fixpoints could be expressed using the duality yR. r = -~#R.-~r To 
emphasize this duality, we write the empty set of states as _L. 

Formally, a formula r over the free propositional variables R1, R2, . . . ,  Rk 
is interpreted as a k-argument predicate transformer. CA predicate transformer 
is simply a mapping from sets of states to a set of states.) We denote this 
predicate transformer by r r is defined inductively by giving its value for 
the arguments $1, . . . ,  Sk. We write this value as r 

1. pM ( ~) = L(p). 

3. (r A r  = r N cM(~).  Disjunction is similar. 
4. ((a)r ---- {s ]3t [ (s , t )  e T(a)A t E r }. 

([a]r = { s ] Vt [(s, t) 6 T(a) ~ t 6 r }. 
5. (#R. r is the least fixpoint of the predicate transformer T: 2 T ~ 2 T 

defined by: 
~(S) = r  , 

where the first parameter of r is the value for R. The interpretation of 
v}~. r is similar, except that  we take the greatest fixpoint. 

Within formulas, there is no negation, and so the fixpoints are guaranteed to 
be well-defined. Formally, each possible T is monotonic (S C_ S' implies 7-(S) C 
T(S')). This is enough to ensure the existence of the fixpoints [18]. For finite 
transition systems, the fixpoints can be computed by iterative evaluation. More 
precisely, for some i < n = ]TI, the fixpoint is equal to Ti(_l_) (for a least fixpoint) 
or T/(T) (for a greatest fixpoint). In what follows, we will often abuse notation 
and identify the formula r with its meaning cM. 
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Since we will be using the concept of alternation depth, we briefly summarize 
Emerson and Lei's observations [11]. Consider the expression 

#R1. ((a)R1) Y (/tR2. R1 V p V (b)R2) . 

The subformula #R2. (. .-) defnes a monotonic predicate transformer T taking 
one set (the value of R1) to another (the value of #R2. (. .-)).  When evaluating 
the outer fixpoint, we start with the approximation • and then compute T(• 
Now R1 is increased (say to $1), and we want to compute the least fixpoint 
T(S1). Since J_ __ $1, we know that T(•  _C ~'($1). To compute a least fixpointi 
it is enough to start  iterating with any approximation known to be below the 
fixpoint. This implies that we can start iterating with ~-(_k) instead of _L. At 
the next step, R1 will be even larger, and so we will start the inner fixpoint 
computation with T(S1). We never restart the inner fixpoint computation, and 
so we can have at most n increases in the value of the inner fixpoint variable. 
Overall, we only need about n steps to evaluate this expression, instead of n 2. 
Emerson and Lei showed that  this type of simplification makes it possible to 
evaluate a formula r in about n d steps, where d is the alternation depth of the 
formula. The alternation depth of a formula is intuitively equal to the number 
of alternating nestings of least and greatest fixpoints. For the formula above, the 
alternation depth is 1, so n 1 steps suffice. Note: throughout this paper, when 
we speak of the number of steps used by an algorithm, we mean the number of 
fixpoint approximations produced during the evaluation process. Thus, we avoid 
details of how sets and relations are represented and manipulated. 

3 The Algori thm 

We first illustrate the essential idea behind our new algorithm on a formula 
involving three fixpoints (with alternation depth three): 

#R1. ~/~1 (/~1, uR2. r (R1, R2, #R3. r (R1, R2, R3))) �9 (1) 

To compute the outer fixpoint, we start with R1 = •  R2 -- T and R3 = •  
Call these values R ~ R ~176 and R ~176176 respectively. The superscript on Ri gives the 
iteration indices for the fixpoints involving R1, . �9 Ri. So R3 ~176176 means that all 
three fixpoints are at their the initial approximations. We then iterate to compute 
the inner fixpoint; call the value of this fixpoint R ~176 (The w stands for whatever 
number of steps were needed for the fixpoint iteration to converge.) We now 
compute the next approximation R ~ for R2 by evaluating ~/. ~r~o boo r, oow~ q~2~,1~ 1 , I t  2 ,1~ 3 }, 
and then we go back to the inner fixpoint. Eventually, we reach the fixpoint for 
R2, having computed R ~176 R ~176 , R ~ R3 ~ . . . ,  R ~ R ~ Now we proceed 
to RI = ~l(R~ R~ , R~ j. We know that RI o c_ R~, and we are now going to 
compute R lw. Note that the values R ow and R21~ are given by 

0 R ow : I]R2. ~)2(R 0, R2,  ~R3. r  R2,/~3)) 

and 
w = . n 2 .  n ,.n3 n2, 
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By monotonicity, we know that  R21~ will be a superset of R ~ However, since 
R2 is computed by a greatest fixpoint, this information does not help; we still 
must start computing with R21~ -- T. At this point, we begin to compute the 
inner fixpoint again. But now let us look at R ~176 and R 1~ We have 

ROO~ =/~R3.r o, oo R 2 , R3) 

and 
R~o,, = # R 3 . r  1o R 2 , R3)  �9 

Since R ~ C__ R~ and R ~176 C R~ ~ monotonicity implies that R ~176 C_ R31~ Now 
R3 is a least fixpoint, so starting the computation of R~ ~ anywhere below the 
fixpoint value is acceptable. Thus, we can start the computation for R~ ~ with 
R ~176 (i.e., we take R31~176 -- R3~176 Since R ~176 is in general larger than k ,  we 
obtain faster convergence. Also note that 

Rol= r Boo 
,-t~ 2 ,- t~ 3 ] 

and 
R l l  ~ ~ 3 2 ( R ~  ~ 1 o  ~ l O w ~  

,.t,~ 2 , . t , ,  3 ! �9 

Since R ~ C R 1 R ~176 C R21~ and R3 ~176 C R 1~ R ~ R211. . . . .  3 , we will have C_ This 
means that  we can use the same trick when computing R3 n~.  Thus, we will 

Ic?l jw 
use R ~ for the approximation R~ 1~ In general, we can start computing "~3 
from "~3/21J~ - '-  "~3~~ Eventually we find another fixpoint for R2. Then, once we 

l :? l jw k j w  compute R 2 (or in general, R~+I), we can use the fixpoints "~3 (R3 ) as the 
•:jo (R~k+l)jo)to , 2 j~  (R~k+l) j~) .  initial approximations -~3 -v3 

If we use this idea, how many steps does the computation take? The dom- 
inating term is the number of steps made when computing the inner fixpoint. 
With previously known algorithms, this inner computation starts from _L each 
time, and hence inay involve about n 3 steps (one factor of n for each of the three 
fixpoints). In our case, if we fix a particular j ,  then we have 

R o j o  C l:?~ ] ~ l j O  C l ~ l j w  = R 2jO C . . "  l ~ w J ~  C l ~ w J w  
3 - -  "~'~3 ---- ~ %  - -  ~'~3 - -  : "'~3 - -  ~'~3 �9 

This implies that  for each j ,  we can have at most n strict inclusions among the 
values of R~J m that  we compute, and so for each j we take only about n steps. 
Since there can be up to n different j values, we take only about n 2 steps while 
computing the inner fixpoint, thus saving a factor of n. (Again, we are using 
"number of steps" to mean the number of fixpoint approximations produced.) 

The relationship between the different approximations to Rs is shown in 
Fig. 1. The computation of least fixpoints proceeds from bottom to top, and 
the computation of greatest fixpoints proceeds from left to right. The chain 
mentioned above corresponds to one of the vertical columns in this figure. When 
computing with approximation R~, we save the "frontier" values R~ ~ . . . ,  R~ "~  

and use them as the initial approximations R~ j+l)~176 . . . ,  R~ j+l)~~ when com- 
puting with R~ +1. We have at most n strict inclusions within each vertical chain 
in the figure. 
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Fig. 1. Relationships between approximations for R3 

Note that  we can build this type of table for arbitrarily nested fixpoints. 
Suppose, for example, that we were also computing an outer greatest fixpoint 
for a relation R0. Figure 1 would correspond to a series of computations with 
R0 at T. If we then compute the next approximation for R0, it will be smaller 
than the initial approximation. Then by monotonicity, when we go through the 
computations for R1, R2, and R3 again, we will get at each stage something 
smaller than during the first set of computations. For R2, this means that we 
can use the frontier fixpoint values produced during the first set of computations 
as initial approximations when doing the second set of computations. The effect 
is to build a second table like the one in the figure to the right of the previous 
table. 

To argue in more detail that n d/2 steps suffices to evaluate a formula with 
alternation depth d, we now present a special-case algorithm. This algorithm 
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handles strictly alternating fixpoints and only saves frontier values for least fix- 
points. Assume that the formula that we wish to evaluate has the form: 

- -  r ( F 2 ) )  

F2 - / zR2 .  r r 

Fq =  Rq. Cq( R'q. R i , . . . ,  

where -- denotes syntactic equality. This formula has alternation depth d = 2q. 
The special-case algorithm is given in Fig. 2. The algorithm uses an array Ai 

to store the frontier values for the fixpoint variable Ri. The array Ai is indexed 
by iteration indices for all the greatest fixpoints enclosing Ri. There are i - 1 of 
such enclosing fixpoints. Each iteration index is between 0 and n (inclusive), and 
so Ai has (n + 1) i-1 entries. Initially, all array values are 2_. When evaluating 
R{, we start  with the array value indicated by the current iteration indices for 
the enclosing greatest fixpoints, and iterate until convergence. At the end of the 
iteration, the array holds the fixpoint value. For each greatest fixpoint variable 
R~, we have an associated iteration index ji.  When evaluating R~, we start with 
T and iterate n + 1 times (even if convergence is achieved earlier). We update 
ji after each iteration. 

function eval(r 

Handle atomic propositions, logical operations, etc. 
if r = #Ri. ~bi(-- .) then 

Ri := Ai[jl,... ,fi-1] 
repeat 

Oi := Ri 
Ri := eval(r 0 
Ai[jl , . . .  ,fi-1] := Ri 

until Ri = Oi 
return Ri 

else if r = uRn. r 
R~ : = T  
for ji from 0 to n 

R~ := eval(r 
endfor 
return R~ 

endif 

Fig. 2. Pseudo-code for the special-case algorithm 

Note that  this algorithm implements the ideas described previously. For the 
three fixpoint example that  we used earlier, the array for R3 would have n + 1 
entries because R3 is within one enclosing greatest fixpoint. Initially these are 
all 2-, corresponding to the values R~ j~ (for 0 < j < n). During the computation 
of the fixpoint for R2, the entries are updated to hold the values R ~ When we 
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compute the approximation R~ and begin computing0the inner fixpoints again, 
the entries are used as the initial approximations R~ j . 

In proving this algorithm correct, we would show that any given array en- 
t ry  increases monotonically. While space limitations prevent us from giving the 
proof, we can use this fact to derive a complexity bound.  Let Ti denote the 
number of approximations computed for Ri, and let T/' denote the number of 
approximations for R~. Clearly, T1 _< n + 1. From the algorithm, we see that the 
fixpoint for R~ is evaluated Ti times, and for each evaluation, we produce n + 1 
approximations. Thus, T~ _< (n + 1)Ti. For Ri, each entry in Ai increases mono- 
tonically, so for any one entry, we can make at most n steps in which the value 
strictly increases. There are ( n +  1) i-1 entries in Ai, so this gives at most ( n +  1) i 
steps. We evaluate the fixpoint for Ri at most T~_ 1 times. Thus, we make at most 
T / I _ I  e x t r a  steps to detect convergence. In total, we have Ti <_ (n + 1) i + T~_ 1. 
Expanding out the values, we get 

TI < n + I  

T~ _< (n + 1):/'1 ---- (n + 1) 2 

T2 _< (n + 1) 2 + T~ = 2(n + 1) 2 

T~ < (n  + 1)T2 = 2(n + 1) 3 

T a <_ q(n + 1) q 

Tq <_ q(n + 1) q+l . 

Summing over all fixpoints and expressing the result in terms of the alternation 
depth d -- 2q, we get O(d2(n + 1) d/2+1) steps. In contrast, previously known 
algorithms may require about n d steps to evaluate this formula. Generalizing to 
formulas with odd alternation depth yields the bound O(d ~ (n + 1)[d/21+1). 

In the general algorithm, we handle arbitrary formulas, save information for 
both types of fixpoints and always stop computations on detecting convergence. 
This version of the algorithm does not use tables to store the frontier values, 
since just initializing the tables requires about n d/2 steps. If all of the fixpoint 
computations converged immediately, this would represent mostly wasted effort. 
Instead, frontiers will be represented by queues. We will write queues using 
square brackets, with the head of the queue at the left. The last element in the 
queue corresponds to a fixpoint and is conceptually replicated as many times as 
required. As an example, consider (1) again. During the computations with R ~ 
we will be building up the frontier values R3 ~176 R ~ , 3 , etc. Within n steps, we 
will find the fixpoint value R ~ Say this happens after three steps. Then the 
frontier for -R3 will be represented by the queue 

.01  R03 ] 
~ 3  , "v3  , ~v3 , 

If we were to continue iterating on R2, the value of R2 would not change, and so 
ROY~ would be equal to R ~ for all j > 3. Rather  than actually computing these 3 
values, we just view R 03~ as being duplicated as many times as needed. When 
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we start computing with R~, we will pull elements from the above queue to start 
each computation of R3. If R2 now takes more than three steps to converge, we 
will use R ~ more than once. Each time we pull it from the queue and find 
that the queue is empty, we put another copy back in the queue in case another 
iteration on R2 is required. 

More deeply nested fixpoints give rise to nested queues. Consider a formula 
with five fixpoints: itRz. vR2. itR3. vR4. itRs. (.- .). For Rs, a frontier will be rep- 
resented by a queue, each element of which is a queue of state sets. The ele- 
ments of the outer queue are subfrontiers corresponding to the values Ri  ~ R~ 1, 
R~ 2, etc. The subfrontier corresponding to R2 3 holds fixpoints corresponding to 
Rijko RiaJkl, Ri4Jk2 etc. In general, a frontier for a least fixpoint nested inside q 4 , 
greatest fixpoints is represented by queues nested to depth q. 

As the computation proceeds, existing frontiers will be decomposed to get 
at the starting fixpoint approximations, and we will be constructing new fron- 
tiers from the fixpoint values. In order to keep track of this decomposition and 
construction process, we use two stacks for each fixpoint variable R. One stack, 
IR, will be associated with the frontier being decomposed, and the other stack, 
FR, will hold the frontier being constructed. Each stack element is either a set 
of states (representing an approximation or a fixpoint value), or a queue (rep- 
resenting a subfrontier). We will write stacks using angle brackets, with the top 
of a stack on the left. Initially, the IR stack for a top-level fixpoint variable R 
holds either T or _l_, depending on whether R is a greatest or least fixpoint. The 
stack IR for a least fixpoint variable R nested inside q greatest fixpoints holds • 
nested inside q queues. The initial value for a stack corresponding to a greatest 
fixpoint variable nested inside a number of least fixpoints is similarly defined. 

Pseudo-code for the algorithm is shown in Fig. 3. During each iteration for 
the fixpoint itR. r  �9 .), we pull out the next Sub-frontier for the inner v variables 
(lines 8-12). These subfrontiers are pushed onto the initial stacks corresponding 
to the v variables. For a top-level v-subformula vR'. ( . . . )  of r  these subfrontiers 
will be state sets representing the initial approximation to use for R'. We then 
recursively evaluate the inner fixpoints. Afterwards, we build up sub-frontiers 
for subsequent evaluations of the inner greatest fixpoints (lines 15-19). If the 
computation of R has not yet converged, we discard the old frontiers for the 
inner it fixpoints and replace them with the new frontiers that have been built 
up (lines 21-24). Note that  with two successive it fixpoints, this simply results 
in picking up the inner fixpoint from the previous stopping point. Hence the 
algorithm also makes use of Emerson and Lei's observation [11]. 

As an example of the algorithm's operation, we consider (1) again. Initially, 
IR1 : (_l_), IR2 ---- ( [ T ] ) ,  and IRa ----- ( [ •  All the stacks FR1, FR2, and FR3 
are empty. The computation proceeds as shown in Fig. 4. In the figure, itRl: l 
denotes a call to the evaluation routine for the formula itR1. (---) with • on the 
top of the stack IR1 (i.e., the evaluation of the fixpoint starting from ]_). The 
notations "start RI"  and "end Rz" denote the start  of an iteration for computing 
R1 and the end of an iteration, respectively. The notation "return R ow'' indicates 
returning a fixpoint value for R2. Finally, itRa: • --* R ~176 denotes the evaluation 
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1 function eval(r 

2 Handle base cases, logical operations, etc. 
3 if r = #R.O(R) then 
4 set R to the top element of In 
5 for each inner u variable R' 
6 push [] on Fn, 
7 repeat 
8 for each inner u variable R I 
9 let Q be the queue on top of In, 

10 dequeue e from Q 
11 if Q is now empty, enqueue e again 
12 push e on In, 
13 Rold := R 
14 R := eval(r 
15 for each inner u variable R I 
16 pop e from Fn, 
17 let Q be the queue on top of FR, 
18 enqueue e in Q 
19 pop In, 
20 if R 7 ~ Rold then 
21 for each inner # variable R ~ 
22 pop In, 
23 pop e from Fn, 
24 push e on In, 
25 until R = Rold 
26 push R on Fn 
27 return R 
28 if r = uR.O(R) then 
29 Analogous code to the above 

Fig.  3. Pseudo-code for the general algorithm 

of # R  3. ( . . . )  s tar t ing  with _1_ and yielding R ~176 as the result. The figure shows 
how the stacks evolve during the computa t ion .  

Unfortunately,  the general a lgori thm still has a worst case complexi ty  of 
about  n d/2. We have constructed t ransi t ion systems and classes of formulas 
where the a lgor i thm takes at least (n + 1) d/2+l steps to evaluate a formula  
in the class with a l ternat ion depth d (even). We do not have space to present 
the construct ion,  but  we will t ry  to give an intuitive idea of the kind of behavior  
tha t  leads to the high complexity. The  formulas involve d/2 pairs (R~, R~) of 
fixpoint variables. Ri is a least fixpoint variable, and R{ is a greatest  fixpoint 
variable. Let the states of the system be {So , . . . ,  s,~-l}. Suppose tha t  each of 
the pairs (R1, R~), . . . ,  (Ri, R{) has one of the following values: 

( / , T ) ,  ( { S o } , T - { s o } ) ,  . . . ,  ( T -  {Sn-1},{Sn-1}), ( T , I )  . 

Call such a si tuat ion a "diagonal configuration." Obviously, the number  of diago- 
nal configurat ions for these variables is (n + 1) i. Any two diagonal  configurat ions 
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Fig. 4. Example computation of the algorithm in Fig. 3 

are incomparable with respect to pairwise set containment.  Hence, computing 
the inner fixpoints for one diagonal configuration gives us no information about 
the inner fixpoints for a different diagonal configuration. We can also arrange for 
all inner fixpoints to be T above the diagonal (i.e., when Ri U R~ = T and they 
have a nonempty  intersection) and to be • below the diagonal�9 Under these 
circumstances, we can show that all diagonal configurations for (R1,R~),  . . . ,  
(Rd/2, R~d/2) will occur during the computation.  This means that the number of 

steps must be at least (n + 1) d/2. 
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Our method uses more space than previous approaches, since frontier values 
must be stored. In the worst case, we may have to store about  n d/2 state sets. 
There does not seem to be any way to avoid this, since we cannot rearrange the 
order in which the fixpoint approximations are computed. Note though tha t  the 
space complexity is generally much bet ter  than the time complexity (since we 
only store "slices" of the approximations that  have been computed).  If needed, we 
can trade t ime for space during long computat ions by simplifying or discarding 
some of the frontiers. 

4 C o n c l u s i o n  

We have presented a new algorithm for evaluating a formula in the propositional 
#-calculus with respect to a finite transition system. Our algorithm takes about  
n d/2 steps, where d is the alternation depth of the formula. The best previously 
known algorithms required about  n d steps. A straightforward implementat ion 
of our algorithm would require an extra  factor of n or so for bookkeeping and 
set manipulations, but we believe that  methods such as those used by Cleave- 
land, Klein, Steffen, and Andersen [1, 8, 9] could be used to reduce this extra  
complexity. It  is not as clear whether efficient local procedures can be developed 
that  make use of our ideas, but this is an interesting question. 

Another line of research involves trying to place lower bounds on the com- 
plexity of the evaluation process. It can be shown that  the language recognition 
version of the problem is in NP intersect co-NP. This suggests that  it would be 
very difficult to prove that  there is no polynomial t ime algorithm for the prob- 
lem. However, it might be possible to prove something about  a restricted class 
of algorithms. A natural  class to consider is "oblivious" algorithms. These are 
methods that  only make use of the structure of the nesting of fixpoints, and per- 
haps the fixpoint values. Given a formula like #R1. r (R1, pR2. r (R1, R2)), we 
would view ~1 and r as being given by oracles. The complexity of an algorithm 
would be measured in the number of calls to the oracles. This is a natural  class of 
methods. For example, both Emerson and Lei's original algorithm and our new 
one can be viewed as members of this class. A proof that  no algorithm of this 
class can make do with just a polynomial number  of oracle queries would imply 
that  any polynomial t ime algorithm would have to do something clever based 
on the structure of the formula. Another way of exploring the complexity of the 
problem is to look for links with classical complexity theory. Jha  has obtained 
some results connecting fixpoint alternation and al ternating Turing machines 
(ATMs). For example, a fixpoint fornmla with k alternations can be used to 
simulate an ATM with k alternations. 
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