
An Improved Algorithm for the Evaluation
Fixpoint Expressions*

of

David E. Long 1 , Anca Browne 2, E d m u n d M. Clarke 2,
Somesh Jha 2, Wilfredo R. Marrero 2

1 AT&T Bell Laboratories, Murray Hill, NJ 07974
2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

A b s t r a c t . Many automated finite-state verification procedures can be
viewed as fixpoint computations over a finite lattice (typically the pow-
erset of the set of system states). Hence, fixpoint calculi such as the
propositional y-calculus have proven useful, both as ways to describe
verification algorithms and as specification formalisms in their own right.
We consider the problem of evaluating expressions in a fixpoint calculus
over a given model. A naive algorithm for this task may require time n q,

where n is the maximum length of a chain in the lattice and q is the
depth of fixpoint nesting. In 1986, Emerson and Lei presented a method
requiring about n d steps, where d is the number of alternations between
least and greatest fixpoints. More recent algorithms have reduced the
exponent by one or two, but the complexity has remained at about n d.

In this paper, we present a new algorithm that makes extensive use of
monotonicity considerations to solve the problem in about n d/2 steps.
Thus, the time required by our method is only about the square root of
the time required by the earlier algorithms.

1 I n t r o d u c t i o n

Many a u t o m a t e d finite-state verification algori thms can be viewed as fixpoint
computa t ions over a finite lattice. Examples include: model checking procedures
for logics such as CT L [6] and P D L [12], me thods for comput ing s trong and weak
bisimulation equivalence in CCS [16], and language conta inment and emptiness
a lgori thms for w-au toma ta [5]. Approaches based on fixpoint logics such as the

* This research was sponsored in part by the Wright Laboratory, Aeronautical Systems
Center, Air Force Material Command, USAF, and the Advanced Research Projects
Agency (ARPA) under grant number F33615-93-1-1330, and in part by the Semicon-
ductor Research Corportation (SRC) under contract 92-DJ-294, and in part by the
National Science Foundation under contract number CCR-9217549. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either ex-
pressed or implied, of Wright Laboratory, the U. S. Government, the Semiconductor
Research Corporation, or the National Science Foundation. The U. S. Government
is authorized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation thereon.

339

propositional It-calculus [13] are tied even more directly to fixpoint computation.
With the increasing use of binary decision diagrams (BDDs) [3] for finite-state
verification [4, 10], algorithms based on set manipulations and fixpoints have
become even more important, since methods that require the manipulation of
individual states do not take advantage of the representation. In this paper, we
consider the complexity of evaluating fixpoint expressions over finite lattices.
Our main result is a new algorithm that makes extensive use of monotonicity
considerations to reduce the complexity of evaluation. The number of steps re-
quired by our method is roughly the square root of the number of steps required
by the best previously known algorithms.

Our ideas are independent of the particular fixpoint calculus used, but for
concreteness, we will be using the propositional/z-calculus of Kozen [13]. This
logic is designed for expressing properties of transition systems, and formulas in
the logic (with no free propositional variables) evaluate to sets of states. There
have been many algorithms proposed for evaluating a formula of the logic with
respect to a given transition system. These mostly fall into two categories: local
and global. Local procedures, like those developed by Cleaveland [7], Stirling
and Walker [17], and Winskel [19], are designed for proving that a specific state
of the transition system satisfies the given formula. Because of this, it is not al-
ways necessary to examine all the states in the transition system. However, the
worst-case complexity of these approaches is generally larger than the complex-
ity of the global methods, though recent work by Andersen [1], Larsen [14], and
Mader [15] has improved the bounds. Global procedures generally work bottom-
up through the formula, evaluating each subformula based on the value of its
subformulas. Iteration is used to compute the fixpoints. Because of fixpoint nest-
ing, a naive global algorithm may require about n q steps to evaluate a formula,
where n is the number of states in the transition system and q is the depth of
nesting of the fixpoints. Emerson and Lei [11] improved on this by observing
that the complexity of evaluating a formula really depends only on the number
of alternations d of least and greatest fixpoints. Emerson and Lei gave an al-
gorithm requiring only about n d steps. Subsequent work by Cleaveland, Klein,
Steffen, and Andersen [1, 8, 9] has reduced the overhead, but the overall number
of steps has remained at about n d. Our new algorithm is also a global method.
By using extensive monotonicity considerations, we are able to show that only
about n all2 steps are required to evaluate a formula with d alternations.

The remainder of this paper is organized as follows. Section 2 summarizes the
syntax and semantics of the propositional p-calculus and reviews Emerson and
Lei's work. In Sect. 3 we present our new algorithm and discuss its complexity.
We consider some open questions and directions for future research in Sect. 4.

2 The Propositional #-Calculus

In the propositional It-calculus, formulas are built up from:

1. atomic propositions p , P l , p 2 , . . . ;

340

2. atomic propositional variables R, R1, R2, . . . ;
3. logical connectives �9 A �9 and �9 V .;
4. modal operators (a). and [a]-, where a is one of a set of program letters a, b,

al, a2, �9 �9 �9 ; and
5. fixpoint operators/zRi. (..-) and vRi. (. . .) .

Formulas in this calculus are interpreted relative to a transition system that
consists of:

1. a nonempty set of states T;
2. a mapping L that takes each atomic proposition to some subset of T (the

states where the proposition is true); and
3. a mapping T that takes each program letter to a binary relation over T (the

state changes that can result from executing the program).

The intuitive meaning of the formula (a)r is "it is possible to execute a and
transition to a state where r holds." [.] is the dual of (.); for [a]r the intended
meaning is that "r holds in all states reachable (in one step) by executing a." The
and v operators are used to express least and greatest fixpoints, respectively.
We could also allow negation (with some restrictions); in this case, greatest
fixpoints could be expressed using the duality yR. r = -~#R.-~r To
emphasize this duality, we write the empty set of states as _L.

Formally, a formula r over the free propositional variables R1, R2, . . . , Rk
is interpreted as a k-argument predicate transformer. CA predicate transformer
is simply a mapping from sets of states to a set of states.) We denote this
predicate transformer by r r is defined inductively by giving its value for
the arguments $1, . . . , Sk. We write this value as r

1. pM (~) = L(p).

3. (r A r = r N cM(~). Disjunction is similar.
4. ((a)r ---- {s]3t [(s , t) e T(a)A t E r }.

([a]r = { s] Vt [(s, t) 6 T(a) ~ t 6 r }.
5. (#R. r is the least fixpoint of the predicate transformer T: 2 T ~ 2 T

defined by:
~(S) = r ,

where the first parameter of r is the value for R. The interpretation of
v}~. r is similar, except that we take the greatest fixpoint.

Within formulas, there is no negation, and so the fixpoints are guaranteed to
be well-defined. Formally, each possible T is monotonic (S C_ S' implies 7-(S) C
T(S')). This is enough to ensure the existence of the fixpoints [18]. For finite
transition systems, the fixpoints can be computed by iterative evaluation. More
precisely, for some i < n =]TI, the fixpoint is equal to Ti(_l_) (for a least fixpoint)
or T/(T) (for a greatest fixpoint). In what follows, we will often abuse notation
and identify the formula r with its meaning cM.

341

Since we will be using the concept of alternation depth, we briefly summarize
Emerson and Lei's observations [11]. Consider the expression

#R1. ((a)R1) Y (/tR2. R1 V p V (b)R2) .

The subformula #R2. (. .-) defnes a monotonic predicate transformer T taking
one set (the value of R1) to another (the value of #R2. (. .-)). When evaluating
the outer fixpoint, we start with the approximation • and then compute T(•
Now R1 is increased (say to $1), and we want to compute the least fixpoint
T(S1). Since J_ __ $1, we know that T(• _C ~'($1). To compute a least fixpointi
it is enough to start iterating with any approximation known to be below the
fixpoint. This implies that we can start iterating with ~-(_k) instead of _L. At
the next step, R1 will be even larger, and so we will start the inner fixpoint
computation with T(S1). We never restart the inner fixpoint computation, and
so we can have at most n increases in the value of the inner fixpoint variable.
Overall, we only need about n steps to evaluate this expression, instead of n 2.
Emerson and Lei showed that this type of simplification makes it possible to
evaluate a formula r in about n d steps, where d is the alternation depth of the
formula. The alternation depth of a formula is intuitively equal to the number
of alternating nestings of least and greatest fixpoints. For the formula above, the
alternation depth is 1, so n 1 steps suffice. Note: throughout this paper, when
we speak of the number of steps used by an algorithm, we mean the number of
fixpoint approximations produced during the evaluation process. Thus, we avoid
details of how sets and relations are represented and manipulated.

3 The Algori thm

We first illustrate the essential idea behind our new algorithm on a formula
involving three fixpoints (with alternation depth three):

#R1. ~/~1 (/~1, uR2. r (R1, R2, #R3. r (R1, R2, R3))) �9 (1)

To compute the outer fixpoint, we start with R1 = • R2 -- T and R3 = •
Call these values R ~ R ~176 and R ~176176 respectively. The superscript on Ri gives the
iteration indices for the fixpoints involving R1, . �9 Ri. So R3 ~176176 means that all
three fixpoints are at their the initial approximations. We then iterate to compute
the inner fixpoint; call the value of this fixpoint R ~176 (The w stands for whatever
number of steps were needed for the fixpoint iteration to converge.) We now
compute the next approximation R ~ for R2 by evaluating ~/. ~r~o boo r, oow~ q~2~,1~ 1 , I t 2 ,1~ 3 },
and then we go back to the inner fixpoint. Eventually, we reach the fixpoint for
R2, having computed R ~176 R ~176 , R ~ R3 ~ . . . , R ~ R ~ Now we proceed
to RI = ~l(R~ R~ , R~ j. We know that RI o c_ R~, and we are now going to
compute R lw. Note that the values R ow and R21~ are given by

0 R ow : I]R2. ~)2(R 0, R2, ~R3. r R2,/~3))

and
w = . n 2 . n ,.n3 n2,

342

By monotonicity, we know that R21~ will be a superset of R ~ However, since
R2 is computed by a greatest fixpoint, this information does not help; we still
must start computing with R21~ -- T. At this point, we begin to compute the
inner fixpoint again. But now let us look at R ~176 and R 1~ We have

ROO~ =/~R3.r o, oo R 2 , R3)

and
R~o,, = # R 3 . r 1o R 2 , R3) �9

Since R ~ C__ R~ and R ~176 C R~ ~ monotonicity implies that R ~176 C_ R31~ Now
R3 is a least fixpoint, so starting the computation of R~ ~ anywhere below the
fixpoint value is acceptable. Thus, we can start the computation for R~ ~ with
R ~176 (i.e., we take R31~176 -- R3~176 Since R ~176 is in general larger than k , we
obtain faster convergence. Also note that

Rol= r Boo
,-t~ 2 ,- t~ 3]

and
R l l ~ ~ 3 2 (R ~ ~ 1 o ~ l O w ~

,.t,~ 2 , . t , , 3 ! �9

Since R ~ C R 1 R ~176 C R21~ and R3 ~176 C R 1~ R ~ R211. 3 , we will have C_ This
means that we can use the same trick when computing R3 n~. Thus, we will

Ic?l jw
use R ~ for the approximation R~ 1~ In general, we can start computing "~3
from "~3/21J~ - '- "~3~~ Eventually we find another fixpoint for R2. Then, once we

l :? l jw k j w compute R 2 (or in general, R~+I), we can use the fixpoints "~3 (R3) as the
•:jo (R~k+l)jo)to , 2 j~ (R~k+l) j~) . initial approximations -~3 -v3

If we use this idea, how many steps does the computation take? The dom-
inating term is the number of steps made when computing the inner fixpoint.
With previously known algorithms, this inner computation starts from _L each
time, and hence inay involve about n 3 steps (one factor of n for each of the three
fixpoints). In our case, if we fix a particular j , then we have

R o j o C l:?~] ~ l j O C l ~ l j w = R 2jO C . . " l ~ w J ~ C l ~ w J w
3 - - "~'~3 ---- ~ % - - ~'~3 - - : "'~3 - - ~'~3 �9

This implies that for each j , we can have at most n strict inclusions among the
values of R~J m that we compute, and so for each j we take only about n steps.
Since there can be up to n different j values, we take only about n 2 steps while
computing the inner fixpoint, thus saving a factor of n. (Again, we are using
"number of steps" to mean the number of fixpoint approximations produced.)

The relationship between the different approximations to Rs is shown in
Fig. 1. The computation of least fixpoints proceeds from bottom to top, and
the computation of greatest fixpoints proceeds from left to right. The chain
mentioned above corresponds to one of the vertical columns in this figure. When
computing with approximation R~, we save the "frontier" values R~ ~ . . . , R~ "~

and use them as the initial approximations R~ j+l)~176 . . . , R~ j+l)~~ when com-
puting with R~ +1. We have at most n strict inclusions within each vertical chain
in the figure.

343

R~ I

"~"-B'ggg-w ~ -'B'5~-'
R3 ~I~3 12 ::) R 3

Ul I ~1 I UI

u, I U, I u ,

Ul -I Ul I- - uJ
R w00 D l owlO I D D .R ~ 0 ,J~3 . - ~ -" J ~3

II II

II II

?,

R 101

RiCO [
ir.~3 i D

II II

UI
D D

UI -

II

II

RI~,
Ul

Ul
Ra 1~1

uI
Rl~O
#"3 Jl

II

R2 0 R21 ~2 ~z

Fig. 1. Relationships between approximations for R3

Note that we can build this type of table for arbitrarily nested fixpoints.
Suppose, for example, that we were also computing an outer greatest fixpoint
for a relation R0. Figure 1 would correspond to a series of computations with
R0 at T. If we then compute the next approximation for R0, it will be smaller
than the initial approximation. Then by monotonicity, when we go through the
computations for R1, R2, and R3 again, we will get at each stage something
smaller than during the first set of computations. For R2, this means that we
can use the frontier fixpoint values produced during the first set of computations
as initial approximations when doing the second set of computations. The effect
is to build a second table like the one in the figure to the right of the previous
table.

To argue in more detail that n d/2 steps suffices to evaluate a formula with
alternation depth d, we now present a special-case algorithm. This algorithm

344

handles strictly alternating fixpoints and only saves frontier values for least fix-
points. Assume that the formula that we wish to evaluate has the form:

- - r (F 2))

F2 - / zR2 . r r

Fq = Rq. Cq(R'q. R i , . . . ,

where -- denotes syntactic equality. This formula has alternation depth d = 2q.
The special-case algorithm is given in Fig. 2. The algorithm uses an array Ai

to store the frontier values for the fixpoint variable Ri. The array Ai is indexed
by iteration indices for all the greatest fixpoints enclosing Ri. There are i - 1 of
such enclosing fixpoints. Each iteration index is between 0 and n (inclusive), and
so Ai has (n + 1) i-1 entries. Initially, all array values are 2_. When evaluating
R{, we start with the array value indicated by the current iteration indices for
the enclosing greatest fixpoints, and iterate until convergence. At the end of the
iteration, the array holds the fixpoint value. For each greatest fixpoint variable
R~, we have an associated iteration index ji. When evaluating R~, we start with
T and iterate n + 1 times (even if convergence is achieved earlier). We update
ji after each iteration.

function eval(r

Handle atomic propositions, logical operations, etc.
if r = #Ri. ~bi(-- .) then

Ri := Ai[jl,... ,fi-1]
repeat

Oi := Ri
Ri := eval(r 0
Ai[jl , . . . ,fi-1] := Ri

until Ri = Oi
return Ri

else if r = uRn. r
R~ : = T
for ji from 0 to n

R~ := eval(r
endfor
return R~

endif

Fig. 2. Pseudo-code for the special-case algorithm

Note that this algorithm implements the ideas described previously. For the
three fixpoint example that we used earlier, the array for R3 would have n + 1
entries because R3 is within one enclosing greatest fixpoint. Initially these are
all 2-, corresponding to the values R~ j~ (for 0 < j < n). During the computation
of the fixpoint for R2, the entries are updated to hold the values R ~ When we

345

compute the approximation R~ and begin computing0the inner fixpoints again,
the entries are used as the initial approximations R~ j .

In proving this algorithm correct, we would show that any given array en-
t ry increases monotonically. While space limitations prevent us from giving the
proof, we can use this fact to derive a complexity bound. Let Ti denote the
number of approximations computed for Ri, and let T/' denote the number of
approximations for R~. Clearly, T1 _< n + 1. From the algorithm, we see that the
fixpoint for R~ is evaluated Ti times, and for each evaluation, we produce n + 1
approximations. Thus, T~ _< (n + 1)Ti. For Ri, each entry in Ai increases mono-
tonically, so for any one entry, we can make at most n steps in which the value
strictly increases. There are (n + 1) i-1 entries in Ai, so this gives at most (n + 1) i
steps. We evaluate the fixpoint for Ri at most T~_ 1 times. Thus, we make at most
T / I _ I e x t r a steps to detect convergence. In total, we have Ti <_ (n + 1) i + T~_ 1.
Expanding out the values, we get

TI < n + I

T~ _< (n + 1):/'1 ---- (n + 1) 2

T2 _< (n + 1) 2 + T~ = 2(n + 1) 2

T~ < (n + 1)T2 = 2(n + 1) 3

T a <_ q(n + 1) q

Tq <_ q(n + 1) q+l .

Summing over all fixpoints and expressing the result in terms of the alternation
depth d -- 2q, we get O(d2(n + 1) d/2+1) steps. In contrast, previously known
algorithms may require about n d steps to evaluate this formula. Generalizing to
formulas with odd alternation depth yields the bound O(d ~ (n + 1)[d/21+1).

In the general algorithm, we handle arbitrary formulas, save information for
both types of fixpoints and always stop computations on detecting convergence.
This version of the algorithm does not use tables to store the frontier values,
since just initializing the tables requires about n d/2 steps. If all of the fixpoint
computations converged immediately, this would represent mostly wasted effort.
Instead, frontiers will be represented by queues. We will write queues using
square brackets, with the head of the queue at the left. The last element in the
queue corresponds to a fixpoint and is conceptually replicated as many times as
required. As an example, consider (1) again. During the computations with R ~
we will be building up the frontier values R3 ~176 R ~ , 3 , etc. Within n steps, we
will find the fixpoint value R ~ Say this happens after three steps. Then the
frontier for -R3 will be represented by the queue

.01 R03]
~ 3 , "v3 , ~v3 ,

If we were to continue iterating on R2, the value of R2 would not change, and so
ROY~ would be equal to R ~ for all j > 3. Rather than actually computing these 3
values, we just view R 03~ as being duplicated as many times as needed. When

346

we start computing with R~, we will pull elements from the above queue to start
each computation of R3. If R2 now takes more than three steps to converge, we
will use R ~ more than once. Each time we pull it from the queue and find
that the queue is empty, we put another copy back in the queue in case another
iteration on R2 is required.

More deeply nested fixpoints give rise to nested queues. Consider a formula
with five fixpoints: itRz. vR2. itR3. vR4. itRs. (.- .). For Rs, a frontier will be rep-
resented by a queue, each element of which is a queue of state sets. The ele-
ments of the outer queue are subfrontiers corresponding to the values Ri ~ R~ 1,
R~ 2, etc. The subfrontier corresponding to R2 3 holds fixpoints corresponding to
Rijko RiaJkl, Ri4Jk2 etc. In general, a frontier for a least fixpoint nested inside q 4 ,
greatest fixpoints is represented by queues nested to depth q.

As the computation proceeds, existing frontiers will be decomposed to get
at the starting fixpoint approximations, and we will be constructing new fron-
tiers from the fixpoint values. In order to keep track of this decomposition and
construction process, we use two stacks for each fixpoint variable R. One stack,
IR, will be associated with the frontier being decomposed, and the other stack,
FR, will hold the frontier being constructed. Each stack element is either a set
of states (representing an approximation or a fixpoint value), or a queue (rep-
resenting a subfrontier). We will write stacks using angle brackets, with the top
of a stack on the left. Initially, the IR stack for a top-level fixpoint variable R
holds either T or _l_, depending on whether R is a greatest or least fixpoint. The
stack IR for a least fixpoint variable R nested inside q greatest fixpoints holds •
nested inside q queues. The initial value for a stack corresponding to a greatest
fixpoint variable nested inside a number of least fixpoints is similarly defined.

Pseudo-code for the algorithm is shown in Fig. 3. During each iteration for
the fixpoint itR. r �9 .), we pull out the next Sub-frontier for the inner v variables
(lines 8-12). These subfrontiers are pushed onto the initial stacks corresponding
to the v variables. For a top-level v-subformula vR'. (. . .) of r these subfrontiers
will be state sets representing the initial approximation to use for R'. We then
recursively evaluate the inner fixpoints. Afterwards, we build up sub-frontiers
for subsequent evaluations of the inner greatest fixpoints (lines 15-19). If the
computation of R has not yet converged, we discard the old frontiers for the
inner it fixpoints and replace them with the new frontiers that have been built
up (lines 21-24). Note that with two successive it fixpoints, this simply results
in picking up the inner fixpoint from the previous stopping point. Hence the
algorithm also makes use of Emerson and Lei's observation [11].

As an example of the algorithm's operation, we consider (1) again. Initially,
IR1 : (_l_), IR2 ---- ([T]) , and IRa ----- ([• All the stacks FR1, FR2, and FR3
are empty. The computation proceeds as shown in Fig. 4. In the figure, itRl: l
denotes a call to the evaluation routine for the formula itR1. (---) with • on the
top of the stack IR1 (i.e., the evaluation of the fixpoint starting from]_). The
notations "start RI" and "end Rz" denote the start of an iteration for computing
R1 and the end of an iteration, respectively. The notation "return R ow'' indicates
returning a fixpoint value for R2. Finally, itRa: • --* R ~176 denotes the evaluation

347

1 function eval(r

2 Handle base cases, logical operations, etc.
3 if r = #R.O(R) then
4 set R to the top element of In
5 for each inner u variable R'
6 push [] on Fn,
7 repeat
8 for each inner u variable R I
9 let Q be the queue on top of In,

10 dequeue e from Q
11 if Q is now empty, enqueue e again
12 push e on In,
13 Rold := R
14 R := eval(r
15 for each inner u variable R I
16 pop e from Fn,
17 let Q be the queue on top of FR,
18 enqueue e in Q
19 pop In,
20 if R 7 ~ Rold then
21 for each inner # variable R ~
22 pop In,
23 pop e from Fn,
24 push e on In,
25 until R = Rold
26 push R on Fn
27 return R
28 if r = uR.O(R) then
29 Analogous code to the above

Fig. 3. Pseudo-code for the general algorithm

of # R 3. (. . .) s tar t ing with _1_ and yielding R ~176 as the result. The figure shows
how the stacks evolve during the computa t ion .

Unfortunately, the general a lgori thm still has a worst case complexi ty of
about n d/2. We have constructed t ransi t ion systems and classes of formulas
where the a lgor i thm takes at least (n + 1) d/2+l steps to evaluate a formula
in the class with a l ternat ion depth d (even). We do not have space to present
the construct ion, but we will t ry to give an intuitive idea of the kind of behavior
tha t leads to the high complexity. The formulas involve d/2 pairs (R~, R~) of
fixpoint variables. Ri is a least fixpoint variable, and R{ is a greatest fixpoint
variable. Let the states of the system be {So , . . . , s,~-l}. Suppose tha t each of
the pairs (R1, R~), . . . , (Ri, R{) has one of the following values:

(/ , T) , ({ S o } , T - { s o }) , . . . , (T - {Sn-1},{Sn-1}), (T , I) .

Call such a si tuat ion a "diagonal configuration." Obviously, the number of diago-
nal configurat ions for these variables is (n + 1) i. Any two diagonal configurat ions

348

e~

r

4

A A A

~a a c~c~ ~a a
v v o

v c~ ~:~ ~ 8 ~ 8 ~ ,

3 3 3 3

A A

3 3

3 3

v v

~ ~ ~ ~ = = ~ = = �9

o a ~ ~ ~

~ 77%~ 77
A A

~ m 3 m

3 3

V V

A A

V V

A

v

A A

-. - I - I
v v

- . . ~ a ~ ~ ~
. ~ ~ ~

v

~ ~ ~ . ~ ~ ~ ~

o3 3

T T

~:~ ~ " ~ ' ~ .~.~ ..
m m --1,. ~ m

3

T T
T ~ 8~ ,~,~

Fig. 4. Example computation of the algorithm in Fig. 3

are incomparable with respect to pairwise set containment. Hence, computing
the inner fixpoints for one diagonal configuration gives us no information about
the inner fixpoints for a different diagonal configuration. We can also arrange for
all inner fixpoints to be T above the diagonal (i.e., when Ri U R~ = T and they
have a nonempty intersection) and to be • below the diagonal�9 Under these
circumstances, we can show that all diagonal configurations for (R1,R~), . . . ,
(Rd/2, R~d/2) will occur during the computation. This means that the number of

steps must be at least (n + 1) d/2.

349

Our method uses more space than previous approaches, since frontier values
must be stored. In the worst case, we may have to store about n d/2 state sets.
There does not seem to be any way to avoid this, since we cannot rearrange the
order in which the fixpoint approximations are computed. Note though tha t the
space complexity is generally much bet ter than the time complexity (since we
only store "slices" of the approximations that have been computed). If needed, we
can trade t ime for space during long computat ions by simplifying or discarding
some of the frontiers.

4 C o n c l u s i o n

We have presented a new algorithm for evaluating a formula in the propositional
#-calculus with respect to a finite transition system. Our algorithm takes about
n d/2 steps, where d is the alternation depth of the formula. The best previously
known algorithms required about n d steps. A straightforward implementat ion
of our algorithm would require an extra factor of n or so for bookkeeping and
set manipulations, but we believe that methods such as those used by Cleave-
land, Klein, Steffen, and Andersen [1, 8, 9] could be used to reduce this extra
complexity. It is not as clear whether efficient local procedures can be developed
that make use of our ideas, but this is an interesting question.

Another line of research involves trying to place lower bounds on the com-
plexity of the evaluation process. It can be shown that the language recognition
version of the problem is in NP intersect co-NP. This suggests that it would be
very difficult to prove that there is no polynomial t ime algorithm for the prob-
lem. However, it might be possible to prove something about a restricted class
of algorithms. A natural class to consider is "oblivious" algorithms. These are
methods that only make use of the structure of the nesting of fixpoints, and per-
haps the fixpoint values. Given a formula like #R1. r (R1, pR2. r (R1, R2)), we
would view ~1 and r as being given by oracles. The complexity of an algorithm
would be measured in the number of calls to the oracles. This is a natural class of
methods. For example, both Emerson and Lei's original algorithm and our new
one can be viewed as members of this class. A proof that no algorithm of this
class can make do with just a polynomial number of oracle queries would imply
that any polynomial t ime algorithm would have to do something clever based
on the structure of the formula. Another way of exploring the complexity of the
problem is to look for links with classical complexity theory. Jha has obtained
some results connecting fixpoint alternation and al ternating Turing machines
(ATMs). For example, a fixpoint fornmla with k alternations can be used to
simulate an ATM with k alternations.

R e f e r e n c e s

1. H. R. Andersen. Model checking and boolean graphs. In B. Krieg-Bruckner, edi-
tor, Proceedings of the Fourth European Symposium on Programming, volume 582
of Lecture Notes in Computer Science. Springer-Verlag, February 1992.

350

2. G. V. Bochmann and D. K. Probst, editors. Proceedings of the Fourth Workshop
on Computer-Aided Verification, volume 663 of Lecture Notes in Computer Science.
Springer-Verlag, July 1992.

3. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

4. J. R. Butch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the Fifth Annual Sym-
posium on Logic in Computer Science. IEEE Computer Society Press, June 1990.

5. E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for show-
ing language containment and equivalence between various types of w-automata.
In A. Arnold and N. D. Jones, editors, Proceedings of the 15th Colloquium on Trees
in Algebra and Programming, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, May 1990.

6. E .M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Logic of Programs: Workshop, Yorktown Heights,
NY, May 1981, volume 131 of Lecture Notes in Computer Science. Springer~Verlag,
1981.

7. R. Cleaveland. Tableau-based model checking in the propositional mu-calculus.
Aeta Informatica, 27(8):725-747, 1990.

8. R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal
mu-calculus. In Bochmann and Probst [2].

9. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. Formal Methods in System Design, 2(2):121-
147, April 1993.

10. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Proceedings of the
1989 International Workshop on Automatic Verification Methods for Finite State
Systems, Grenoble, France, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, June 1989.

11. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus. In Proceedings of the First Annual Symposium on Logic in
Computer Science. IEEE Computer Society Press, June 1986.

12. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18:194-211, 1979.

13. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333-354, December 1983.

14. K. G. Larsen. Efficient local correctness checking. In Bochmann and Probst [2].
15. A. Mader. Tableau recycling. In Bochmann and Probst [2].
16. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in

Computer Science. Springer-Verlag, 1980.
17. C. Stirling and D. J. Walker. Local model checking in the modal mu-calculus.

Theoretical Computer Science, 89(1):161-177, October 1991.
18. A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific Jour-

nal of Mathematics, 5:285-309, 1955.
19. G. Winskel. Model checking in the modal v-calculus. In Proceedings of the Six-

teenth International Colloquium on Automata, Languages, and Programming, 1989.

