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Abstract. In symbolic model checking, the behavior of a model to be verified 
is captured by the transition relation of the state space implied by the model. 
Unfortunately, the size of the transition relation grows rapidly with the number of 
states even for small models, rendering them impossible to verify. A recent work 
[5] described a method for partitioning the transition relation, thus reducing the 
overall space requirement. Using this method, actions that require the transition 
relation can be executed by using one partition at a time. This process, however, 
strongly depends on the order in which the partitions are processed during the 
action. 
This paper describes a criterion for ordering partitions which is independent of the 
circuit details. Based on this criterion, a heuristic algorithm for ordering partitions 
is described. The algorithm, which may be used in preparation for each symbolic 
simulation step, has been successfully implemented and has resulted in significant 
speed-ups of symbolic model checking. Specifically, this algorithm has made it 
possible to verify blocks inside an example microprocessor. The run time results 
are given here. 

1 Introduction 

The feasibility of formal verification methods is usually limited by the "state explosion 
problem", where the representation size of the model to be verified grows exponentially 
with the number of model states. Therefore, although formal verification methods have 
existed for many years, they have become practical only when research on reducing the 
representation size became successful. 

The work on Binary Decision Diagrams (BDDs), and in particular Ordered Binary 
Decision Diagrams (OBDDs) done by Bryant [3, 2, 4], has had a big impact on formal 
methods [11, 7]. As a result, formal methods have become practical for moderate size 
models, successful systems such as SMV [11] were developed, and formal verification 
of real circuit designs has become feasible [10, 6]. 

However, even with the use of BDDs, the size of a verifiable model is still limited, 
and research has continued in order to find other methods of reducing the size of model 
representation. In systems that search the state transition graph, the model is represented 
as a BDD of its transition relation. The size of the B DD of the transition relation is usually 
the obstacle to verifying bigger circuit designs. 

Recent research has shown that it is possible to significantly reduce the amount of 
space required by the transition relation, if it is not kept as a whole [5, 7, 12]. The 
space required by the transition relation can be much smaller if it is partitioned into 
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many small relations whose combination produces the transition relation. This partition 
usually increases computation time but allows the verification of bigger circuit designs. 

Specifically, in a recent paper by Burch, Clarke and Long [5], it was shown that the 
transition relation of a model can be partitioned into smaller relations, each handling 
the next value of a single state variable. They showed that it is possible to do the same 
operations as with the transition relation without the same space requirements. Oper- 
ations with the partitioned transition relation can be executed iteratively, one partition 
at a time. This partitioning has been successfully used in the verification of models not 
previously possible [5]. 

The above process, however, strongly depends on the order in which the partitions 
are introduced to the operation. In [5] it was stated that a good order can be derived by 
examining the model to be verified and its semantics. This process, however, requires 
intimate knowledge of the circuit. Furthermore, this process requires manual intervention 
in order to derive and input the order. Thus, in order to fully automate the use of a 
partitioned transition relation, it is necessary to find a method of ordering the partitions 
that is independent of knowledge of the semantics of the circuit. 

This paper describes a criterion for ordering partitions which is independent of the 
model details. Based on this criterion, a heuristic algorithm for ordering partitions is 
described, which can be run prior to symbolic model checking. This algorithm has been 
successfully implemented and has resulted in significant speed ups of symbolic model 
checking. Specifically, this algorithm has made it possible to verify blocks inside an 
example microprocessor. The run time results are given here. 

The rest of the paper is partitioned as follows: Section 2 gives a brief background of 
basic computation operations performed in symbolic model checking. Section 3 reviews 
the work on partitioning done by Burch et al. [5] on partitioning the transition relation. 
Section 4 describes the criterion for ordering and Section 5 presents the algorithm which 
was devised, based on this criterion. Section 6 presents experimental results of the use 
of this work. 

2 State Set Computation in Symbolic Model Checking 

Throughout the paper it is assumed that the model to be verified is a design of a 
synchronous circuit, and the work in the paper is only relevant to this kind of a model. 

The basic operations performed in the process of symbolic model checking are 
computations of the next or previous set of states of a given set of states. Symbolic 
Model Checking [11 ] does not operate on individual states (or paths). Rather, it performs 
its processing on sets of states that satisfy a certain predicate (condition). Finding the 
next set of states of a given set is called a forward simulation step. Similarly, finding 
the previous set of states of a given set is called a backward simulation step. Thus, a 
forward (or backward) simulation step is done from one set of states to another set of 
states. Additionally, the simulation is exhaustive, i.e., all possible states of the next step 
are generated. 

The model checker that this work relates to is SMV [9, 11]. SMV uses OBDDs 
to represent sets of states. Assume that the model to be verified has n binary state 
variables. Let M _C {0, 1} '~ be its state space, and let V = {v l , . . . ,  vn} be its set 
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of state variables. A state q E M of the model is an assignment of binary values to 
vi. Given a set S C_ {0, 1}", we associate with S the boolean function S(V),  where 
S(q) = 1 iffq E S. 

In order to perform a forward (or backward) simulation step, a transition relation of 
the model to be verified must first be constructed. Let V' = {v~, . . . ,  v '}  also denote 
the model set of state variables but designating some possible "next state" of V. The 
transition relation N(V, V') of a model is a boolean function of 2n variables, such that 
N(q, q') = 1 iff q' E M is a possible "next state" of q E M. 

The transition relation captures the model's behavior inside a boolean function. We 
can then efficiently store it as a OBDD. For example, Figure 1 depicts the transition 
relation of a 3 bit counter, bo, b~ and b2 are the current state variables where bo is the 
least significant bit. Respectively, b~, b~ and b~ are the next state variables. 

1 0 0 1 

Fig. 1. The OBDD of a transition relation for a 3 bit counter 

Let S(V) be the characteristic function (or its OBDD) representing a set of states 
S. A forward simulation step to compute the next set S'(V') is done as follows [11]: 

S ' (V ' )  = 3V [S(V) ^ N(V, V')] (1) 

where 3V denotes 3vl 3v2 . . .  3v,,. Similarly a backward simulation step is computed 

S(V) = 3V' [S'(V') A N(V, V')]. (2) 

The methods to compute the operations in 1 and 2 are well known when S(V) and 
N(V, V') are represented as OBDDs (see [2]). Notice that existential quantification 
eliminates the dependency of the result OBDD upon the quantified variables. 
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3 Partitioning the Transition Relation 

The main obstacle for checking bigger designs in SMV is the size of the transition 
relation, Burch, Clarke and Long [5] showed that it is possible to preserve the transition 
relation in parts whose sum of sizes is orders of magnitude smaller than the size of a 
full transition relation. This was based on the observation that the transition relation, is 
in fact, a conjunction of the set of transition relations for each state variable. 

Specifically, the next value of each state variable is a boolean function of the current 
state. 

= / , ( v )  i =  1...,,.  

A transition relation partition, Ni(V, V'), is defined by the following equation: 

Ni(V, V') = v~ r f i ( r ) .  

The full transition relation is a conjunction of all partitions: 

U(V, V') = Ux(V, V') A.  .. A N, (V,  V') 

and a forward simulation step thus becomes 

S'(V')  = 3V [S(V) A NI(V, V') A . . .  A N , (  V, V')]. (3) 

For example, Figure 2 depicts the partitions of the 3 bit counter transition relation from 
Figure 1. 

3 Bit Counter 
Pafllt lonod Tr o~dtion 

/ 
1 0 1 

Fig. 2. OBDD representation of the partitioned ~ansition relation for a 3 bit counter 
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Using 3 we can compute a simulation step. However, care should be taken how the 
operation is performed. We can, for example, begin by conjuncting all the partitions, 
leaving S(V) as last, but then we will eventually create the full transition relation which 
we are trying to avoid. In order to truly exploit partitioning, the simulation step must be 
performed iteratively without creating a full transition relation in the process. 

The technique suggested by Burch et al. [5] is to iteratively conjunct in the partitions, 
and to quantify out variables as soon as further steps do not depend on them: More 
explicitly, the user must choose an ordering p of {1 , . . . ,  n} which determines the order 
in which the Ni(V, V') are conjuncted. 

Let Di be the set of variables Ni(V, V') depend on. Also let 

Ei = Dp(!) - U Dp(k). 
k=i+l 

A simulation step is done iteratively as follows: 

S:(V, V') = 3E: [S(V) A Npo)(V, V')] 
S2(V, V') = 3Z2 [S:(V, Y') A Np(2)(V, V')] 

�9 ( 4 )  

S t ( V  t) = :]E n [Sn_x(V,  V t) A Np(,)(V, V')] 

where the expression 3E1 means that we quantify out all variables in El. Therefore, 
$1 depends only on V -  El,  5'2 depends only on V - E1 - Ez, etc. For example, consider 
the consider the counter in Figure 2. Assume the partitions are ordered (3, 2, 1) (from 
b[ to b~)). In this case D: = {bo, bl, b2}, D2 = {bo, b:}, D3 {bo}, and El = {b2}, 
E2 = {bl }, E3 = {bo}. Thus in the first iteration we quantify out b2, then bl, and finally 
bo. This happens to be a good order. The method in which to evaluate it is given in the 
next section. 

4 T h e  C o n j u n c t i o n  O r d e r i n g  C r i t e r i o n  

The success of using conjunctive partitioning depends on finding a good order (p). 
Without it, the process of 4 will usually be much slower and consume more space than 
using the full transition relation as in 1. The difficulties in choosing an order manually 
were already pointed out in Section 1. 

As mentioned before, in symbolic model checking sets of states are stored as OBDDs, 
and processing is conducted Via OBDD operations. The space and time used in the 
computation depend primarily on the size of the OBDDs generated. Our goal is to 
minimize the maximal OBDD generated in the process of performing 4. However, 
predicting the size of the maximal OBDD is difficult, especially since there are going to 
be many S(V) sets generated during the Verification and it will mean considering each 
one of them. Instead, the following criterion is much simpler to compute. 

Criterion: Minimize the maximal number of state variables that participate in any 
OBDD generated in the process of performing the computation of 4. 

The criterion has the following advantages: 
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I. This criterion does not depend on understanding the semantics of the verified model 
and the role each variable has in the original circuit. It can be derived from examining 
the OBDDs of the transition partitions and deriving the set of variables (Di), each 
partition Ni depends on. 

2. This criterion is independent of any other optimization criteria used in symbolic 
model checking. Specifically, it is independent of variable ordering which is done 
to reduce OBDD sizes. 

3. This criterion is independent of the set of states S(V), that we wish to perform a 
simulation step on. The reasons are explained in the next section. Thus we only 
have to perform ordering once for all forward simulation steps that will be computed 
during verification. The same applies to backward simulation. 

5 The Heuristic Algorithm 

An optimal ordering for the criterion discussed in the previous section may be difficult 
to compute. The ordering problem may very well be intractable. However, it is possible 
to generate a heuristic ordering that will give good results in practice. 

We assume that the set S(V) depends on all n state variables. Our experience has 
shown that when S(V) depends on only a few state variables then the simulation step 
will be fast even without ordering, and that space problems only arise when sets on 
which a simulation step is performed, depend on the full set of variables. 

The heuristic algorithm is based on the following observations: 

1. Each simulation step begins with an OBDD (S(V) or S'(V')) that depends on n 
state variables and generates an OBDD that depends on n state variables (V' or V). 
In the process, an OBDD that depends at most on 2n variables may be generated 
(if the ordering is poor). 

2. Each partition depends on exactly one variable of V'. In particular Ni depends on 
v~. 

3. In a backward simulation step, a varying number of state variables is added in each 
iteration and exactly one variable of V' is quantified out, since each v~ appears in 
exactly one partition. 

4. In a forward simulation step a varying number of variables is quantified out in each 
iteration, and exactly one more variable (the v~ variable) is added. 

The above observations, assist in finding an order for the Ni partitions such that the 
maximal number of variables over all steps is minimized. From Observations 3 and 4 it 
follows that the way the number of state variables change in a forward simulation step is 
different than the way it changes in a backward simulation step. Let us first concentrate 
on a forward simulation step. 

A forward simulation step begins with an OBDD that depends on all the current 
state variables and iteratively the next state variables (v~) are added in, while current 
state variables (vj) are removed. Thus the order should be such that many vj as possible 
will be eliminated in the earlier iterations, before many v~ are added in. 

For example, consider the partition of the counter in Figure 2. The partition of the 
first bit depends only on bo and b~. While the partition of the last bit depends on b~ and 
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the whole set of bo, bl and b2. If the partitions are ordered from b~ to b~ it is not possible 
to quantify out any state variables until the last iteration and an OBDD that depends on 
2n variables is generated. However, the partitions are ordered b~ to b~, it is possible to 
eliminate one state variable at each iteration and the maximal number of state variables 
will be n + 1. This example shows how crucial the ordering can be since the OBDD 
size is in the worst case an exponent of the number of variables. The latter ordering is 
in fact optimal according to the criterion. 

The algorithm we implemented was a greedy algorithm that searched at each step 
for the partition which would result in the maximum number of variables quantified 
out. This partition chosen had the most number of unique variables (not appearing 
in any other partition that was not previously chosen). The minimization is therefore 
locally optimal at each iteration but is not necessarily globally optimal. If more than one 
partition is a possible candidate then a second criterion is applied: From the candidate 
partitions the algorithm looks for the one that shares most variables with other partitions 
that have not been conjuncted yet. The rational for this criterion is that it will set the stage 
for quickly quantifying out many variables in the next steps since all of the partitions 
that depend on them have been conjuncted. 

Algor i thm - Obtaining the order p for a forward s imulat ion step 

1. Initialize remaining partition set to the whole partition set. 
2. Loop 

(a) From the remaining partitions find the partition(s) that has the maximal 
number of unique variables. If there is only one, chose it and go to step (d). 

(b) From the selected partitions in step (a), find the partition(s) that has the 
maximal number of variables occurring in other remaining partitions. If 
there is only one, chose it and go to step (d). 

(c) If there is more than one partition satisfying (b), then choose from those one 
arbitrarily. 

(d) Make the chosen partition the next in the p order. Remove it from the re- 
maining partition set. 

Until the remaining partition set is empty 

A backward step begins with an OBDD that depends on all the next state variables, 
and iteratively the current state variables (vi) are added in, while the next state variables 
(vj are removed. Thus, the order should be such that the number of current state variables 
remains small until many of the v~ are eliminated. 

For example, consider the partition of the counter in Figure 2. The partition of the 
first bit depends only on b0 and b~). While the partition of the last bit depends on b~ and 
the whole set of b0, bl and b2. Ordering the partitions from b~ to b~ will generate, in the 
first iteration, an OBDD that depends on 2n variables. On the other hand, ordering from 
b~) to b~ will generate OBDDs that depend on at most n + 1 variables. 

The ordering algorithm for a backward simulation step is similar to the forward 
one. It too, minimizes locally. A partition is preferred if it does not increase the number 
of variables participating in the conjunction, or if it contains the minimum number of 
variables not introduced before. It also uses a secondary criterion which is the same as 
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for the forward simulation step ordering but for a different reason: From the candidate 
partitions, the algorithm looks for the one that shares most variables with other partitions 
that have not been conjuncted yet. The rational here, is that it will set the stage for 
choosing a partition in the next step, that will introduce only a small number of new 
variables. 

Algor i thm - Obtaining the order p for a backward  s imulat ion step 

1. Initialize remaining partition set to the whole partition set. 
2. Loop 

(a) From remaining partitions find the partition(s) that has the smallest number 
of variables not introduced before. If there Is only one, chose it and go to step 
(d). 

(b) From the selected partitions in step (a), find the partition(s) that has the 
maximal number of variables occurring in other remaining partitions. If  
there is only one, chose it and go to step (d). 

(c) If there is more than one partition satisfying (b), then choose from those one 
arbitrarily. 

(d) Make the chosen partition the next in the p order. Remove It from the re- 
maining partition set. 

Until the remaining partition set is empty 

Notice that the ordering does not depend on S(V) if we assume that S(V) (or 
S'(V')) depends on the full set of n state variables. 

A final remark is that Burch et al. [5] state that it is usually not beneficial to completely 
partition the transition relation. Rather, it is more useful to work with conjunctions of 
a small number of partitions. In this case, the algorithms need to be slightly modified 
to accommodate the fact that the number of v~ in each partition is not exactly one. The 
details are left to the reader. 

6 Results 

The algorithms described in the previous section were implemented as an addition to the 
SMV system running on an IBM RISC System 6000. They are completely automatic 
and no extra human intervention is necessary for their operation. They were tested in 
the verification of various example circuits and have proven to be very beneficial. The 
extra cost of performing ordering is insignificant both in time and space as compared to 
other operations that are performed while running SMV. 

Our experience has shown that partitioning becomes significantly beneficial only 
when the verified model becomes relatively big (above 20 state variables). For small 
models partitioning may unnecessarily result in slower execution times. 

In general, the results show that performing a simulation step with partitions is 
slower. However, computing the transition relation partitioned is much faster and of 
course requires much less space. Therefore, excluding the case where a full transition 
relation cannot fit in memory, the payoff of using partitions should be measured by the 
time it requires to construct the transition relation versus the time to perform a simulation 
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step, and also by the number of times a simulation step is performed. As the number of 
simulation steps increases, the advantage of using partitions becomes smaller. 

The transition relation can be downsized considerably if the reachable state space is 
computed and the transition relation is computed assuming only reachable states (this is 
an SMV option). The process of computing the reachable space is done incrementally 
with computation of a partial transition relation at each increment. This transition 
relation is computed to be confined to the "thus far" discovered reachable set. It is 
used exactly once in a forward simulation step to compute a next set of states for the 
"thus far" discovered reachable set, and then it is discarded. Using partitions is by far a 
superior method for performing this incremental process, since only one simulation step 
is performed for each transition relation construction. The advantage in the transition 
relation construction is many times greater than the loss in one simulation step. 

Therefore, the most effective way to perform model checking, as the results indicate, 
is to find the reachable state space using a partitioned transition relation, construct a 
full transition relation, and then do the model checking and counter examples non- 
partitioned. An exception is the cases where the full transition relation is too big and 
there is no alternative, but to use partitions. 

In summary, partitioning is used simply because it is faster, and for some cases 
also because without partitioning the execution would reach core memory sizes (about 
130MB) where it eventually exits without completing verification. We used partitioning 
in backward steps only when we could not fit a full transition relation in memory. This 
happened only in our bigger examples (around 90 state variables). There were also some 
examples where even with ordering the space required became too large. 

Table 1 contains results of some examples we ran. Six runs were executed for each 
example: Two runs without using partitioning, two runs using partitioning with some 
arbitrary order and two runs where the partitions were ordered. The runs were done twice 
for the following reason: Once without proving any SPECs (temporal propositions [9]) 
- measuring only the time to create the transition relation and another run with some 
SPECs evaluated. The difference in the run times is the time it took to evaluate SPECs. 
The transition relation was built incrementally in each run. 

The second column in the table is the number of model state variables. The next 
there numbers are the CPU times for the runs without SPEC evaluation. The next three 
numbers are the runs with SPEC evaluation. 

The next two numbers are the maximum number of variables that participate in 
any conjunction of a forward step. One number for partitioning without ordering and 
another for partitioning with ordering. Since we used the incremental option of building 
the transition relation, we performed partition construction and ordering many times. 
Thus the two numbers are actually an average of all transition relation constructions. 
The numbers are an increment to the minimal number of n state variables. For example 
if there were 86 variables in the model and the average maximum number is 4 then it 
means that the BDDs that participated in the conjunction depended on at most 90 state 
variables (and not 2 • 86 - 172). Presenting the increment gives a clearer picture of 
how the algorithm performs since an increment of 1 is always the smallest possible 
value we can hope to reach. 

The last two columns describe the maximum number of variables that participate in 
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a backward step. The transition relation for backward steps was constructed only once. 
As with forward chaining the number given is the increment over the number of state 
variables of the model. Here, 0 is the smallest possible we can hope to reach. 

T a b l e  1. Resulm 

Unit Name Num. Transition 
of CPU (sec) 

States Full Unord. Ord. 
Bus Interface 86 oo c~ 1684 
Request Que. 41 85 72 48 
Bus Slave 35 44 20 18 
Bus Master 53 1062 503 345 

Transition+SPEC Max Frwrd 
CPU (sec) (avg.) 

Full Unord. I~Ord" Unord. Ord. 
oo oo ~1902 31 4 
108 465 169 22 10 
45 27 20 25 6 

1091 1148 436 40 5 

Max Bckwrd 

Unord.I Ord. 
- N / A  - 

2 8  18 
15 2 
28 0 

The first example in table 1 is a bus interface unit of  a microprocessor. This unit 
accepts one request for a read or write from the cpu and executes it by initiating and 
controlling bus cycles. In addition the unit has many variants. It can pipeline two 
requests. It can also execute a burst cache line read or write, etc. The data and address 
information are reduced [1] before the process of verification takes place. This example 
has 86 state variables and it was not possible to verify it without partitioning or without 
ordering. The maximum number of variables for backward steps is not given since we 
could not produce it for the unordered mode. 

The second example is a unit that interfaces the BIU with the cache. It queues cache 
requests from the cache and sends them one at a time to the BIU. It can send the requests 
out of order according to certain control priorities. Again the data and addresses are 
reduced. This is a typical example of a circuit that can be verified both ways. Notice that 
although we can generate the transition relation twice as fast when using partitions, the 
SPECs can be checked much faster if the full transition relation is used. 

The third example is a bus slave. The unit verified transfers data to and from 
an internal FIFO. This is a small example. It runs quickly in all modes but ordered 
partitions are the fastest. Again we can see that checking SPECs with partitioning is 
slower. Notice that the maximum number in backward steps was 0. This may happen 
if one of the state variables remains constant throughout the reachable state space. The 
partition for this variable will be ordered first in backward steps since it reduces the 
number of variables that the conjunction depends on without adding new variables. 
Such a partition is ordered last in forward steps (in fact, an optimization to the algorithm 
which we do is to treat such constant partitions separately). 

The fourth example is a bus master. It is a medium sized example. The transition 
relation is built significantly faster if the partitions are ordered. Notice how dramatic the 
difference is in computation of SPECs. If we use partitions without ordering we lose 
all the advantage we gained by building the transition relation partitioned. Notice that, 
again the fastest way to compute SPECs is with the full transition relation. 

We can see from the results that running in ordered partitions mode is always faster 
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for creating transition relations. In small examples the difference is insignificant, but in 
the big examples it is not possible to verify the model in the other modes. Verifying 
SPECs is faster with a full transition relation (if possible). Ordering for backward steps 
gave a 2.5 times speedup in one case and a 6.5 times speedup in another. This depends 
on the number and kind of SPECs we are verifying. 

We have also noticed that checking a model that has bugs tends to consume much 
more memory and CPU time. Once the bugs are fixed the CPU time required for 
verification decreases dramatically. Our intuitive explanation for this is that incorrect 
models diverge into areas in the state space that the designer never intended. Thus, the 
state space tends to grow much larger when bugs are present in the model. 

7 Conclusion 

Partitioning the transition relation is a method which allows us to increase the size of 
verified circuits when doing model checking. The success of this method depends on 
ordering the partitions. 

This paper has shown that ordering can be automated by minimization of the number 
of state variables as an ordering criterion. An algorithm was devised and implemented to 
order partitions according to this criterion and a few circuits were tested to demonstrate 
its advantage. 

The results have shown that ordered partitions have a clear advantage over working 
without ordered partitions. In some cases, the improvement resulted in twice as fast 
execution times, and in others it was not possible to verify without ordering. In all cases 
that we have encountered, it was always faster to use ordered partitions mode. 

Partitioned backward simulation steps were only useful in the cases where a full 
transition relation could not fit in memory. For those cases ordering has resulted in 
significant speedups (see Table 1). 

Finally, partitioning does not solve the state explosion problem, but rather postpones 
it. Formal verification is still far from being able to swallow, in one gulp, the designs 
that are out in the real world. Once the storage space of the transition relation is reduced 
then other OBDD bottlenecks appear. A recent paper by Hu and Dill has dealt with 
reducing the OBDD size of invariants [8]. 

8 A c k n o w l e d g e m e n t s  

We would like to thank, Michael Yoeli, Raanan Gewirtzman and Yaron Wolfsthal for 
the time they spent in reviewing the paper and the invaluable suggestions they had in 
improving it. 

References 

1. Ilan Beer, Michael Yoeli, Shoham Ben-David, and Daniel Geist. Methodology and System 
for Practical Formal Verification of Reactive Hardware. Accepted to CAV 94, 1994. 



310 

2. Karl. S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient Implentation of a BDD 
Package. In 27th ACM/IEEE Design Automation Conference, pages 40--45. ACM/IEEE, 
1990. 

3. Randal E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans- 
actions on Computers, C-35, 1986. 

4. Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. 
ACM Computing Surveys, 24:298-318, September 1992. 

5. Jerry R. Burch, Edmund M. Clarke, and David E. Long. Symbolic Model Checking with 
Partitioned Transition Relations. In International Conference on Very Large Scale Integra- 
tion, Edinburg, Scotland, August 1991, IF1P. 

6. Edmund M. Clarke, Orna Gmmberg, Hiromi Hiraishi, Somesh Jha, David L. Long, Ken- 
neth L. McMillan, and Linda A. Ness. Verification of the Futurebus+ Cache Coherence 
Protocol. In Proceedings of the 11th International Conference on Computer Hardware 
Description Languages, pages 15-30, 1993. 

7. Olivier Coudert, Jean C. Madre, and Christian Berthet. Verifying Temporal Properties of 
Sequential Machines Without Building their State Diagrams. In R. Kurshan and E. M. 
Clarke, editors, Workshop on Computer Aided Verification, D IMA C S, pages 75-84. American 
Mathematical Society, Providence, RI, 1990. 

8. Alan J. Hu and David L. Dill. Efficient Verification with BDDs using Implicitly Conjoined 
Invariants. In Proceedings of the Conference on Computer Aided Verification (CAV 93), 
1993. 

9. K. L. McMillan. The SMV System DRAFT. Carnegie Mellon University, Pittsburgh, PA, 
1992. 

10. K. L. McMiUan and J. Schwalbe. Formal verification of the Encore Gigamax cache con- 
sistency protocol. In Proceedings of the 1991 International Symposium on Shared Memory 
Multiprocessors, April 1991. 

11. Kenneth L. McMillan. Symbolc Model Checking. PhD thesis, Carnegie Mellon University, 
May 1992. 

12. H. J.Touati, H. Savoj, B. Lin, R. K. Brayton, andA. Sangiovarmi-Vincentelli. Implicit State 
Enumeration of Finite State Machines usin BDD's. In IEEE International Conference on 
CAD, pages 130-133, 1990. 


