
Efficient Model Checking by Automated Ordering of
Transition Relation Partitions

Daniel Geist and Ilan Beer

IBM Science and Technology, Haifa, Israel

Abstract. In symbolic model checking, the behavior of a model to be verified
is captured by the transition relation of the state space implied by the model.
Unfortunately, the size of the transition relation grows rapidly with the number of
states even for small models, rendering them impossible to verify. A recent work
[5] described a method for partitioning the transition relation, thus reducing the
overall space requirement. Using this method, actions that require the transition
relation can be executed by using one partition at a time. This process, however,
strongly depends on the order in which the partitions are processed during the
action.
This paper describes a criterion for ordering partitions which is independent of the
circuit details. Based on this criterion, a heuristic algorithm for ordering partitions
is described. The algorithm, which may be used in preparation for each symbolic
simulation step, has been successfully implemented and has resulted in significant
speed-ups of symbolic model checking. Specifically, this algorithm has made it
possible to verify blocks inside an example microprocessor. The run time results
are given here.

1 Introduction

The feasibility of formal verification methods is usually limited by the "state explosion
problem", where the representation size of the model to be verified grows exponentially
with the number of model states. Therefore, although formal verification methods have
existed for many years, they have become practical only when research on reducing the
representation size became successful.

The work on Binary Decision Diagrams (BDDs), and in particular Ordered Binary
Decision Diagrams (OBDDs) done by Bryant [3, 2, 4], has had a big impact on formal
methods [11, 7]. As a result, formal methods have become practical for moderate size
models, successful systems such as SMV [11] were developed, and formal verification
of real circuit designs has become feasible [10, 6].

However, even with the use of BDDs, the size of a verifiable model is still limited,
and research has continued in order to find other methods of reducing the size of model
representation. In systems that search the state transition graph, the model is represented
as a BDD of its transition relation. The size of the B DD of the transition relation is usually
the obstacle to verifying bigger circuit designs.

Recent research has shown that it is possible to significantly reduce the amount of
space required by the transition relation, if it is not kept as a whole [5, 7, 12]. The
space required by the transition relation can be much smaller if it is partitioned into

300

many small relations whose combination produces the transition relation. This partition
usually increases computation time but allows the verification of bigger circuit designs.

Specifically, in a recent paper by Burch, Clarke and Long [5], it was shown that the
transition relation of a model can be partitioned into smaller relations, each handling
the next value of a single state variable. They showed that it is possible to do the same
operations as with the transition relation without the same space requirements. Oper-
ations with the partitioned transition relation can be executed iteratively, one partition
at a time. This partitioning has been successfully used in the verification of models not
previously possible [5].

The above process, however, strongly depends on the order in which the partitions
are introduced to the operation. In [5] it was stated that a good order can be derived by
examining the model to be verified and its semantics. This process, however, requires
intimate knowledge of the circuit. Furthermore, this process requires manual intervention
in order to derive and input the order. Thus, in order to fully automate the use of a
partitioned transition relation, it is necessary to find a method of ordering the partitions
that is independent of knowledge of the semantics of the circuit.

This paper describes a criterion for ordering partitions which is independent of the
model details. Based on this criterion, a heuristic algorithm for ordering partitions is
described, which can be run prior to symbolic model checking. This algorithm has been
successfully implemented and has resulted in significant speed ups of symbolic model
checking. Specifically, this algorithm has made it possible to verify blocks inside an
example microprocessor. The run time results are given here.

The rest of the paper is partitioned as follows: Section 2 gives a brief background of
basic computation operations performed in symbolic model checking. Section 3 reviews
the work on partitioning done by Burch et al. [5] on partitioning the transition relation.
Section 4 describes the criterion for ordering and Section 5 presents the algorithm which
was devised, based on this criterion. Section 6 presents experimental results of the use
of this work.

2 State Set Computation in Symbolic Model Checking

Throughout the paper it is assumed that the model to be verified is a design of a
synchronous circuit, and the work in the paper is only relevant to this kind of a model.

The basic operations performed in the process of symbolic model checking are
computations of the next or previous set of states of a given set of states. Symbolic
Model Checking [11] does not operate on individual states (or paths). Rather, it performs
its processing on sets of states that satisfy a certain predicate (condition). Finding the
next set of states of a given set is called a forward simulation step. Similarly, finding
the previous set of states of a given set is called a backward simulation step. Thus, a
forward (or backward) simulation step is done from one set of states to another set of
states. Additionally, the simulation is exhaustive, i.e., all possible states of the next step
are generated.

The model checker that this work relates to is SMV [9, 11]. SMV uses OBDDs
to represent sets of states. Assume that the model to be verified has n binary state
variables. Let M _C {0, 1} '~ be its state space, and let V = {v l , . . . , vn} be its set

301

of state variables. A state q E M of the model is an assignment of binary values to
vi. Given a set S C_ {0, 1}", we associate with S the boolean function S(V), where
S(q) = 1 iffq E S.

In order to perform a forward (or backward) simulation step, a transition relation of
the model to be verified must first be constructed. Let V' = {v~, . . . , v '} also denote
the model set of state variables but designating some possible "next state" of V. The
transition relation N(V, V') of a model is a boolean function of 2n variables, such that
N(q, q') = 1 iff q' E M is a possible "next state" of q E M.

The transition relation captures the model's behavior inside a boolean function. We
can then efficiently store it as a OBDD. For example, Figure 1 depicts the transition
relation of a 3 bit counter, bo, b~ and b2 are the current state variables where bo is the
least significant bit. Respectively, b~, b~ and b~ are the next state variables.

1 0 0 1

Fig. 1. The OBDD of a transition relation for a 3 bit counter

Let S(V) be the characteristic function (or its OBDD) representing a set of states
S. A forward simulation step to compute the next set S'(V') is done as follows [11]:

S ' (V ') = 3V [S(V) ^ N(V, V')] (1)

where 3V denotes 3vl 3v2 . . . 3v,,. Similarly a backward simulation step is computed

S(V) = 3V' [S'(V') A N(V, V')]. (2)

The methods to compute the operations in 1 and 2 are well known when S(V) and
N(V, V') are represented as OBDDs (see [2]). Notice that existential quantification
eliminates the dependency of the result OBDD upon the quantified variables.

302

3 Partitioning the Transition Relation

The main obstacle for checking bigger designs in SMV is the size of the transition
relation, Burch, Clarke and Long [5] showed that it is possible to preserve the transition
relation in parts whose sum of sizes is orders of magnitude smaller than the size of a
full transition relation. This was based on the observation that the transition relation, is
in fact, a conjunction of the set of transition relations for each state variable.

Specifically, the next value of each state variable is a boolean function of the current
state.

= / , (v) i = 1...,,.

A transition relation partition, Ni(V, V'), is defined by the following equation:

Ni(V, V') = v~ r f i (r) .

The full transition relation is a conjunction of all partitions:

U(V, V') = Ux(V, V') A. .. A N, (V, V')

and a forward simulation step thus becomes

S'(V') = 3V [S(V) A NI(V, V') A . . . A N , (V, V')]. (3)

For example, Figure 2 depicts the partitions of the 3 bit counter transition relation from
Figure 1.

3 Bit Counter
Pafllt lonod Tr o~dtion

/
1 0 1

Fig. 2. OBDD representation of the partitioned ~ansition relation for a 3 bit counter

303

Using 3 we can compute a simulation step. However, care should be taken how the
operation is performed. We can, for example, begin by conjuncting all the partitions,
leaving S(V) as last, but then we will eventually create the full transition relation which
we are trying to avoid. In order to truly exploit partitioning, the simulation step must be
performed iteratively without creating a full transition relation in the process.

The technique suggested by Burch et al. [5] is to iteratively conjunct in the partitions,
and to quantify out variables as soon as further steps do not depend on them: More
explicitly, the user must choose an ordering p of {1 , . . . , n} which determines the order
in which the Ni(V, V') are conjuncted.

Let Di be the set of variables Ni(V, V') depend on. Also let

Ei = Dp(!) - U Dp(k).
k=i+l

A simulation step is done iteratively as follows:

S:(V, V') = 3E: [S(V) A Npo)(V, V')]
S2(V, V') = 3Z2 [S:(V, Y') A Np(2)(V, V')]

�9 (4)

S t (V t) = :]E n [Sn_x(V, V t) A Np(,)(V, V')]

where the expression 3E1 means that we quantify out all variables in El. Therefore,
$1 depends only on V - El, 5'2 depends only on V - E1 - Ez, etc. For example, consider
the consider the counter in Figure 2. Assume the partitions are ordered (3, 2, 1) (from
b[to b~)). In this case D: = {bo, bl, b2}, D2 = {bo, b:}, D3 {bo}, and El = {b2},
E2 = {bl }, E3 = {bo}. Thus in the first iteration we quantify out b2, then bl, and finally
bo. This happens to be a good order. The method in which to evaluate it is given in the
next section.

4 T h e C o n j u n c t i o n O r d e r i n g C r i t e r i o n

The success of using conjunctive partitioning depends on finding a good order (p).
Without it, the process of 4 will usually be much slower and consume more space than
using the full transition relation as in 1. The difficulties in choosing an order manually
were already pointed out in Section 1.

As mentioned before, in symbolic model checking sets of states are stored as OBDDs,
and processing is conducted Via OBDD operations. The space and time used in the
computation depend primarily on the size of the OBDDs generated. Our goal is to
minimize the maximal OBDD generated in the process of performing 4. However,
predicting the size of the maximal OBDD is difficult, especially since there are going to
be many S(V) sets generated during the Verification and it will mean considering each
one of them. Instead, the following criterion is much simpler to compute.

Criterion: Minimize the maximal number of state variables that participate in any
OBDD generated in the process of performing the computation of 4.

The criterion has the following advantages:

304

I. This criterion does not depend on understanding the semantics of the verified model
and the role each variable has in the original circuit. It can be derived from examining
the OBDDs of the transition partitions and deriving the set of variables (Di), each
partition Ni depends on.

2. This criterion is independent of any other optimization criteria used in symbolic
model checking. Specifically, it is independent of variable ordering which is done
to reduce OBDD sizes.

3. This criterion is independent of the set of states S(V), that we wish to perform a
simulation step on. The reasons are explained in the next section. Thus we only
have to perform ordering once for all forward simulation steps that will be computed
during verification. The same applies to backward simulation.

5 The Heuristic Algorithm

An optimal ordering for the criterion discussed in the previous section may be difficult
to compute. The ordering problem may very well be intractable. However, it is possible
to generate a heuristic ordering that will give good results in practice.

We assume that the set S(V) depends on all n state variables. Our experience has
shown that when S(V) depends on only a few state variables then the simulation step
will be fast even without ordering, and that space problems only arise when sets on
which a simulation step is performed, depend on the full set of variables.

The heuristic algorithm is based on the following observations:

1. Each simulation step begins with an OBDD (S(V) or S'(V')) that depends on n
state variables and generates an OBDD that depends on n state variables (V' or V).
In the process, an OBDD that depends at most on 2n variables may be generated
(if the ordering is poor).

2. Each partition depends on exactly one variable of V'. In particular Ni depends on
v~.

3. In a backward simulation step, a varying number of state variables is added in each
iteration and exactly one variable of V' is quantified out, since each v~ appears in
exactly one partition.

4. In a forward simulation step a varying number of variables is quantified out in each
iteration, and exactly one more variable (the v~ variable) is added.

The above observations, assist in finding an order for the Ni partitions such that the
maximal number of variables over all steps is minimized. From Observations 3 and 4 it
follows that the way the number of state variables change in a forward simulation step is
different than the way it changes in a backward simulation step. Let us first concentrate
on a forward simulation step.

A forward simulation step begins with an OBDD that depends on all the current
state variables and iteratively the next state variables (v~) are added in, while current
state variables (vj) are removed. Thus the order should be such that many vj as possible
will be eliminated in the earlier iterations, before many v~ are added in.

For example, consider the partition of the counter in Figure 2. The partition of the
first bit depends only on bo and b~. While the partition of the last bit depends on b~ and

305

the whole set of bo, bl and b2. If the partitions are ordered from b~ to b~ it is not possible
to quantify out any state variables until the last iteration and an OBDD that depends on
2n variables is generated. However, the partitions are ordered b~ to b~, it is possible to
eliminate one state variable at each iteration and the maximal number of state variables
will be n + 1. This example shows how crucial the ordering can be since the OBDD
size is in the worst case an exponent of the number of variables. The latter ordering is
in fact optimal according to the criterion.

The algorithm we implemented was a greedy algorithm that searched at each step
for the partition which would result in the maximum number of variables quantified
out. This partition chosen had the most number of unique variables (not appearing
in any other partition that was not previously chosen). The minimization is therefore
locally optimal at each iteration but is not necessarily globally optimal. If more than one
partition is a possible candidate then a second criterion is applied: From the candidate
partitions the algorithm looks for the one that shares most variables with other partitions
that have not been conjuncted yet. The rational for this criterion is that it will set the stage
for quickly quantifying out many variables in the next steps since all of the partitions
that depend on them have been conjuncted.

Algor i thm - Obtaining the order p for a forward s imulat ion step

1. Initialize remaining partition set to the whole partition set.
2. Loop

(a) From the remaining partitions find the partition(s) that has the maximal
number of unique variables. If there is only one, chose it and go to step (d).

(b) From the selected partitions in step (a), find the partition(s) that has the
maximal number of variables occurring in other remaining partitions. If
there is only one, chose it and go to step (d).

(c) If there is more than one partition satisfying (b), then choose from those one
arbitrarily.

(d) Make the chosen partition the next in the p order. Remove it from the re-
maining partition set.

Until the remaining partition set is empty

A backward step begins with an OBDD that depends on all the next state variables,
and iteratively the current state variables (vi) are added in, while the next state variables
(vj are removed. Thus, the order should be such that the number of current state variables
remains small until many of the v~ are eliminated.

For example, consider the partition of the counter in Figure 2. The partition of the
first bit depends only on b0 and b~). While the partition of the last bit depends on b~ and
the whole set of b0, bl and b2. Ordering the partitions from b~ to b~ will generate, in the
first iteration, an OBDD that depends on 2n variables. On the other hand, ordering from
b~) to b~ will generate OBDDs that depend on at most n + 1 variables.

The ordering algorithm for a backward simulation step is similar to the forward
one. It too, minimizes locally. A partition is preferred if it does not increase the number
of variables participating in the conjunction, or if it contains the minimum number of
variables not introduced before. It also uses a secondary criterion which is the same as

306

for the forward simulation step ordering but for a different reason: From the candidate
partitions, the algorithm looks for the one that shares most variables with other partitions
that have not been conjuncted yet. The rational here, is that it will set the stage for
choosing a partition in the next step, that will introduce only a small number of new
variables.

Algor i thm - Obtaining the order p for a backward s imulat ion step

1. Initialize remaining partition set to the whole partition set.
2. Loop

(a) From remaining partitions find the partition(s) that has the smallest number
of variables not introduced before. If there Is only one, chose it and go to step
(d).

(b) From the selected partitions in step (a), find the partition(s) that has the
maximal number of variables occurring in other remaining partitions. If
there is only one, chose it and go to step (d).

(c) If there is more than one partition satisfying (b), then choose from those one
arbitrarily.

(d) Make the chosen partition the next in the p order. Remove It from the re-
maining partition set.

Until the remaining partition set is empty

Notice that the ordering does not depend on S(V) if we assume that S(V) (or
S'(V')) depends on the full set of n state variables.

A final remark is that Burch et al. [5] state that it is usually not beneficial to completely
partition the transition relation. Rather, it is more useful to work with conjunctions of
a small number of partitions. In this case, the algorithms need to be slightly modified
to accommodate the fact that the number of v~ in each partition is not exactly one. The
details are left to the reader.

6 Results

The algorithms described in the previous section were implemented as an addition to the
SMV system running on an IBM RISC System 6000. They are completely automatic
and no extra human intervention is necessary for their operation. They were tested in
the verification of various example circuits and have proven to be very beneficial. The
extra cost of performing ordering is insignificant both in time and space as compared to
other operations that are performed while running SMV.

Our experience has shown that partitioning becomes significantly beneficial only
when the verified model becomes relatively big (above 20 state variables). For small
models partitioning may unnecessarily result in slower execution times.

In general, the results show that performing a simulation step with partitions is
slower. However, computing the transition relation partitioned is much faster and of
course requires much less space. Therefore, excluding the case where a full transition
relation cannot fit in memory, the payoff of using partitions should be measured by the
time it requires to construct the transition relation versus the time to perform a simulation

307

step, and also by the number of times a simulation step is performed. As the number of
simulation steps increases, the advantage of using partitions becomes smaller.

The transition relation can be downsized considerably if the reachable state space is
computed and the transition relation is computed assuming only reachable states (this is
an SMV option). The process of computing the reachable space is done incrementally
with computation of a partial transition relation at each increment. This transition
relation is computed to be confined to the "thus far" discovered reachable set. It is
used exactly once in a forward simulation step to compute a next set of states for the
"thus far" discovered reachable set, and then it is discarded. Using partitions is by far a
superior method for performing this incremental process, since only one simulation step
is performed for each transition relation construction. The advantage in the transition
relation construction is many times greater than the loss in one simulation step.

Therefore, the most effective way to perform model checking, as the results indicate,
is to find the reachable state space using a partitioned transition relation, construct a
full transition relation, and then do the model checking and counter examples non-
partitioned. An exception is the cases where the full transition relation is too big and
there is no alternative, but to use partitions.

In summary, partitioning is used simply because it is faster, and for some cases
also because without partitioning the execution would reach core memory sizes (about
130MB) where it eventually exits without completing verification. We used partitioning
in backward steps only when we could not fit a full transition relation in memory. This
happened only in our bigger examples (around 90 state variables). There were also some
examples where even with ordering the space required became too large.

Table 1 contains results of some examples we ran. Six runs were executed for each
example: Two runs without using partitioning, two runs using partitioning with some
arbitrary order and two runs where the partitions were ordered. The runs were done twice
for the following reason: Once without proving any SPECs (temporal propositions [9])
- measuring only the time to create the transition relation and another run with some
SPECs evaluated. The difference in the run times is the time it took to evaluate SPECs.
The transition relation was built incrementally in each run.

The second column in the table is the number of model state variables. The next
there numbers are the CPU times for the runs without SPEC evaluation. The next three
numbers are the runs with SPEC evaluation.

The next two numbers are the maximum number of variables that participate in
any conjunction of a forward step. One number for partitioning without ordering and
another for partitioning with ordering. Since we used the incremental option of building
the transition relation, we performed partition construction and ordering many times.
Thus the two numbers are actually an average of all transition relation constructions.
The numbers are an increment to the minimal number of n state variables. For example
if there were 86 variables in the model and the average maximum number is 4 then it
means that the BDDs that participated in the conjunction depended on at most 90 state
variables (and not 2 • 86 - 172). Presenting the increment gives a clearer picture of
how the algorithm performs since an increment of 1 is always the smallest possible
value we can hope to reach.

The last two columns describe the maximum number of variables that participate in

308

a backward step. The transition relation for backward steps was constructed only once.
As with forward chaining the number given is the increment over the number of state
variables of the model. Here, 0 is the smallest possible we can hope to reach.

T a b l e 1. Resulm

Unit Name Num. Transition
of CPU (sec)

States Full Unord. Ord.
Bus Interface 86 oo c~ 1684
Request Que. 41 85 72 48
Bus Slave 35 44 20 18
Bus Master 53 1062 503 345

Transition+SPEC Max Frwrd
CPU (sec) (avg.)

Full Unord. I~Ord" Unord. Ord.
oo oo ~1902 31 4
108 465 169 22 10
45 27 20 25 6

1091 1148 436 40 5

Max Bckwrd

Unord.I Ord.
- N / A -

2 8 18
15 2
28 0

The first example in table 1 is a bus interface unit of a microprocessor. This unit
accepts one request for a read or write from the cpu and executes it by initiating and
controlling bus cycles. In addition the unit has many variants. It can pipeline two
requests. It can also execute a burst cache line read or write, etc. The data and address
information are reduced [1] before the process of verification takes place. This example
has 86 state variables and it was not possible to verify it without partitioning or without
ordering. The maximum number of variables for backward steps is not given since we
could not produce it for the unordered mode.

The second example is a unit that interfaces the BIU with the cache. It queues cache
requests from the cache and sends them one at a time to the BIU. It can send the requests
out of order according to certain control priorities. Again the data and addresses are
reduced. This is a typical example of a circuit that can be verified both ways. Notice that
although we can generate the transition relation twice as fast when using partitions, the
SPECs can be checked much faster if the full transition relation is used.

The third example is a bus slave. The unit verified transfers data to and from
an internal FIFO. This is a small example. It runs quickly in all modes but ordered
partitions are the fastest. Again we can see that checking SPECs with partitioning is
slower. Notice that the maximum number in backward steps was 0. This may happen
if one of the state variables remains constant throughout the reachable state space. The
partition for this variable will be ordered first in backward steps since it reduces the
number of variables that the conjunction depends on without adding new variables.
Such a partition is ordered last in forward steps (in fact, an optimization to the algorithm
which we do is to treat such constant partitions separately).

The fourth example is a bus master. It is a medium sized example. The transition
relation is built significantly faster if the partitions are ordered. Notice how dramatic the
difference is in computation of SPECs. If we use partitions without ordering we lose
all the advantage we gained by building the transition relation partitioned. Notice that,
again the fastest way to compute SPECs is with the full transition relation.

We can see from the results that running in ordered partitions mode is always faster

309

for creating transition relations. In small examples the difference is insignificant, but in
the big examples it is not possible to verify the model in the other modes. Verifying
SPECs is faster with a full transition relation (if possible). Ordering for backward steps
gave a 2.5 times speedup in one case and a 6.5 times speedup in another. This depends
on the number and kind of SPECs we are verifying.

We have also noticed that checking a model that has bugs tends to consume much
more memory and CPU time. Once the bugs are fixed the CPU time required for
verification decreases dramatically. Our intuitive explanation for this is that incorrect
models diverge into areas in the state space that the designer never intended. Thus, the
state space tends to grow much larger when bugs are present in the model.

7 Conclusion

Partitioning the transition relation is a method which allows us to increase the size of
verified circuits when doing model checking. The success of this method depends on
ordering the partitions.

This paper has shown that ordering can be automated by minimization of the number
of state variables as an ordering criterion. An algorithm was devised and implemented to
order partitions according to this criterion and a few circuits were tested to demonstrate
its advantage.

The results have shown that ordered partitions have a clear advantage over working
without ordered partitions. In some cases, the improvement resulted in twice as fast
execution times, and in others it was not possible to verify without ordering. In all cases
that we have encountered, it was always faster to use ordered partitions mode.

Partitioned backward simulation steps were only useful in the cases where a full
transition relation could not fit in memory. For those cases ordering has resulted in
significant speedups (see Table 1).

Finally, partitioning does not solve the state explosion problem, but rather postpones
it. Formal verification is still far from being able to swallow, in one gulp, the designs
that are out in the real world. Once the storage space of the transition relation is reduced
then other OBDD bottlenecks appear. A recent paper by Hu and Dill has dealt with
reducing the OBDD size of invariants [8].

8 A c k n o w l e d g e m e n t s

We would like to thank, Michael Yoeli, Raanan Gewirtzman and Yaron Wolfsthal for
the time they spent in reviewing the paper and the invaluable suggestions they had in
improving it.

References

1. Ilan Beer, Michael Yoeli, Shoham Ben-David, and Daniel Geist. Methodology and System
for Practical Formal Verification of Reactive Hardware. Accepted to CAV 94, 1994.

310

2. Karl. S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient Implentation of a BDD
Package. In 27th ACM/IEEE Design Automation Conference, pages 40--45. ACM/IEEE,
1990.

3. Randal E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C-35, 1986.

4. Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams.
ACM Computing Surveys, 24:298-318, September 1992.

5. Jerry R. Burch, Edmund M. Clarke, and David E. Long. Symbolic Model Checking with
Partitioned Transition Relations. In International Conference on Very Large Scale Integra-
tion, Edinburg, Scotland, August 1991, IF1P.

6. Edmund M. Clarke, Orna Gmmberg, Hiromi Hiraishi, Somesh Jha, David L. Long, Ken-
neth L. McMillan, and Linda A. Ness. Verification of the Futurebus+ Cache Coherence
Protocol. In Proceedings of the 11th International Conference on Computer Hardware
Description Languages, pages 15-30, 1993.

7. Olivier Coudert, Jean C. Madre, and Christian Berthet. Verifying Temporal Properties of
Sequential Machines Without Building their State Diagrams. In R. Kurshan and E. M.
Clarke, editors, Workshop on Computer Aided Verification, D IMA C S, pages 75-84. American
Mathematical Society, Providence, RI, 1990.

8. Alan J. Hu and David L. Dill. Efficient Verification with BDDs using Implicitly Conjoined
Invariants. In Proceedings of the Conference on Computer Aided Verification (CAV 93),
1993.

9. K. L. McMillan. The SMV System DRAFT. Carnegie Mellon University, Pittsburgh, PA,
1992.

10. K. L. McMiUan and J. Schwalbe. Formal verification of the Encore Gigamax cache con-
sistency protocol. In Proceedings of the 1991 International Symposium on Shared Memory
Multiprocessors, April 1991.

11. Kenneth L. McMillan. Symbolc Model Checking. PhD thesis, Carnegie Mellon University,
May 1992.

12. H. J.Touati, H. Savoj, B. Lin, R. K. Brayton, andA. Sangiovarmi-Vincentelli. Implicit State
Enumeration of Finite State Machines usin BDD's. In IEEE International Conference on
CAD, pages 130-133, 1990.

