
Ver i f i ca t ion of a d i s t r i b u t e d Cache M e m o r y by us ing
abs trac t ions *

Susanne Graf

VERIMAG **, Rue Lavoisier, F-38330 Monbonnot, e-maih graf@imag.fr

Abstract. The purpose of this paper is to verify a distributed cache memory system by
using the following general verification method: verify the properties characterizing a complex
system on some small finite abstraction of it, obtained as a composition of abstractions of
each component of the system. For a large class of systems including infinite state systems,
the abstractions of the components can be obtained by replacing all operators on concrete
domains by abstract operators on some abstract domain. This holds also for the abstraction
of the control part of the system as we consider a kind of guarded command programs where
all the control is expressed in terms of operations on explicit control variables.

1 I n t r o d u c t i o n

The purpose of this paper is to show the practical applicability of the verification method
proposed in [LGS+92, GL93a, GL93b, CGL91, Lon93] for infinite state systems. This
verification method, based on the principle of abstract interpretation [CC77], proposes to
verify a program defining some complex system, where the specification must be given
in the form of a set of VCTL* [SG90] formulas, as follows: define an appropriate abstract
program, obtained compositionally from the the given program, and verify the required
properties on it. Our way of computing abstract programs is very similar to that proposed
in [CGL91, Lon93], but our Concept of compositionality is different from that proposed
in [Lon93] or in [Pnu85]. We construct a global abstraction of the system by composing
abstractions of its components, whereas the other method consists in deducing properties
of the composed system from properties of its components. Both approaches are useful,
but in the example we treat in this paper, the global properties cannot be deduced easily
from properties of the components. An abstraction of each component is obtained applying
the principle of abstract interpretation by means of a relation Q relating the domain of
its variables and the domain of the set of some abstract variables.

In [Loi94] is described a tool allowing to verify finite state systems in a fully automatic
way by using this method. Here, we show that the same method is also tractable in practice
for infinite state systems where a complete automatization is not possible. In fact, i f - -
depending on the formula one wants to verify - - for each component Pi one can guess an
appropriate abstraction relation Qi verification becomes often a relatively simple task as

- the corresponding finite state abstract program is reasonably easy to obtain,
- the verification of the properties on the obtained abstract program can be done fully

automatically.

In Section 2, we recall all the ingredients we need for our verification method:
-- a simple program formalism similar to that used e. g., in [Pnu86],

* This work was partially supported by ESPRIT Basic Research Action "REACT"
** Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble, Univer-

sit6e J. Fourier and Verilog SA associated with IMAG

208

- a method to compute abstract programs, consisting in defining for each operator on
the concrete domains a corresponding abstract operator ; this is the only step in the
proposed method that cannot be fully automated.

- the temporal logic CTL* and its fragments, used for the description of properties,
- the preservation results allowing to deduce the validity of a property on the concrete

program from its validity on the abstract program and
- the compositionality results allowing to compute an abstract program by composing

abstractions of its components.
We illustrate all the definitions and results on a small buffer example. In Section 3, we
verify - - by applying in a systematic way our method - - a distributed cache memory
system defined in [ABM93]. In [DGJ+93] several (complex) correctness proofs are given
for this system based on different methods. Using our method, the verification of this
system is almost as simple as the verification of the tiny buffer, as we need almost the
the same abstract operations.

2 A v e r i f i c a t i o n m e t h o d u s i n g a b s t r a c t i o n s

2.1 A p r o g r a m desc r i p t i on fo r ma l i sm

We adopt a simple program formalism which is not meant as a real programming language
but which is sufficient to illustrate our method. A complex system is a parallel composition
of basic programs P of the following form

Variables : xl : T1, ..., xn : Tn

Transitions: (tl)... actionl(xl, . . . ,zn, x~,...,x',,)

(tp) actionp(Zl,.. . ,x,, z ' l , . . . ,z ')

Initial States : init(zl , z ,)

where xi are variables of type ~ and Lv = {~1,...,t~} is the set of program labels.
Each actionl is an expression with variables in the set of program variables and a set of
primed variables which is a copy of the set of state variables; as in [Pnu86, Lam91], actioni
represents a transition relation on the domain of the program variables by interpreting the

! !
valuations o f X p = (xl, ..., z ,) as the state before, and the valuations of X i, = (x 1, ..., zn)
as the state after the transition. We denote the set of valuations of Xp by Val(Xp).

Semaalics : Program P defines in an obvious manner a transition system Sp = (Qe, Rp)
where

- Qp = Val(Xp) is the set of states,
- Rp C_ Qp • Qp is a transition relation defined by Rp = {(q, q') I 3 i . actioni(q, q')}.

The predicate init defines the set of initial states. It is used in the formulas specifying
the program: properties are in general of the form in i t=~ where r expresses the property
one wants to verify.

We do not distinguish variables representing inputs as they need not be treated in a
particular manner. However, we annotate in the programs the variables which are meant
as inputs as this makes programs easier to read.

Labels are used to name "events" or "actions". If 6 is a label and (v, v') a pair of
valuations such that actioni(v, v') is true, then the transition from state v to state v' is

209

an event g. If e is the valuation of the "input" variables extracted from v, then we call
this event also ti(e). Events are used for the expression of properties.

Example I an infinite lossy buffer. The following program represents an unbounded buffer
taking as input elements e of some data domain clam. The event push(e) enters e (if it
has never been entered yet) into the buffer or arbitrarily "loses" it, and pop(e) takes e
out of the buffer if it is its first element.

Variables : e : elem (Input)
E : set of elem (already occurred events push(e))
B : bu f f e r of elem

Transi t ions: (push(e)) allowed(e, E, E') A (add(B, e, S ') V u n e h (S))
(pop(e)) f i r s t (B , e) A tail(B, e, B ') A unch(E)

Initial States : empty(B)

E contains the elements e such that push(e) has already occurred, and a l lowed(e , E, E') xs
necessarily false if e E E. All other predicates have the intuitive meanings: a d d (B , e, B ~)
holds if B ~ is obtained by adding element e at the end of the buffer B; t a i l (B , e, B ~)
holds if B t is obtained by eliminating e from B if e is its first element (f l rs t (B, e) is
true); e m p t y (B) is true if B is the empty buffer, unch(X) , where X = z l , . . .xniS a
tuple of program variables, represents the transition relation which lets all variables in X
unchanged, i. e., unch(X) = Ai(x~ = xi).

We use predicates of the form add(B, e, B') i n s t e a d o f B ' = ADD(B, e) where A D D
is a function, as abstract operations are in general nondeterministic. This is also the way
of representing operations which is proposed, e. g. in [CGL91, Lam91].

Composed programs : In [GL93b] we obtain our results for more general parallel com-
position operators, but here we need only asynchronous composition. If P1 and /'2 are
programs defined on a tuple of state variables X1, respectively X2, then P1 I~ P2 is the
parallel composition of Pt and P~ defining the transition system S=(VaI (Xx U X2), R)
where

R = Rp1 A unch(X2 - X1) V Rp~ A unch(X1 - X2)
Each transition of P1 NI P2 is either a transition of P1 which leaves all variables which are
declared in P2 but not in P1 unchanged or the other way round.

2.2 A b s t r a c t p r o g r a m s

As proposed in [CGL91, LGS+92], given a program Prog and a predicate # on the vari-
ables of Prog and a tuple of abstract variables X A A A = (X 1 , ...Xm) , representing a relation
between the concrete and the abstract domain (a function in [CGL91]), then any program
Prog A defined on X A, such that for each action action of Prog there exists an action
action A of Prog A with the same label, such that

3 X 3 X ' . ~ (X , X A) A g (X ' , X A') A ac t ion(X,X ') ~ ae t ionA(XA,X A') (1)
and
3 x . ~(x, xA)^ in i t (x) ~ initA(x ~)

is an abstraction or more precisely a ~-abstraction of Prog.

When verifying composed programs, it is interesting to compute an abstract program
compositionally, i. e., by composing abstract component programs. From a more general
result given in [GL93a], we obtain the following result which is sufficient for the verification
of the distributed cache memory system in the following section.

210

Proposition1. Let P1 and P2 be programs and Qi total functions from the domain of
the variables of Pi into some abstract domains such that P1 f~ ~2 is total and P (, P2 a are
el'abstractions of Pi, then pA I~ P2 A is a (~1 N #2)-abstraction of P1 I~ P~.

Computation of abstract programs in practice : The idea of abstract interpretation [CC77]
is to replace every function on the concrete domain used in the program by a corresponding
abstract function on the abstract domain, and then to analyze the so obtained simpler
abstract program instead of the concrete one. Consider the program Prog a obtained
by replacing every basic predicate op(X, X ') on the concrete variables by a predicate
op a (X a , X a') on the abstract variables is a e-abstraction of P rog if, instead of (1), for
every basic operation

3 X 3 X ' . # (x , x a) A e (X t , X A t) A o p (X , X t) ~ o p a (x A , x a') (2)

holds. If the expressions in Prog are negation free (as in our buffer), then Prog a is in
fact a ~-abstraction of Prog. The definition of abstract predicates op A is the only part of
our verification method which cannot be fully automatized. But as we will see, we only
need a restricted number of such abstract operations in order to verify a whole class of
programs. For example, in the domain of protocol verification, the used data structures
are "messages" on which no operations are carried out, "memories" or "registers" in which
data can be stored, integers which are mostly used as counters and "buffers" with the
usual operations add, tail, first, . . , as in our examples. In [CGL91] a similar method is
proposed.

Example 2 An abstract lossy buffer. To illustrate the idea, consider again the buffer of
Example 1. In order to show that the buffer has the property of "order preservation"
(see Example 3), it is sufficient to show that the order of any pair of elements (el , e2) E
elem x elem is preserved. All the information we need about the content of the buffer B
is, if and in which order, it contains the elements el and e2. Furthermore, as each element
is supposed to be put into the buffer at most once, we need not distinguish amongst the
valuations of B containing el more than once. Similarly, for the input variable e we only
need to distinguish if its value is e l , e2 or any other value. Concerning the value of E
determinating which events push(e) are still allowed, we only need to know if the event
push(el), respectively push(e2) is still possible or not. This leads us naturally to the
abstract domain defined by the abstract variables,

eA : elem~A = {0, 1,2}
EJ, E~ : Bool
BA : buf fer~ = {e, el , e2, e l * e2, e~ * e l , •

and the following abstraction relation #2 defining the correspondence between the concrete
and the abstract variables

p2(e, E, B, Ca, (E l , E,~), BA) 2 2 = LOdem(e, ea) A ~o, et..ol_etem(E,(E.~,E~)) A
~ulSer(B, BA)

where for e : elem and eA : elem~

~ ,o~(e , ea) = ((ca = O) -- (e r { e l , e~})) ^
((ea = 1) ---- (e = e l)) ^
((CA = 2) -- (e = e2))

for E : set of elem and EJ, EA 2 : Bool, Ej expresses that ei has not occurred yet:

211

~=,a_of_e,er~(E, El, E]) =((E l = 3E' . allowed(el, E, E') A
((E~ = 3E' . allowed(e2, E, E')

and for B : buffer of elern and BA : buffer~

BA) =
((BA = e) = empty(B]{e,,e2})) A ((BA = el * e2) --= (BHe ,,e2} = el �9 e2)) A
((BA = el) ~ (BHel,e2} = e,)) A ((BA = e2 *e l) = (B]{e,,e2} = e2 *e l)) A
((BA = e2) =-- (Bi{e~,e2} = e~)) A ((BA = .L) in all other cases))

where Bl{e,,e~} is the buffer B restricted to the dements e l and e2. In order to construct
an abstract program, we have to define abstract predicates for all the basic predicates
used in the concrete buffer program, such as allowed, add, tail, unch, etc.

In the case that every abstract variable is related to a single concrete variable, the ab-
stract predicate associated with unch(v) is obviously unch(VA) for any abstract variable
vA related to v. The following abstract predicates satisfy the condition (2).

allowedi(eA, (El, E~), (E l ' , E~')) = (E l ' = E l) A (E~' = EA 2) A (CA = O) V
(z] A EI') A (G -- G')) ^ = i) V

(El =_ El') A (E~ A -,El'))) A (CA = 2)

add~A(BA, CA, B~) = (BA --- BIA) A (CA = O) V
(BA E {e, e2}) A (B~ = el �9 BA) V (B.4 ~' {e, e2}) A (BIA = ..L) A (eA = 1) V
(BA E {e, el}) A (B~! = eB �9 BA) V (BA r {e, e l}) A (B E ~- _L))A (eA = 2)

tail~A(BA, eA, B'A) =(BA = B'A) A (eA "- O) V
((BA ~ {el,el .e=}) ~ (BA = BtA *el)) A (eA = i) V
((BA e {e=,e2 *el}) =:> (BA = B~ *e2)) A (eA = 2)

e. ptu (BA) ---- = r

first~(BA, eA) =(eA = 0) V
(BA ~ {e , , e l * e~, _L}) A (eA = 1) V
(BA E {e2,-L}) A (CA = 2)

tail is an example of a predicate defining a function on the concrete domain, but which
is nondeterministic on the given abstract domain; tail2A (i , 1, B'A) necessarily evaluates to
true for any value of B~ (the value of the buffer in the next state).

Using these abstract predicates, the definition of a program representing a ~-abstraction
of the buffer program becomes trivial. We just replace variables by corresponding abstract
variables and every occurrence of a predicate by corresponding abstract one. The result-
ing abstract program looks almost as the concrete program but defines a very smM1 finite
transition system.

The useful abstractions are often obtained by using this kind of abstract domains. Here,
we gave in detail the more complicated abstraction of a buffer particularizing two different
data elements. But often, it is sufficient to particularize in the same way a single data
element. The corresponding abstraction relations ~ern, e~a-of_e~em, gluffer and abstract
predicates allowed 1, addS, tail~A,.., can be defined by simplifying the above definitions
in an obvious manner. For the verification of the cache memory we use also existential
abstractions of buffers. The corresponding abstract predicates adde~(eA), taileX(ea),...
necessarily evaluate to true if eA is an allowed value of the existentially abstracted buffer.

212

2.3 Tempora l Logic

It remains to recall the definition of temporal logic. Here we restrict ourselves to subsets
of CTL* [EH83] for the expression of properties. The preservation results in [LGS + 92] are
given for subsets of the more powerful branching time/~-calculus augmented by past time
modalities.

Defini t ion2. CTL* is the set of state formulas given by the following definition.
1. Let 7) be a set of atomic (a) state respectively (b) path formulas.
2. If ~b and r are (a) state respectively (b) path formulas then r A r r V r and -~r are

(a) state respectively (b) path formulas.
3. If r is a path formula then Ar and Er are state formulas.
4. If r and r are (a) state or (b) path formulas then Xr r162 and r162 are path

formulas.

As usual, we also use the abbreviations Fr denoting trueH~b and Gr denoting r
H is a strong and YV a weak "until" operator, a sequence satisfies r162 if r holds up

to some point in which r holds, and r162 expresses the same property and moreover the
obligation that such a point satisfying r exists. That means that U and W are duals by
inversing the arguments: r 1 6 2 = -~(-,r162

VCTL* [SG90] is the subset of CTL* obtained by allowing negations only on atomic
formulas and restricting Rule 3 by allowing only the universal path quantifier A.

The semantics of CTL* is defined over Kripke structures of the form M = (S, 27) where
S= (Q, R) is a transition system and 27 is a interpretation function mapping elements of
7) into sets of states of S.

Defini t ion3. A path in a transition system S is an infinite sequence 7r = qoqz.., such
that for every i E A f �9 R(qi, qi+l). We denote by 7rn the nth state of path lr and by a -n
the sub-path of 7r starting in its nth state.

Defini t ion4. Let be M = (S,27) a Kripke structure, q E Q and 7r a path of M. Then
the satisfaction (~M) of CTL* formulas on M is defined inductively as follows.

1. Let be p E P. Then q ~M P iff q e Z(p) and 7r ~M P iff 71" 0 E ~(p).
2. Let r and r be (a) state respectively (b) path formulas. Then,

(a) q ~m -~r ~=M r ~M C A r ~M C a n d q ~M r ~M C V r
q ~M r ~M r

(b) analogous by replacing q by 7r
3. Let r be a path formula. Then,

q ~M A(~ iff for every path r starting in q, 7r ~M r and
q ~M E(~ if[there exists a path r starting in q such that 7r ~M r

4. Let r and r be (a) state respectively (b) path formulas. Then,
(a) 71" ~M Xr if[71" 1 ~M r

r ~M r162 if[there exists n E A/" such that r . ~M r and Vk < n . 7rk ~M r
rr ~M r 1 6 2 iff for all n e Af. ((Vk < n . 7rk ~M - 'r implies rn ~M r

(b) the same definition obtained by replacing in (a) all states ri by subsequences r i.

We say that M ~ r iff q ~M r for all states of M.

From the more general results given in [LGS+92] we obtain the following proposition
concerning preservation of properties of VCTL*.

213

P r o p o s i t i o n 5 P r e s e r v a t i o n of VCTL*. Let Prog be a program, ~ a total relation from
the domain of Prog into some abstract domain, and ProgA a e-abstraction of Prog. Then,
for any r EVCTL*, P the set of atomic formulas occurring in r and I an interpretation
function mapping 79 into sets of states of Sproa, we have

Im[e -1] o 1mini o Z (p) C_ I (p) (*) for all p E 7 9 occurring positive in r
implies
(SProg~,Im[~]oZ)~r ~ (SP,oa,Z)~r

where Im[e] is the image function ore. Condition (*) is called consistency ore with Z(p).

This proposition expresses that, if r E VCTL* holds on a ~-abstraction of the program
Prog by translating the interpretations of all atomic propositions occurring in the formula
by Ira(e) into predicates on the abstract domain, and if all these predicates are consistent
with ~, then we can deduce that r holds on Prog. Consistency is not needed for predicates
that occur only negated in r as Im[e-1](Im[e](Z(p))) C I(p). We conclude that, i f r holds
on ProgA using the abstract interpretation of -~p (Im[e](I(p))), then a stronger property
than r using the concrete interpretation of-~p (I(p)) holds on Prog. In particular, for
the verification of a formula of the form init==~r init need not to be consistent with ~.

Example 3. The property of order preservation can be expressed by the following set of
formulas on the set of "observable" atomic predicates

79 = { init, enable(push(e)), after(push(e)), enable(pop(e)), after(pop(e)), ...},
where enable(l) is interpreted as the set of states in which event l is possible, and after(l)
those in which t has just occurred - - after(t) becomes expressible by adding an explicit
boolean program variable after_s which is true exactly after any event l .

Ve',e E elem : init 0 A([-~after(push(e))Wafter(push(e'))]
[-~enable(pop(e))Wafter(pop(e'))])

These formulas can be transformed into VCTL" formulas in which only the predicates
after(push(e)) and after(pop(e')) occur non negated. In order to verify that the concrete
buffer program has the property of order preservation, it is sufficient to verify the formula
obtained by instanciating el for e and e2 for g on the abstract program defined in
Example 2. In fact, as el and e2 represent an arbitrary pair of data values, this verification
of a single representative of the set of formulas is sufficient. It is easy to obtain the
consistency of predicates of the form after(g) by not abstracting the variable after_s In
the sequel we suppose, without mentioning it explicitly, that for every predicate after(g)
occurring in the considered formula such a variable is defined.

3 V e r i f i c a t i o n o f a d i s t r i b u t e d c a c h e m e m o r y

3.1 C o n c r e t e a n d a b s t r a c t spec i f i ca t ion o f a s e q u e n t i a l c o n s i s t e n t m e m o r y

Now we use this verification method for the verification of a particular distributed cache
memory which has been presented in [ABM93] and verified using different methods in
[JFR93, DGJ+93]. The cache memory is a system of the form P1 III/92... III P- where each
process Pi is defined as in Figure 3.1. the predicates add, tail, first and empty are as in
the Example 1 and update is defined by
update(m, (a, d), m') _= (m'[a] -- d) A (Vb: address. (b ~ a ~ m'[b] = m[b])).

214

Variables : Input : a : address, d : datum
local : ADi : set of address x datumi, (data already written)

C I : array[address] of datum LI {e} (local cache memory)
Outi : bu f fer of (address x datumi)

shared: M : array[address] of datum (global memory)
Ink : bu f fer of (address x (datum kJ {e})), k : index

Transitions :
(write~(a, d))

(readi(a, d))

(mwi(a,d))

(cui(a,d))

Init :

allowed((a, d), ADi, AD~) A add(Outi, (a, d), Out~) A
unch(Ci , M, In1, ...Inn)
(Ci[a] = d) A empty(Outi) A empty(Ini ladd~,,, •
unch(Ci , Outi, ADi, M, In1, ...Inn)
f irs t (Outi , (a, d)) ^ tail(Outi , (a, d), Out~) ^ update(M, (a, d), M') A
Vk : index, add(Ink, (a, d), In~) A unch(Ci , ADi)
f i rs t (Ini , (a, d)) A tail(Ini, (a, d), In~) A update(Ci, (a, d), C~) A
unch(Outi, ADi, M, {Inj, j ~ i})

(Vb: address. (Ci[b] = M[b] = e)) A empty(Outi) A empty(Ini)

Fig. 1. A distributed cache memory system

The event writei(a, d) does not have any immediate effect neither on the local nor on the
central memory, but pushes the pair (a, d) into the local buffer Outi ; from there it is by
the internal event memory_writei(a, d) written into the central memory and dispatched
into all buffers Ini; the internal event cashupdatei(a,d) takes the first element (a,d)
out of Ini and writes datum d into address a of the local cache memory Ci. The event
readi(a,d) is possible only if Ci[a] = d and no local write event is pending, i. e., if
empty(Outl) A empty(Inilaadre,,• The only difference between our system and
the one used in [JPR93] concerns the fact that each pair (a ,d) can be the parameter
of at most one event write. The way we obtain this, is by defining the type datum by
datum = Ui datumi, such that each process "signs" the data it writes, and by using in
each process a variable ADi of type set of address • daturni which stores the information
if the event writei(a, d) has already occurred or not, as in the example of the buffer.

The abstract specification that the system must verify is sequential consistency [Lam79],
which originally is given in the form of an abstract program. In order to apply our method,
we give the abstract specification in terms of a set of properties. Under the assumption
that every pair of the form (a, d) can occur at most once as the parameter of some write
event, sequential consistency can be characterized by the following set of properties ex-
pressed in terms of observable events:

Safety properties characterizing a sequential consistent memory:

(sl) V(a, d), (a t, d ~) : address x datum, j, i : index such that (a, d) r (a', d')
init =~ A([-~after(writej(a,d))143after(writej(a',s]

[-,enable(readi(a, d)) W (enable(readi (a', d'))V
AG(-~enable(readi(a', d'))))])

(S2) V(a, d) : address x datum, i : index

215

init :=~ A(~enable(readi(a,d))WVj:inde~: af ter(wri te j(a,d)))

(S3) V(a, d): address • datum, i: indez
init ~ AG(af ter(wri te i (a ,d)) =:,

A((enable(readi(a)) ~ enabte(readi(a,d)))WAG(-enable(readda, d)))))

(S 4) V(a, d), (a, d') : address • datum, il, i2 : index such that d :~ d'
init ~ A([-,a/ter(readi,(a,d))Wayter(readi,(a,d'))] =r

[-~enabte(read,~(a, d)) WAG(-~enabte(read,~(a, d')))])

(S1) expresses that in every execution sequence the subsequence of readl events respects
the order of writej events: whenever (a', d') is written before (a, d) by Pj, then readi(a, d)
is not enabled before either readi(a', d') has already been enabled or is never enabled
again (the second clause is necessary because readi(s s may never be enabled in some
computation sequences). ($2) expresses that every readJa, d) event is preceded (caused)
by some writej(a, d) event. This is slightly stronger than sequential consistency which
may allow writej(a, d) to occur after readi(a, d). ($3) expresses the fact that readi and
writei events od the same process Pi must be consistent with a central memory, i. e., after
a writei(a, d), Pi can read nothing different from d in address a until readi(a, d) is never
enabled again. ($4) expresses analogously to (S1) the fact that read events concerning the
same memory cell must be consistent in all processes. All these formulas can be translated
into VCTL* formulas.

3.2 Ver i f i cat ion o f t h e cache m e m o r y

We verify each parameterized set of formulas on a different abstract program. Our aim
is not to find the smallest abstract program that can be used for the verification of each
formula, but we want to apply, whenever possible, the already predefined abstractions in
order to show that the application of the method is simple and can be done systematically.
The cache memory uses the data types and operations of the buffer of Example 1; it
uses also a data type "memory"= array[address] of datum. As for buffers, we use three
different types of abstractions of a variable X of type memory depending on the formula
to be verified: we may

- completely forget about it (we do this always for the central memory M)
- keep information about a single pair (a,d) by taking an abstract boolean variable XA

and an abstraction relation i r y (X ,XA) = XA -- (X[a] = d).
- keep information about two pairs (a i , d i) and (a2, d2) by taking two abstract boolean

variables X~ and X~ and an analogous abstraction relation Qrnernory2 (X, XA,1 XA).2
Suppose the type elem to be address • datum and take an abstract variable eA of type
elemiA = {0, 1} already used in the buffer example and the abstraction relation

Q~lem((a,d),eA)=(eA =O) A((a ,d) # (a,d)) V (CA = l) A ((a ,d) - - (a ,d)) ,
exactly as in Example 2; then, it is easy to define an abstract predicate updateiA by

updateiA(XA,eA,A"A)=(eA = 0) A(X~t =r XA) V (cA = 1) A X ~

expressing that if (a, d) ~ (a,d), X[a] --- d is only possible in the next state if already
in the present state X[a] = d, and if (a, d) = (a,d), then in the next state X[a] --- d,
independently of the value of X[a] in the present state.

Using these definitions (and analogous ones with superscripts ez and 2) and those
already given in Example 1, the definition of appropriate abstract finite state programs
of the cache memory becomes simple.

216

Abstract programs for property ($3): Each instance of property ($3) involves only events
of a single process Pi. However, even if we succeed to verify it on Pi we can not deduce
their satisfaction on the composed system. In fact, if we replace all processes different
from Pi by the process "Chaos", ($3) does not hold any more on the composed abstract
program. We use here another approach to compositionality: by Proposition 1, we can
abstract each Pj individually and build a global model by composing these small abstract
programs. We choose the abstraction relation for all Pj with j ~ i in such a way that
shared variables are abstracted in the same way as in Pi and we forget about all local
variables; this has as effect to avoid adding certain changes of shared variables which are
not allowed by the concrete programs Pj.

Intuitively, ($3) expresses that as soon as writei(a,d) has occurred, only d may be read
by Pi on address a until d has been put into Ci and afterwards been replaced by some
other value; that means that we are interested in observing what happens on the buffers
Outi and Ini and the cache Ci. The actions (mwj) should not disturb the behaviour of
Pi observed by ($3) because they cannot push (a,d) into Ini. This leads naturally to the
following abstraction relation for Pi:

#~a((a, d), ADi, Ci, Outi, M, In1, ...Inn, ca, Ea, CiA, Outla, Inia) =
~Item ((a, d), eA) A #~et_ol_elem(ADi, EA)
e~ y(ci, C~a) ^ Q~s~r(Out~, Out,a)
e~ufle, (Ini, Inia)

A
A

and for Pj, j ~ i we use the same abstraction as in ~i for the shared variables and forget
about all local variables

o]S((a, d), ADi, Ci, Outl, M, Inl , Inn, ca, Inia) =
1 ~,.~((a, d), cA) ^ ~.Z.r(1",, Inia)

from which we obtain by replacing concrete by corresponding abstract predicates as de-
fined before, the following abstract program p/A for index i,

Variables : abstract input : ea : Bool
local : EA, CIA : Bool

Outla : bu f f erla
shared : lniA:bufferla

Transitions :
(writei (ea))
(read,(ea))

(mw,(ea))

(c~,~(ea))

Init :

allowedla (eA, EA, EA') ^ addla (OutiA, ca, OUt~A) A uneh(CiA, IniA) A
(eA =~CiA) A emptyla (Outia) A emptyXa (IniA) A
uneh(Ea , Cia, OutiA, IniA)
firstla(OutiA, CA) A tailla(OutiA, CA, Out'a) A
add~a(Inia, ca, InCa) A uneh(CiA, EA)
firstlA(lnia, ca) ^ tailla(IniA, ca, In~a) A updatela(CiA, CA, C~A) ^
uneh(EA, OutiA)
-,Cia A empty~t(OutiA) A emptYla(Inia)

and pA for all indices different from i,

217

Variables : abstract input : eA : Bool
shared: Inia : bu f f er~

Transi t ions: (writej(ea), readj(ea), cuj(eA))
(~wAea))

!nit : empty~(Inin)

uneh(Inia)
firsteA*(eA) A addlA(Inia, ea, InCA)

m which we have already eliminated all abstract operations that are always true, such as
addeA x, updateeA~,.... Notice that the event (mwj(true)) is never executed as firsteAX(~rue) =
false because the buffer Outj cannot contain the pair (a,d) as d E datumi. Notice also
that the size of the composed system P r ~... | pA ~... ~ p ~ is the same, whatever the
number of composed programs is, as for all j :~ i, the programs pA are identical and
P ~ P and P represent the same transition system.

Abstract programs for property ($2): Property ($2) expresses the fact that any event
read/ (a ,d) is preceded by an event writej(a,d) for some j . Thus, we are interested in
observing the buffers Outj and Inl and the cache Ci. This leads to similar abstraction
relations as for the verification of ($3), except that we do not need the unicity of the write
events and can forget about ADI but we need abstract buffers OutjA for all j . Thus, all
abstraction relations gf2 are the same:

Q~2(A, D, ADj, Cj , Outj, M, In1, ..., Inn, cA, OUtjA, I n iA) :

a~ze,n((A, D), eA) A ~,11~r(Outj, OutiA) A
e~ulfer (Ini, Inia)

For this abstraction, the size of the obtained global abstrazt transition system does depend
on the number n of processes as we have defined n abstract variables Outja. In order to
obtain an abstract transition system such that its size is independent of n, we can define
- - instead of the set of local abstract buffers Outja - - a single global abstract buffer Outa
defined by a relation of the form

Lol,glob [

j :in dex

which obliges however to redefine the abstract operations addA, tailA,...

Abstract programs for properties ($1) and ($4): For the verification of (S1) we need to
observe events with two different parameters (al , d l) and (a2, d2), such that d l , d2 6
daturnj; thus, we use the abstraction relations with superscript ~ as for the verification
of order preservation in the preceding section. We define abstract variables E~, E~t (in
pA) in order to guarantee uniqueness of the observed writej events, OutjA (in pA),
Cil , Ci2 (in pA) and a global variable IniA and use the predefined abstraction relations
and corresponding abstract operations.

The resulting global abstract transition system is again independent of the number of
process as all the abstract programs with indices different from i, j are identical. We need
only to consider the case where the indices i and the j are different, as the property for
i = j is implied by ($3).

Property ($4) expresses that the sequences of read events of any two processes P/I
and Pi2 on the same address a are compatible, also when they have been written by two
different processes Pjx and PJ2. Thus, for its verification we observe two pairs (a l , d l) and

218

(a2,d2) such that al = as = a and dl E datumjl and ds E datumj2. Consequently, we
need abstract variables E~, E~ (in pjA respectively pjA), Outj,A, Outj2A (in pA respec-
tively pA), Ci,1, Ci,s (in pA), Ci~l, Ci22 (in pA) and global variables InilA and Ini~A.
Here, we have to consider different cases, those where the indices il and j~ (respectively
is and is) coincide and those where not.

Now, the verification of the distributed cache memory is almost terminated. The ac-
tual construction of global abstract transition systems and the verification of the formulas
on them could been done automatically by our tool [GL93b, Loi94]. By Proposition 5, it
remains to verify the consistency of the atomic propositions with the used abstraction re-
lations. Properties (S2) and ($4) pose no problem, as in the corresponding VCTL* formulas
only predicates of the form after(g) occur non negated. For ($3), in principle the con-
sistency of enable(readi(a,d)) is required; however, it is used only within the predicate
(enable(readi(a))~enable(readi(a,d)) which is equivalent to Ci[a] = d and consistent
with the abstraction relation used for ($3). For (S1), it is slightly more complicated
to show that the consistency of enable(readi2(a2,ds)) with the considered abstraction
relation e is not needed. The predicate obtained by translating enable(readi2(as,d~))
forth and back by Q is Ci2[as] = ds A ... The property obtained from (S1) by replacing
enable(readi2(a2, d~)) by this weaker predicate, implies nevertheless (S1) for our partic-
ular system, because enable(read~2(al)~((Ci[a2] = d2)~enable(readi2(a2,d2))) holds.
Notice also, that this additional condition is in fact necessary in order to obtain sequen-
tial consistency of the given system.

4 D i s c u s s i o n

What have we achieved? A first impression could be that our verification of a cache
memory looks much like any other handwritten proof. However, it is quite different:
starting right from the beginning, it is in fact rather lengthy to define all the abstraction
relations and corresPonding abstract predicates, even in order to verify some trivial buffer
program. However, having done this once, in order to verify the much more complex cache
memory system, we only need a few more definitions obtained a long the same line as the
already given ones. In fact, there are many examples of systems, for which we have to
verify exactly the same type of properties and which use analogous data structures and
operations on them, such that the same abstract domains and operations can be used.
Thus, we could build a "library" of useful abstract domains and operations in which new
definitions can be added when necessary. A similar approach has been followed by P. and
R. Cousot and D. Long concerning "standard" abstractions of integers and operations on
them.

The fact that for the verification of an individual property a large part of the system
can be abstracted existentially is often necessary in order to obtain tractable global mod-
els. If the system is too large or the property is "too global" one can often get results by
decomposing the property, as this has been proposed, e. g. in [Kur89].

It can also been observed that our verification method is incremental: it is obviously
incremental with respect to changes in the abstract specification, like every method based
on the fact that abstract specifications are expressed by a set of properties. But also certain
changes of the program allow to use the same or at least very similar abstraction relations
and abstract operations. That means that exactly the time consuming and difficult part
of the verification process need not to be redone. In the case that the obtained abstract

219

program is not identical to the previous one, the reconstruction of a model and the
verification of the properties on it by means of some model checker poses no problem.

An important point for the use of our method in practice, is the formalisms used for the
description of programs. We either need a formalism allowing to express nondeterminism
or we have to use more complex abstract domains allowing to represent certain sets of
classes of concrete values. For example, LOTOS is a specification formalism for which
this method can be applied: all the data types and operations on them are specified
separately from the control part by means of some "abstract data type" language. This
means that, by coding whatever should be abstracted in the data part, to construct an
abstract program consists simply in replacing the original data type definitions by simpler
ones, whereas the control part of the program remains completely unchanged.

Acknowledgemen t s " I would like to thank the referees who pointed out that my initial
characterization of sequential consistency was not sufficient.

References

[ABM93]

[cc77]

[CGL91]
[DGJ+93]

[EH83]

[GL93a]

[GL93b]

[JPR93]

[Kur89]

[Lam79]

[Lam91]

[LGS+921

[Loi94]

[Lon93]

[Pnu85]

[Pnu86]

[SG90]

Y. Afek, G. Brown, and M. Meritt. Lazy caching. ACM Transactions on Programming
Languages and Systems, 15(1), 1993.
P. and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, 1977.
E. Clarke, O. Grumberg, D. Long. Model checking and abstraction. In POPL, 1991.
J. Davis, R. Gerth, W. Jannsen, B. Jonsson, S. Katz, G. Lowe, A. Pnueli, and

C. Rump. Verifying sequentially consistent memory. Preliminary report, 1993.
E. A. Emerson and J. Y: Halpern. 'Sometimes' and 'not never' revisited: On branching
versus linear time. In POPL, 1983. also in Journal of ACM, 33:151-178.
S. Graf and C. Loiseaux. Program verification using compositional abstraction. In
TAPSOFT 93, joint conference CAAP/FASE. LNCS 668, Springer Verlag, April 1993.
S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In
CAV, Heraklion Crete. LNCS 697, Springer Verlag, 1993.
B. Jonsson, A. Pnueli, and C. Rump. Proving refinement using transduction. Techni-
ca] report, Weizmann Institute, 1993.
R.P. Kurshan. Analysis of discrete event coordination. In REX Workshop on Stepwise
Refinement of Distributed Systems, Mook. LNCS 430, Springer Verlag, 1989.
L. Lamport. How to make a multiprocessor that correctly executes multiprocess pro-
grams. 1EEE Transactions on Computers, C-28:690-691, 1979.
L. Lamport. The temporal logic of actions. Technical Report 79, DEC Systems Re-
search Center, 1991.
C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. To appear in Formal Methods
in System Design, also in CAV'92.
C. Loiseaux. V~rification symbolique de programmes r~actifs k l'aide d'abstractions.
Thesis, Verimag, Grenoble, January 1994.
D. E. Long. Model checking, abstraction and compositional verification. Phd thesis,
Carnegie Mellon University, July 1993.
A. Pnueli. In transition from global to modular temporal reasoning about programs.
In Logics and Models for Concurrent Systems. NATO, ASI Series F, Vol.13, 1985.
A. Pnueli. Specification and Development of reactive Systems. In Conference IFIP,
Dublin. North-Holland, 1986.
G. Shurek and O. Grumberg. The modular framework of computer-aided verification:
motivation, solutions and evaluation criteria. In CAV, LI'~CS 531, 1990.

