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Abstract. Translating linear temporal logic formulas to automata has proven to 
be an effective approach for implementing linear-time model-checking, and for 
obtaining many extensions and improvements to this verification method. On the 
other hand, for branching temporal logic, automata-theoretic techniques have long 
been thought to inlroduce an exponential penalty, making them essentially use- 
less for model-checking. Recently, Bernholtz and Grumberg have shown that this 
exponential penalty can be avoided, though they did not match the linear complex- 
ity of non-automata-theoretic algorithms. In this paper we show that alternating 
tree automata are the key to a comprehensive automata-theoretic framework for 
branching temporal logics. Not only, as was shown by Muller et al., can they be 
used to obtain optimal decision procedures, but, as we show here, they also make it 
possible to derive optimal model-checking algorithms. Moreover, the simple com- 
binatorial structure that emerges from the automata-theoretic approach opens up 
new possibilities for the implementation of branching-time model checking, and 
has enabled us to derive improved space complexity bounds for this long-standing 
problem. 

1 Introduction 

Temporal logics, which are modal logics geared towards the description of  the temporal 
ordering of  events, have been adopted as a powerful tool for specifying and verifying 
concurrent programs [Pnu81]. One of  the most significant developments in this area is 
the discovery of  algorithmic methods for verifying temporal logic properties of  finite- 
state programs [CES86, QS81]. This derives its significance both from the fact that many 
synchronization and communication protocols can be modeled as finite-state programs, 
as well as from the great ease of  use of  fully algorithmic methods. Finite-state programs 
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can be modeled by transition systems where each state has a bounded description, and 
hence can be characterized by a fixed number of Boolean atomic propositions. This 
means that a finite-state program can be viewed as a finite propositional Kripke structure 
and that its properties can be specified using propositional temporal logic. Thus, to 
verify the correctness of the program with respect to a desired behavior, one only has 
to check that the program, modeled as a finite Kripke structure, satisfies (is a model of) 
the propositional temporal logic formula that specifies that behavior~ Hence the name 
model checking for the verification methods derived from this viewpoint. A survey can 
be found in [Wo189]. 

We distinguish between two types of temporal logics: linear and branching [Lam80]. 
In linear temporal logics, each moment in time has a unique possible future, while in 
branching temporal logics, each moment in time may split into several possible futures. 
For linear temporal logics, a close and fruitful connection with the theory of automata 
on infinite words has been developed [VW86a, VW94]. The basic idea is to associate 
with each linear temporal logic formula a finite automaton on infinite words that accepts 
exactly all the computations that satisfy the formula. This enables the reduction of linear 
temporal logic problems, such as satisfiability and model-checking, to known automata- 
theoretic problems, yielding clean and asymptotically optimal algorithms. Furthermore, 
these reductions are very helpful for implementing temporal-logic based verification 
methods, and are the key to techniques such as on-the-fly verification [VW86a, JJ89, 
CVWY92] that help coping with the "state-explosion" problem. 

For branching temporal logics, the automata-theoretic counterpart are automata on 
infinite trees. By reducing the satisfiability to the nonemptiness problem for these au- 
tomata, optimal decision procedures have been obtained for various branching temporal 
logics [Eme85, EJ88, ES84, SE84, VW86b]. Unfortunately, the automata-theoretic ap- 
proach does not seem to be applicable to branching-time model checking. Indeed, model 
checking can be done in linear running time for CTL ICES86, QS81] and the alternation- 
free fragment of the/t-calculus [Cle93], and is in NPNco-NP for the general #-calculus 
[EJS93], whereas there is an exponential blow-up involved in going from formulas to 
automata. Thus, using the construction of a tree automaton as a step in a model-checking 
algorithm seems a non-starter, which can only yield algorithms with exponential run- 
ning time. (Indeed, the proof in [EJS93] avoids the construction of tree automata that 
correspond to p-calculus formulas.) 

A different automata-theoretic approach to branching-time model checking, based on 
the concepts of amorphous automata and simultaneous trees, was suggested by Bernholtz 
and Grumberg in [BG93]. Amorphous automata have a flexible transition relation that 
can adapt to trees with varying branching degree. Simultaneous trees are trees in which 
each sub-tree is duplicated twice as the two leftmost successors of its root. Simultaneous 
trees thus enable the automaton to visit different nodes of the same path simultaneously. 
Bernholtz and Grumberg showed that CTL model checking is linearly reducible to the 
acceptance of a simultaneous tree by an amorphous automaton and that the latter problem 
can be solved in quadratic running time. 

While this constitutes a meaningful first step towards applying automata-theoretic 
techniques to branching-time model checking, it is not quite satisfactory. First, unlike 
the situation with linear temporal logic, different automata are required to solve model 
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checking and satisfiability and thus, we do not get a uniform automata-theoretic treatment 
for the two problems. Second, and more crucial, the complexity of the resulting algorithm 
is quadratic in both the size of the specification and the size of the program, which makes 
this algorithm impractical; after all, most of the current research in this area is attempting 
to develop methods to cope with linear complexity. 

In this paper, we argue that alternating tree automata are the key to a comprehensive 
and satisfactory automata-theoretic framework for branching temporal logics. Alternat- 
ing tree automata generalize the standard notion of nondeterministic tree automata by 
allowing several successor states to go down along the same branch of the tree. It is 
known that, while the translation from branching temporal logic formulas to nondeter- 
ministic tree automata is exponential, the translation to alternating tree automata is linear 
[MSS88, EJ91]. In fact, Emerson stated that"/~-calculus formulas are simply alternating 
tree automata" [Eme94]. Muller et al. showed that this explains the exponential decid- 
ability of satisfiability for various branching temporal logics. We show here that this also 
explains the efficiency of model checking for those logics. The crucial observation is that 
for model checking, one does not need to solve the nonemptiness problem, but rather the 
l-letter nonemptiness problem. This problem (testing the nonemptiness of an alternating 
automaton that is defined on trees labeled with a singleton alphabet) is substantially 
simpler. Thus, alternating tree automata provide a unifying and optimal framework for 
both satisfiability and model-checking problems for branching temporal logic. 

We first show how our automata-theoretic approach unifies previously known results 
about model checking for branching temporal logics. The alternating automata used 
by Muller et al. in [MSS88] are of a restricted type called weak alternating automata. 
To obtain an exponential decision procedure for the satisfiability of CTL and related 
branching temporal logics, Muller et al. used the fact that the nonemptiness problem for 
these automata is in exponential time [MSS86]. We prove that their l-letter nonemptiness 
is decidable in linear running time, which yields an automata-based model checking 
algorithm of linear running time for CTL. The same technique can also be used to show 
that model-checking for the alternation-free/~-calculus can be done in linear running 
time. For the general y-calculus, it follows from the results in [EJ91] that y-calculus 
formulas can be linearly translated to alternating Rabin automata. We prove here that the 
l-letter nonemptiness of alternating Rabin automata is in NP, which entails that model 
checking of y-calculus formulas is in NPNco-NP. 

As the algorithms obtained by our approach match known complexity bounds for 
CTL [CES86] and the/~-calculus [C1e93, EJS93], what are the advantages offered by our 
approach? The first advantage is that it immediately broadens the scope of efficient model 
checking to other, and more expressive, branching temporal logics. For example, the 
dynamic logic considered in [MSS88] allows, in the spirit of [Wo183], nondeterministic 
tree automata as operators. Since this logic has a linear translation to weak alternating 
automata, it follows directly from our results that it also has a linear model-checking 
algorithm. 

The second advantage comes from the fact that our approach combines the Kripke 
structure and the formula into a single automaton before checking this automaton for 
nonemptiness. This facilitates the use of a number of implementation heuristics. For 
instance, the automaton combining the Kripke structure and the formula can be computed 
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on-the-fly and limited to its reachable states. This avoids exploring the parts of the Kripke 
structure which are irrelevant for the formula to be checked, and hence addresses the issue 
raised in the work on local model checking [SW91, VL93], while preserving optimal 
complexity and ease of implementation. 

The third advantage of the automata-theoretic approach is that it offers new and 
significant insights into the space complexity of CTL model checking. It comes from 
the observation that the weak alternating automata that are obtained from CTL formulas 
have a special structure: they have bounded alternation. A careful analysis of the l- 
letter nonemptiness problem for weak alternating automata with this property yields 
a top-down model-checking algorithm for CTL that is in NLOGSPACE in the size of 
the Kripke structure. A similar result holds for CTL*. This is very significant since it 
implies that, for concurrent programs, model checking can be done in space polynomial 
in the size of the program description, rather than requiting space of the order of the 
exponentially larger expansion of the program, as is the case with standard bottom-up 
model-checking algorithms. 

2 Preliminaries 

2.1 Temporal Logics and/~-Calculi 

The temporal logic CTL (Computation Tree Logic) provides temporal operators that are 
composed of a path quantifier immediately followed by a single linear-time operator. The 
path quantifiers are A ("for all paths") and E ("for some path"). The allowed linear-time 
operators are X ("next time") and U ("until"). A positive normal form CTL formula is 
a CTL formula in which negations are applied only to atomic propositions. It can be 
obtained by pushing negations inward as far as possible, using De Morgan's laws and 
dualities. For technical convenience, we use the linear-time operator U as a dual of the 
U operator (pffq --- ~((~p)U(-~q))), and write all CTL formulas in positive normal 
form. The closure, cl(r of a CTL formula ~b is the set of all CTL subformulas of r 
(including r It is easy to see that for every r Icl(r < Ir The logic CTL* is defined 
similarly to CTL except that arbitrary linear-time formulas can appear in the scope of a 
path quantifier. See [Eme90] for more details on CTL and CTL*. 

The propositional p-calculus is a propositional modal logic augmented with least and 
greatest fixpoint operators. Specifically, we consider a p-calculus where formulas are 
constructed from Boolean propositions with Boolean connectives, the temporal operators 
E X  and A X  as well as least (p) and greatest (v) fixpoint operators. For example, the p- 
calculus formula py(q V (p A E X y ) )  is equivalent to the CTL formula EpUq. Assuming 
p-calculus formulas are written in positive normal form (negation only applied to atomic 
propositions), a formula is alternation free if there are no occurrences of u (p) on any 
syntactic paths from an occurrence of #y (uy) to an occurrence of y. For more details, 
see [Koz83, EJ88, Var88]. 

The semantics of the logics described above is defined with respect to a Kripke 
structure, K = (W, R, w ~ L), where W is a set of states, R _C W x W is a transition 

t 

relation that must be total (i.e., for every w E W there exists w E W such that 
(w, w') E R), w ~ is an initial state, and L �9 W --, 2 AP maps each state to a set of atomic 
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propositions true in this state. The notation K, w ~ <p indicates that a formula ~ holds 
at a state w of the structure K. Also, K ~ ~ iff K, w ~ ~ 9- 

2.2 Alternating Tree Automata 

For an introduction to the theory of automata on infinite trees see [Tho90]. Alternating 
automata on infinite trees generalize nondeterministic tree automata and were first in- 
troduced in [MS87]. For simplicity, we refer first to automata over infinite binary trees. 
Consider a nondeterministic tree automaton A = (S,  Q, 6, q0, F).  The transition relation 
6 maps an automaton state q E Q and an input letter a E S to a set of pairs of states. 
Each such pair suggests a nondeterministic choice for the automaton's next configura- 
tion. When the automaton is in a state q and is reading a node z labeled by a letter ~r, 
it proceeds by first choosing a pair (ql, q2) E 6(q, ~r) and then splitting into two copies. 
One copy enters the state ql and proceeds to the node x �9 0 (the left successor of x), and 
the other copy enters the state q2 and p rocess  to the node z .  1 (the right successor of z). 

For a given set D, let B+(D x Q) be the set of positive Boolean formulas over 
D x Q (i.e., Boolean formulas built from elements in D • Q using A and V), where 
we also allow the formulas t r u e  and false  and, as usual, A has precedence over v. We 
Can represent ~ using B+({0, 1} • Q). For example, 6(q, a) = {(ql, q2}, (q3, ql}} can 
be written as 6(q, ~r) = (0, ql) A (1, q2) V (0, q3) A (1, ql). 

In nondeterministic tree automata, each conjunction in 6 has exactly one element 
associated with each direction. In alternating automata on binary trees, 6(q, ~r) can be an 
arbitrary formula from B+({0, 1} x Q). We can have, for instance, a transition 

6(q, = (0, ^ (0, q2) v (0, q2) ^ (1, q2) ^ (1, q3). 

The above transition illustrates that several copies may go to the same direction and 
that the automaton is not required to send copies to all the directions. Formally, an 
alternating tree automaton is a tuple A = (27, Q, 8, q0, F)  where 27 is the input alphabet, 
Q is a finite set of states, qo E Q is an initial state, F specifies the acceptance condition, 
and 6 : Q x S ~ I'4 + x B+( N  x Q) is the transition function. We require that if 
6(q, tr) = (k, 0), then 0 E B + ( {0 , . . . ,  k - 1 } x Q). In other words, a transition specifies 
a branching degree and a matching Boolean transition. A transition can only be applied 
to a node of a tree with a branching degree equal to the one specified by the transition. A 
run r of an alternating automaton A on a tree T is a tree where the root is labeled by q0 
and every other node is labeled by an element of IN x Q. Each node of r corresponds to a 
node of T. Suppose that the path to a node V in r is labeled by q0, (cl, ql), �9 �9 (era, qm), 
then V corresponds to the node a: = cl �9 �9 �9 cm of T. Intuitively, the node g of r describes 
the automaton reading the node z of T. Note that many nodes of r can correspond to 
the same node of T; in contrast, in a run of a nondeterministic automaton on T there 
is a one-to-one correspondence between the nodes of the run and the nodes of the tree. 
The labels of a node and its successors have to satisfy the transition function. The run 
is accepting if all its infinite paths satisfy the acceptance condition. For formal details 
see [MS87] (our definition here extends the definition in [MS87] by allowing trees with 
varying branching degrees). 

Amorphous automata extend conventional tree automata in that they can handle trees 
with both varying and unspecified branching degrees. Their amorphous nature enables 
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them to be adjusted during their run to any branching degree. Amorphous automata were 
first introduced in [BG93], where they extend nondeterministic Biichi tree automata. We 
introduce here an amorphous version of alternating automata. In a standard alternating 
automaton, each transition is a pair consisting of a branching degree k and a Boolean 
formula in B + ({0 , . . . ,  k - 1} x Q). In amorphous alternating automata, the transition 
depends on the (unknown in advance) branching degrees of the nodes being read by the 
automaton. Formally, the transition is a function ~ : Q x S x l'q + ---. B + (lq x Q), such 
that 6(q, ~,, k) E/3+({0, �9 �9 k - 1} • Q). The notion of runs of amorphous alternating 
automata is a natural extension of the notion of runs of alternating automata. When the 
automaton is in a state q as it reads a node x that is labeled by a letter ~r and has k 
successors, it applies the transition 6(q, a, k). 

In [MSS86],Muller et al. introduce weak alternating automata (WAA). The definition 
applies also to amorphous alternating automata. In an (amorphous) WAA, F ___ Q and 
there exists a partition of Q into disjoint sets, Qi, such that for each set Qi,either Qi c_ F,  
in which case Qi is an accepting set, or Qi N F = 4, in which case Qi is a rejecting 
set. In addition, there exists a partial order _< on the collection of the Qi's such that 
for every q E Qi and q' E Qj for which q' occurs in 6(q, tr, k), for some ~r E S and 
k E I~ +, Qj <_ Qi. Thus, transitions from a state in Q~ lead to states in either the same 
Qi or a lower one. It follows that every infinite path of a run of a WAA, ultimately gets 
"trapped" within some Qi. The path then satisfies the acceptance condition iff Qi is an 
accepting set. 

3 Alternating Automata and Model Checking 

In this section we introduce an automata-theoretic approach to model checking for 
branching temporal logic. The model-checking problem for a branching temporal logic 
is as follows. Given a Kripke structure K and a branching temporal formula ~b, determine 
whether K ~ ~b. We solve this problem as follows. A Kripke structure K can be viewed 
as a tree, TK, that corresponds to the unwinding of K from w ~ Let ~b be a branching 
temporal formula. Suppose that Ar is an amorphous alternating automaton that accepts 
exactly all the trees that satisfy ~/, (amorphousness is used to handle the unspecified 
branching degrees of the nodes in the models of ~b and alternation reduces the size of 
the state set of Ar from exponential to linear in the length of ~b). The product of K and 
A~ either contains a single tree, TK, in which case K ~ ~b, or is empty, in which case 
K ~= ~b. The model-checking problem can thus be solved as follows: 

(1) Construct the amorphous alternating automaton Ar 
(2) Construct an alternating automaton AK,r = K • Ar by taking the product of K 

and Ar This automaton simulates a run of Ar on TK. 
(3) Output"Yes" if IZ(AK,r ~ 4, and "No", otherwise. 

The type of Ar (i.e., its acceptance condition, its weakness, etc.) as well as the type 
of AK,r and consequently the complexity of the nonemptiness test depend on the logic in 
which !b is specified. The crucial point in our approach is that the automaton AK,r is an 
automaton over a l-letter alphabet; this reduces the complexity of the nonemptiness test. 
Note that in general, unlike the case for nondeterministic automata, the nonemptiness 
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problem for alternating automata cannot be reduced to the l-letter emptiness problem. It 
is taking the product with K that yields here an automaton over a l-letter alphabet. 

Let ~b be a branching temporal formula. We associate with ~b an amorphous alternating 
automaton A~ = (2 AP, c/0P), 8~, ~b, F~), which accepts precisely all the tree models 
of ~b. The details of the construction depends on the logic under consideration; we will 
see some examples in the next section, Let K = (W, R, w ~ L) be a Kripke structure. 
It is convenient to assume that the nodes of W are ordered. Thus, for every node w, let 
succR(w) = (wo . . . .  , wk-1) be the ordered list of w's R-successors. 

We now define the product automaton. AK,,~ = ({a}, W • cl(~b), (w ~ ~b), 8, F) 
where 8 and F are defined as follows. 

- Let ~ E c/(~b), w E W, succR(w) = (too,. . . ,  wk-1), and 8~(~, L(w), k) = 0. 
Then 8((w, ~), a) = (k, 01), where 0' is obtained from 0 by replacing each atom 
(c, r/) in 0 by the atom (c, (we, ~)). 

- F is defined according to the acceptance condition F~ of A~. For example, if F~ C_ 
cl(~b) is a B~chi condition, then F = W x F~ is also a Biichi condition. If F~ = 
{(L1, U1),..., (Lm, Urn}} isaRabincondition,thenF = {(W • L1, W • U1), . . . ,  
(W • L,~, W • U,~)} is also a Rabin condition. 

It is easy to see that AK,~ is of the same type as A,p. In particular, if A~ is a WAA, 
then so is AK,~. 

Propositionl.  (1) IAK,r = O(IKI * IAr 
(2) /:(AK,r is nonempty iff K ~ r 

Proposition 1 can be viewed as an automata-theoretic generalization of Theorem 4.1 in 
[EJS93]. 

In conclusion, given a branching temporal formula r for which there exists an 
automaton Ar such that Ar accepts exactly all the trees that satisfy r model checking 
ofa  Kripke structure K with respect to r is reducible to checking the l-letter emptiness 
of an automaton of the same type as Ar and of size O(IKI �9 IAr In the following 
sections, we show how this approach can be used to derive in a uniform way known 
coplexity bounds for model checking of CTL and/~-calculus formulas, as well as to 
obtain new space complexity bounds. 

4 Applications 

The efficiency of the method we presented in the previous section depends on the 
efficiency of the translation of formulas to automata, as well as the efficiency of the 
l-letter nonemptiness test. 

4.1 Model checking for CTL 

Vardi and Wolper showed how to solve the satisfiability problem for CTL via an exponen- 
tial translation of CTL formulas to Biichi automata on infinite trees [VW86a]. MUller et 
al. provided a simpler proof, via a linear translation of branching dynamic logic formulas 
to WAA [MSS88]. We extend here the ideas of Muller et al. by demonstrating a linear 
translation from CTL formulas to amorphous WAA. 
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Theorem 2. Given a CTL formula ~b, we can construct in linear running time an amor- 
phous WAA Ar = (2 AP, cl( ~b ), p, ~b , F) such that s  Aq: ) is exactly the set of tree models 
satisfying ~b. 

Proof. The set F of accepting states consists of all formulas in cl(~b) of the form A~ol U~2 
or E~I 0~o2. It remains to define the transition function p. 

- p ( p , a , k ) = t r u e i f p E ~ .  - p ( p , ~ , k ) = f a l s e i f p ~ c r .  
- p ( - ~ p , ~ , k ) = t r u e i f p f ~ .  - p ( - ~ p , ~ , k ) = f a l s e i f p E ~ .  
- p(~l ^ ~,2,,~, k) = p(~1, ~, k) ^ p (~ , ,~ ,  k). 
- / , ( ~ 1  v ~o,, ,,, k) = p ( ~ l ,  ~, k) v / , ( ~ 2 ,  ~, k). 

p(AX~2,  o', k) k-1 - = Ao=o (c, ~2).  
p(EX~2 ~r, k) k-1 - , = Vo=0 (c, ~2).  

k-1 A - p(A~vl U~z, o', k) = p(~2, o', k) V (P(~I, or, k) A Ac=o (c, ~ol u~2)). 
-- p (E~lU~2,0" ,k )  = p(~92,0",k) V (p(~l ,0",k)  A Vc=ok-l(e, E~pl U~2)). 

k-1 A - - p ( A ~ I  0~o2 ,  a ,  k )  = p(~2, a, k) A (p(~ol, (r, k) V Ae=o (c, ~1U~2)). 
- p(E~lO~o'z,cr, k) = p(~2,o' ,k)A(p(!al ,~r,k)V Ve=o~-l(c, E~ol 0~2)). 

To show that A,p is a WAA, we define a partition of Q into disjoint sets and a partial 
order over the sets. Each formula ~ ~ cl(~b), constitutes a (singleton) set {!a} in the 
partition. The partial order is then defined by {!a~ } < {~z} iff ~1 ~ C1(~2). Since each 
transition of the automaton from a state ~ leads to states associated with formulas in 
cl(~), the weakness conditions hold. In particular, each set is either contained in F or 
disjoint from F. 

We now describe an efficient algorithm to test 1-1etter nonemptiness of WAA. 

Theorem 3. The 1-letter nonemptiness problem for weak alternating automata is decid- 
able in linear running time. 

Proof. See Appendix A.1 

Theorems 2 and 3 yield a model-checking algorithm for CTL with linear (in the size 
of the input structure and in the size of the input formula) running time. The bottom-up 
labeling of the algorithm used in the proof of Theorem 3 is clearly reminiscent of the 
bottom-up labeling that takes place in the standard algorithm for CTL model checking 
[CES86]. Thus, the automata-theoretic approach seems to capture the combinatorial 
essence of CTL model checking. 

4.2 Model Checking for the/~-Calculus 

The intimate connection between the #-calculus and alternating automata has been noted 
in [EJ91, Eme94]. We show here that our automata-theoretic approach provides a clean 
proof that model checking for the/z-calculus is in NPNco-NP. The key steps in the 
proof are in showing that/z-calculus formulas can be efficiently translated to amorphous 
alternating Rabin automata, and that the l-letter nonemptiness problem for alternating 
Rabin automata is in NP. 
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Theorem 4. Given a It-calculus formula ~b, we can construct in linear running-time an 
amorphous alternating Rabin automaton Ar = (2 AP , cl( ~b), p, ~b, F) such that ~ (Ar  ) 
is exactly the set of tree models satisfying ~b, 

Proof Emerson and Jutla showed how to translate/.L-calculus formulas to alternating 
Streett automata [EJ91]. The extension to amorphous automata is straightforward. By 
constructing an amorphous alternating Streett automaton for ~b  and then complementing 
it (it is easy to complement alternating automata [MS87]), we obtain an amorphous 
alternating Rabin automaton. 

Theorem 5. The l-letter nonemptiness problem for  alternating Rabin automata is de- 
cidable in nondeterministic polynomial running time. 

Proof. Without loss of generality we can assume that we are dealing with automata 
on trees of fixed branching degree, say k. Since the l-letter k-ary tree is homogeneous 
(i.e., all subtrees are the same), we can pretend that successor states which are going 
down the same branch of the tree, are actually going down separate branches. Thus, we 
can apply techniques from the theory of nondeterministic Rabin automata, developed in 
[Eme85, VS85], to show that the l-letter nonemptiness problem is in NP. 

Combining Theorems 4 and 5, Proposition 1, and the observation in [EJS93] that 
checking for satisfaction of a formula ~b and a formula ~b  has the same complexity, we 
get that the model-checking problem for the/~-calculus is in NPAco-NP. 

For the alternation-free /z-calculus, we can prove an analogue to Theorem 2. It 
follows then from Theorem 3, that model checking for the alternation-free/z-calculus 
can be done in linear running time. 

5 The Space Complexity of Model Checking 

Pnueli and Lichtenstein argued that, when analyzing the complexity of model checking, 
a distinction should be made between complexity in the size of the input structure and 
complexity in the size of the input formula; it is the complexity in size of the structure 
that is typically the computational bottleneck [LP85]. The Kripke structures to which 
model-checking is applied are often obtained by constructing the reachability graph of 
concurrent programs, and can thus be very large. So, even linear complexity (in terms of 
the input structure) can be excessive, especially as far as space is concerned. The question 
is then whether it is possible to perform model-checking without ever holding the whole 
structure to be checked in memory at any one time. For linear temporal formulas, the 
answer has long been known to be positive [VW86a]. Indeed, this problem reduces 
to checking the emptiness of a Btichi automaton on words which is NLOGSPACE- 
complete. Thus, if the Btichi automaton whose emptiness has to be checked is obtained 
as the product of the components of a concurrent program (as is usually the case), the 
space required will be polynomial in the size of these components rather than of the 
order of the exponentially larger Biichi automaton. Pragmatically, this is very significant 
and is, to some extent, exploited in the "on the fly" approaches to model checking and 
in related memory saving techniques [CVWY92]. 
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Is the same true of CTL model-checking? The answer to this question was long 
thought to be negative. Indeed, the bottom-up nature of the known model-checking 
algorithms seemed to imply that storing the whole structure was required. Using our 
automata-theoretic approach to CTL model-checking, we are able to show that this is 
not so. Technically, this means that we will now prove that model-checking for CTL 
is NLOGSPACE-complete in the size of the Kripke structure. To prove this result, we 
will first show that the l-letter WAA we construct for CTL model-checking have a 
special property (bounded alternation). Then, we will present an alternative algorithm 
for checking emptiness of WAA with this property. 

Consider the product automaton AK,,p = K x A~0 for a Kripke structure K and CTL 
formula ~b. The states of this automaton are elements of W x clOb ) and are partitioned 
into subsets Qi according to their second component (two states are in the same Qi if 
their second components are identical). Thus the number of Qi's is bounded by the size 
of cl(~b) and is independent of the size of the Kripke structure. If one examines the Qi's 
closely, one notices that they all fall into one of the following three categories: 

1. Sets from which all transitions lead exclusively to states in lower Qi's. These are the 
Qi's corresponding to all elements of cl(~b) except U-formulas and U-formulas. We 
call these transient Q,i ' s. 

2. Sets Qi such that, for all q E Qi, the transition 6(q, a, k) only contain conjunctively 
related elements of Qi, i.e. if the transition is rewritten in conjunctive normal form, 
there is at most one element of Q~ in each conjunct. These are the Qi's corresponding 
to the A~ol U ~  and A~,1U~o2 elements of cl(~b). We call these universal Qi's. 

3. Sets Qi such that, for all q E Qi, the transition ~(q, a, k) only contain disjunctively 
related elements of Qi. These are the Q,i's corresponding to the E~IU~Oz and 
E~,I D~2 elements of cl(~b). We call these existential Qi's. 

This means that it is only when moving from one Qi to the next, that alternation actually 
occurs (alternation is moving from a state that is conjunctively related to its siblings to 
a state that is disjunctively related to its siblings, or vice-versa). If the number of Qi's 
is fixed and if the depth of transitions is bounded (i.e., if their parse tree has bounded 
depth), we call a WAA that satisfies this property a bounded-alternation WAA. 

Let us now turn to the nonemptiness problem for bounded-alternation WAA. The- 
orem 3 shows that the problem can be solved in linear running time. Notice that the 
algorithm used there is essentially a bottom-up labeling of the Boolean graph of the au- 
tomaton. We will now show that by using a top-down exploration of this Boolean graph, 
we can get a space efficient l-letter nonemptiness algorithm for bounded-alternation 
WAA. 

Theorem 6. The l-letter nonemptiness problem for bounded-alternation WAA is 
NLOGSPACE-complete. 

Proof See Appendix A.2 

We note that for general WAA the l-letter nonemptiness problem is P-complete. 
Now, let us define the structure complexity of model-checking as the complexity of 

this problem in terms of the size of the input Kripke structure, i.e. assuming the formula 
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fixed (this was called program complexity in [VW86a]). The following is then a direct 
consequence of Theorem 6. 

Theorem 7. ThestructurecomplexityofCTLmodel-checkingisNLOGSPACE-complete. 

Theorem 7 can be extended to ECTL* [VW84]. The alternating automata that corre- 
spond to ECTL* formula are not in general weak. Nevertheless, a careful analysis shows 
that these automata do have a special structure and Theorem 6 can be extended to such 
automata. 

If the Kripke structure is obtained as the product of the components of a concurrent 
program, this implies that CTL (and ECTL*) model-checking can be done in polynomial 
space with respect to the size of this program. It is also interesting to note that a less 
space-efficient deterministic version of the algorithm given in the proof of Theorem 6 can 
be viewed as the automata-theoretic counterpart of the algorithm presented in [VL93]. 
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A Proofs 

A.1 Theorem 3 

We present an algorithm with linear running time for checking the nonemptiness of the 
language of a WAA A = ({a}, Q, 6, q0, F).  

As A is weak, there exists a partition of Q into disjoint sets Q~ such that there exists 
a partial order < on the collection of the Q~'s and such that for every q E Q~ and q' E Qj 
for which q' occurs in ~(q, a), Q~ < Qi. Thus, transitions from a state in Q~ lead to states 
in either the same Qi or a lower one. In addition, each set Qi is classified as accepting, 
if Qi C_ F,  or rejecting, if Qi 171 F = $. 

The algorithm labels the states of A with either 'T', standing for true, or 'F' ,  standing 
for false. Intuitively, states q E Q for which the language of A q (i.e., the language of A 
with q as the initial state) is nonempty are labeled with 'T' and states q for which the 
language of A q is empty are labeled with 'F'. The language of A is thus nonempty iff 
the initial state q0 is labeled with 'T'. The algorithm works in phases and proceeds up 
the partial order. Let Q1 < �9 �9 < Q,~ be an extension of the partial order to a total order. 
In each phase i, the algorithm handles states from the minimal set Qi which still has not 
been labeled. 

States that belong to a set Q~ that is minimal in the partial order, are labeled according 
to the classification of Q~. Thus, they are labeled with 'T' if Q~ is an accepting set, and 
with 'F'  if it is rejecting. Once a state q E Qi is labeled with 'T' or 'F', transition functions 
in which q occurs are simplified accordingly, i.e., a conjunction with a conjunct 'F' is 
simplified to 'F'  and a disjunction with a disjunct 'T' is simplified to 'T'. Consequently, 
a transition function 6(q', a) for some q', (not necessarily from Qi) can obtain its truth 
value, q' is then labeled, and evaluation proceeds further. 

Since the algorithm proceeds up the total order, when it reaches a state q E Qi that 
is still not labeled, it is guaranteed that all the states in all Qj for which Qj < Q~, have 
already been labeled. Hence, all the states that occur in 6(q, a) have the same status as 
q. That is, they belong to Qi and are still not labeled. The algorithm then labels q and 
all the states in ~5(q, a) according to the classification of Qi. They are labeled 'T' if Qi 
is accepting and are labeled 'F'  otherwise. 

Using an AND/OR graph, as suggested in [Bee80], the algorithm can be implemented 
in linear running time. Typically, the graph, induced by the transition function, keeps 
the labeling performed during the algorithm execution. Simplification of each transition 
function/~(q, a) for all q E Q, then costs O(16(q, a)]). 
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A.2 Theorem 6 

The property of bounded-alternation WAA we use is that, from a state of a Qi, it is 
possible to search for another reachable state of the same Qi in NLOGSPACE. For 
transient Qi, there are no such states. For universal and existential Q~, the exact notion 
of reachability we use is the transitive closure of the following notion of immediate 
teachability. Assume, we have a Boolean value for all states in sets lower than Qi. Then 
a state q' is immediately reachable from a state q, if it appears in the transition from 
q when this transition has been simplified using the know Boolean values for states in 
lower Qi. Note that the simplified transition is always a conjunction for a state of a 
universal Qi, and a disjunction for a state of an existential Qi. 

The following procedure labels the states of the automaton with 'T'  (accepts) or 'F '  
(does not accept). 

1. One starts at the initial state. 
2. At a transient state q, one applies the procedure to the successor states. The labels 

that are obtained for these successor states are then substituted in the transition from 
q, and q is labeled with the Boolean value that is thus obtained for the transition. 

3. At a state q of a universal Qi, one proceeds as follows. We call a state q' of Qi 
provably true if, when the procedure is applied to the successors of q' that are not in 
Qi, and the Boolean expression for the transition from q' is simplified, it is identically 
true. States that are provably false are defined analogously. 
(a) One searches in NLOGSPACE for a reachable state q' of the same Qi that is 

provably false (note that this requires applying the procedure recursively to all 
states from lower Qi's that are touched by the search). If such a state q' is found, 
the state q is labeled 'F'. 

(b) If no such state exists, one searches in NLOGSPACE for a state q' of Qi that is 
reachable from q and from itself. If such a state is found, q is labeled according 
to the classification of the Qi. 

(c) if none of the first two cases apply, q is labeled 'T'. 
4. At a state q of an existential Qi, one proceeds as follows. 

(a) One searches in NLOGSPACE for a reachable state q' of the same Qi that is 
provably true. If such a state q' is found, the state q is labeled 'T'.  

(b) If no such state exists, one searches in NLOGSPACE for a state q /of  Qi that is 
reachable from q and from itself. If such a state is found, q is labeled according 
to the classification of the Qi. 

(c) if none of the first two cases apply, q is labeled 'F'. 

The procedure is recursive, but as the depth of the transitions is bounded by the 
number of Qi's, so does the depth of recursion. Since each invocation of the procedure 
can be executed in NLOGSPACE, the whole procedure is thus NLOGSPACE. Complete- 
ness in NLOGSPACE is immediate by reduction from the corresponding problem for 
nondeterministic sequential automata. 


