
An Automata-Theoretic Approach to
Branching-Time Model Checking

(Extended Abstract)

Orna Bernholtz t and Moshe Y. Vardi 2 and Pierre Wolper 3.

* The Technion, Department of Computer Science, Haifa 32000, Israel.
Email: ornab@cs, technion, ac. i 1

2 Rice University, Deparmaent of Computer Science, P.O. Box 1892, Houston,
"IX 77251-1892, U.S.A. Email: v a r d i @ c s , r • edu

3 Universit6 de Liege, Institut Montefiore, B28, 4000 Liege Sart-Tilman, Belgium.
Emall: pw@montefiore, ulg. ac. be

Abstract. Translating linear temporal logic formulas to automata has proven to
be an effective approach for implementing linear-time model-checking, and for
obtaining many extensions and improvements to this verification method. On the
other hand, for branching temporal logic, automata-theoretic techniques have long
been thought to inlroduce an exponential penalty, making them essentially use-
less for model-checking. Recently, Bernholtz and Grumberg have shown that this
exponential penalty can be avoided, though they did not match the linear complex-
ity of non-automata-theoretic algorithms. In this paper we show that alternating
tree automata are the key to a comprehensive automata-theoretic framework for
branching temporal logics. Not only, as was shown by Muller et al., can they be
used to obtain optimal decision procedures, but, as we show here, they also make it
possible to derive optimal model-checking algorithms. Moreover, the simple com-
binatorial structure that emerges from the automata-theoretic approach opens up
new possibilities for the implementation of branching-time model checking, and
has enabled us to derive improved space complexity bounds for this long-standing
problem.

1 Introduction

Temporal logics, which are modal logics geared towards the description of the temporal
ordering of events, have been adopted as a powerful tool for specifying and verifying
concurrent programs [Pnu81]. One of the most significant developments in this area is
the discovery of algorithmic methods for verifying temporal logic properties of finite-
state programs [CES86, QS81]. This derives its significance both from the fact that many
synchronization and communication protocols can be modeled as finite-state programs,
as well as from the great ease of use of fully algorithmic methods. Finite-state programs

* The work of this author was supported by the Esprit BRA action REACT and by the Belgian
Incentive Program "Information Technology" - Computer Science of the future, initiated by
the Belgian State - Prime Minister's Office - Science Policy Office. Scientific responsibility is
assumed by its authors.

143

can be modeled by transition systems where each state has a bounded description, and
hence can be characterized by a fixed number of Boolean atomic propositions. This
means that a finite-state program can be viewed as a finite propositional Kripke structure
and that its properties can be specified using propositional temporal logic. Thus, to
verify the correctness of the program with respect to a desired behavior, one only has
to check that the program, modeled as a finite Kripke structure, satisfies (is a model of)
the propositional temporal logic formula that specifies that behavior~ Hence the name
model checking for the verification methods derived from this viewpoint. A survey can
be found in [Wo189].

We distinguish between two types of temporal logics: linear and branching [Lam80].
In linear temporal logics, each moment in time has a unique possible future, while in
branching temporal logics, each moment in time may split into several possible futures.
For linear temporal logics, a close and fruitful connection with the theory of automata
on infinite words has been developed [VW86a, VW94]. The basic idea is to associate
with each linear temporal logic formula a finite automaton on infinite words that accepts
exactly all the computations that satisfy the formula. This enables the reduction of linear
temporal logic problems, such as satisfiability and model-checking, to known automata-
theoretic problems, yielding clean and asymptotically optimal algorithms. Furthermore,
these reductions are very helpful for implementing temporal-logic based verification
methods, and are the key to techniques such as on-the-fly verification [VW86a, JJ89,
CVWY92] that help coping with the "state-explosion" problem.

For branching temporal logics, the automata-theoretic counterpart are automata on
infinite trees. By reducing the satisfiability to the nonemptiness problem for these au-
tomata, optimal decision procedures have been obtained for various branching temporal
logics [Eme85, EJ88, ES84, SE84, VW86b]. Unfortunately, the automata-theoretic ap-
proach does not seem to be applicable to branching-time model checking. Indeed, model
checking can be done in linear running time for CTL ICES86, QS81] and the alternation-
free fragment of the/t-calculus [Cle93], and is in NPNco-NP for the general #-calculus
[EJS93], whereas there is an exponential blow-up involved in going from formulas to
automata. Thus, using the construction of a tree automaton as a step in a model-checking
algorithm seems a non-starter, which can only yield algorithms with exponential run-
ning time. (Indeed, the proof in [EJS93] avoids the construction of tree automata that
correspond to p-calculus formulas.)

A different automata-theoretic approach to branching-time model checking, based on
the concepts of amorphous automata and simultaneous trees, was suggested by Bernholtz
and Grumberg in [BG93]. Amorphous automata have a flexible transition relation that
can adapt to trees with varying branching degree. Simultaneous trees are trees in which
each sub-tree is duplicated twice as the two leftmost successors of its root. Simultaneous
trees thus enable the automaton to visit different nodes of the same path simultaneously.
Bernholtz and Grumberg showed that CTL model checking is linearly reducible to the
acceptance of a simultaneous tree by an amorphous automaton and that the latter problem
can be solved in quadratic running time.

While this constitutes a meaningful first step towards applying automata-theoretic
techniques to branching-time model checking, it is not quite satisfactory. First, unlike
the situation with linear temporal logic, different automata are required to solve model

144

checking and satisfiability and thus, we do not get a uniform automata-theoretic treatment
for the two problems. Second, and more crucial, the complexity of the resulting algorithm
is quadratic in both the size of the specification and the size of the program, which makes
this algorithm impractical; after all, most of the current research in this area is attempting
to develop methods to cope with linear complexity.

In this paper, we argue that alternating tree automata are the key to a comprehensive
and satisfactory automata-theoretic framework for branching temporal logics. Alternat-
ing tree automata generalize the standard notion of nondeterministic tree automata by
allowing several successor states to go down along the same branch of the tree. It is
known that, while the translation from branching temporal logic formulas to nondeter-
ministic tree automata is exponential, the translation to alternating tree automata is linear
[MSS88, EJ91]. In fact, Emerson stated that"/~-calculus formulas are simply alternating
tree automata" [Eme94]. Muller et al. showed that this explains the exponential decid-
ability of satisfiability for various branching temporal logics. We show here that this also
explains the efficiency of model checking for those logics. The crucial observation is that
for model checking, one does not need to solve the nonemptiness problem, but rather the
l-letter nonemptiness problem. This problem (testing the nonemptiness of an alternating
automaton that is defined on trees labeled with a singleton alphabet) is substantially
simpler. Thus, alternating tree automata provide a unifying and optimal framework for
both satisfiability and model-checking problems for branching temporal logic.

We first show how our automata-theoretic approach unifies previously known results
about model checking for branching temporal logics. The alternating automata used
by Muller et al. in [MSS88] are of a restricted type called weak alternating automata.
To obtain an exponential decision procedure for the satisfiability of CTL and related
branching temporal logics, Muller et al. used the fact that the nonemptiness problem for
these automata is in exponential time [MSS86]. We prove that their l-letter nonemptiness
is decidable in linear running time, which yields an automata-based model checking
algorithm of linear running time for CTL. The same technique can also be used to show
that model-checking for the alternation-free/~-calculus can be done in linear running
time. For the general y-calculus, it follows from the results in [EJ91] that y-calculus
formulas can be linearly translated to alternating Rabin automata. We prove here that the
l-letter nonemptiness of alternating Rabin automata is in NP, which entails that model
checking of y-calculus formulas is in NPNco-NP.

As the algorithms obtained by our approach match known complexity bounds for
CTL [CES86] and the/~-calculus [C1e93, EJS93], what are the advantages offered by our
approach? The first advantage is that it immediately broadens the scope of efficient model
checking to other, and more expressive, branching temporal logics. For example, the
dynamic logic considered in [MSS88] allows, in the spirit of [Wo183], nondeterministic
tree automata as operators. Since this logic has a linear translation to weak alternating
automata, it follows directly from our results that it also has a linear model-checking
algorithm.

The second advantage comes from the fact that our approach combines the Kripke
structure and the formula into a single automaton before checking this automaton for
nonemptiness. This facilitates the use of a number of implementation heuristics. For
instance, the automaton combining the Kripke structure and the formula can be computed

145

on-the-fly and limited to its reachable states. This avoids exploring the parts of the Kripke
structure which are irrelevant for the formula to be checked, and hence addresses the issue
raised in the work on local model checking [SW91, VL93], while preserving optimal
complexity and ease of implementation.

The third advantage of the automata-theoretic approach is that it offers new and
significant insights into the space complexity of CTL model checking. It comes from
the observation that the weak alternating automata that are obtained from CTL formulas
have a special structure: they have bounded alternation. A careful analysis of the l-
letter nonemptiness problem for weak alternating automata with this property yields
a top-down model-checking algorithm for CTL that is in NLOGSPACE in the size of
the Kripke structure. A similar result holds for CTL*. This is very significant since it
implies that, for concurrent programs, model checking can be done in space polynomial
in the size of the program description, rather than requiting space of the order of the
exponentially larger expansion of the program, as is the case with standard bottom-up
model-checking algorithms.

2 Preliminaries

2.1 Temporal Logics and/~-Calculi

The temporal logic CTL (Computation Tree Logic) provides temporal operators that are
composed of a path quantifier immediately followed by a single linear-time operator. The
path quantifiers are A ("for all paths") and E ("for some path"). The allowed linear-time
operators are X ("next time") and U ("until"). A positive normal form CTL formula is
a CTL formula in which negations are applied only to atomic propositions. It can be
obtained by pushing negations inward as far as possible, using De Morgan's laws and
dualities. For technical convenience, we use the linear-time operator U as a dual of the
U operator (pffq --- ~((~p)U(-~q))), and write all CTL formulas in positive normal
form. The closure, cl(r of a CTL formula ~b is the set of all CTL subformulas of r
(including r It is easy to see that for every r Icl(r < Ir The logic CTL* is defined
similarly to CTL except that arbitrary linear-time formulas can appear in the scope of a
path quantifier. See [Eme90] for more details on CTL and CTL*.

The propositional p-calculus is a propositional modal logic augmented with least and
greatest fixpoint operators. Specifically, we consider a p-calculus where formulas are
constructed from Boolean propositions with Boolean connectives, the temporal operators
E X and A X as well as least (p) and greatest (v) fixpoint operators. For example, the p-
calculus formula py(q V (p A E X y)) is equivalent to the CTL formula EpUq. Assuming
p-calculus formulas are written in positive normal form (negation only applied to atomic
propositions), a formula is alternation free if there are no occurrences of u (p) on any
syntactic paths from an occurrence of #y (uy) to an occurrence of y. For more details,
see [Koz83, EJ88, Var88].

The semantics of the logics described above is defined with respect to a Kripke
structure, K = (W, R, w ~ L), where W is a set of states, R _C W x W is a transition

t

relation that must be total (i.e., for every w E W there exists w E W such that
(w, w') E R), w ~ is an initial state, and L �9 W --, 2 AP maps each state to a set of atomic

146

propositions true in this state. The notation K, w ~ <p indicates that a formula ~ holds
at a state w of the structure K. Also, K ~ ~ iff K, w ~ ~ 9-

2.2 Alternating Tree Automata

For an introduction to the theory of automata on infinite trees see [Tho90]. Alternating
automata on infinite trees generalize nondeterministic tree automata and were first in-
troduced in [MS87]. For simplicity, we refer first to automata over infinite binary trees.
Consider a nondeterministic tree automaton A = (S, Q, 6, q0, F). The transition relation
6 maps an automaton state q E Q and an input letter a E S to a set of pairs of states.
Each such pair suggests a nondeterministic choice for the automaton's next configura-
tion. When the automaton is in a state q and is reading a node z labeled by a letter ~r,
it proceeds by first choosing a pair (ql, q2) E 6(q, ~r) and then splitting into two copies.
One copy enters the state ql and proceeds to the node x �9 0 (the left successor of x), and
the other copy enters the state q2 and p rocess to the node z . 1 (the right successor of z).

For a given set D, let B+(D x Q) be the set of positive Boolean formulas over
D x Q (i.e., Boolean formulas built from elements in D • Q using A and V), where
we also allow the formulas t r u e and false and, as usual, A has precedence over v. We
Can represent ~ using B+({0, 1} • Q). For example, 6(q, a) = {(ql, q2}, (q3, ql}} can
be written as 6(q, ~r) = (0, ql) A (1, q2) V (0, q3) A (1, ql).

In nondeterministic tree automata, each conjunction in 6 has exactly one element
associated with each direction. In alternating automata on binary trees, 6(q, ~r) can be an
arbitrary formula from B+({0, 1} x Q). We can have, for instance, a transition

6(q, = (0, ^ (0, q2) v (0, q2) ^ (1, q2) ^ (1, q3).

The above transition illustrates that several copies may go to the same direction and
that the automaton is not required to send copies to all the directions. Formally, an
alternating tree automaton is a tuple A = (27, Q, 8, q0, F) where 27 is the input alphabet,
Q is a finite set of states, qo E Q is an initial state, F specifies the acceptance condition,
and 6 : Q x S ~ I'4 + x B+(N x Q) is the transition function. We require that if
6(q, tr) = (k, 0), then 0 E B + ({0 , . . . , k - 1 } x Q). In other words, a transition specifies
a branching degree and a matching Boolean transition. A transition can only be applied
to a node of a tree with a branching degree equal to the one specified by the transition. A
run r of an alternating automaton A on a tree T is a tree where the root is labeled by q0
and every other node is labeled by an element of IN x Q. Each node of r corresponds to a
node of T. Suppose that the path to a node V in r is labeled by q0, (cl, ql), �9 �9 (era, qm),
then V corresponds to the node a: = cl �9 �9 �9 cm of T. Intuitively, the node g of r describes
the automaton reading the node z of T. Note that many nodes of r can correspond to
the same node of T; in contrast, in a run of a nondeterministic automaton on T there
is a one-to-one correspondence between the nodes of the run and the nodes of the tree.
The labels of a node and its successors have to satisfy the transition function. The run
is accepting if all its infinite paths satisfy the acceptance condition. For formal details
see [MS87] (our definition here extends the definition in [MS87] by allowing trees with
varying branching degrees).

Amorphous automata extend conventional tree automata in that they can handle trees
with both varying and unspecified branching degrees. Their amorphous nature enables

147

them to be adjusted during their run to any branching degree. Amorphous automata were
first introduced in [BG93], where they extend nondeterministic Biichi tree automata. We
introduce here an amorphous version of alternating automata. In a standard alternating
automaton, each transition is a pair consisting of a branching degree k and a Boolean
formula in B + ({0 , . . . , k - 1} x Q). In amorphous alternating automata, the transition
depends on the (unknown in advance) branching degrees of the nodes being read by the
automaton. Formally, the transition is a function ~ : Q x S x l'q + ---. B + (lq x Q), such
that 6(q, ~,, k) E/3+({0, �9 �9 k - 1} • Q). The notion of runs of amorphous alternating
automata is a natural extension of the notion of runs of alternating automata. When the
automaton is in a state q as it reads a node x that is labeled by a letter ~r and has k
successors, it applies the transition 6(q, a, k).

In [MSS86],Muller et al. introduce weak alternating automata (WAA). The definition
applies also to amorphous alternating automata. In an (amorphous) WAA, F ___ Q and
there exists a partition of Q into disjoint sets, Qi, such that for each set Qi,either Qi c_ F,
in which case Qi is an accepting set, or Qi N F = 4, in which case Qi is a rejecting
set. In addition, there exists a partial order _< on the collection of the Qi's such that
for every q E Qi and q' E Qj for which q' occurs in 6(q, tr, k), for some ~r E S and
k E I~ +, Qj <_ Qi. Thus, transitions from a state in Q~ lead to states in either the same
Qi or a lower one. It follows that every infinite path of a run of a WAA, ultimately gets
"trapped" within some Qi. The path then satisfies the acceptance condition iff Qi is an
accepting set.

3 Alternating Automata and Model Checking

In this section we introduce an automata-theoretic approach to model checking for
branching temporal logic. The model-checking problem for a branching temporal logic
is as follows. Given a Kripke structure K and a branching temporal formula ~b, determine
whether K ~ ~b. We solve this problem as follows. A Kripke structure K can be viewed
as a tree, TK, that corresponds to the unwinding of K from w ~ Let ~b be a branching
temporal formula. Suppose that Ar is an amorphous alternating automaton that accepts
exactly all the trees that satisfy ~/, (amorphousness is used to handle the unspecified
branching degrees of the nodes in the models of ~b and alternation reduces the size of
the state set of Ar from exponential to linear in the length of ~b). The product of K and
A~ either contains a single tree, TK, in which case K ~ ~b, or is empty, in which case
K ~= ~b. The model-checking problem can thus be solved as follows:

(1) Construct the amorphous alternating automaton Ar
(2) Construct an alternating automaton AK,r = K • Ar by taking the product of K

and Ar This automaton simulates a run of Ar on TK.
(3) Output"Yes" if IZ(AK,r ~ 4, and "No", otherwise.

The type of Ar (i.e., its acceptance condition, its weakness, etc.) as well as the type
of AK,r and consequently the complexity of the nonemptiness test depend on the logic in
which !b is specified. The crucial point in our approach is that the automaton AK,r is an
automaton over a l-letter alphabet; this reduces the complexity of the nonemptiness test.
Note that in general, unlike the case for nondeterministic automata, the nonemptiness

148

problem for alternating automata cannot be reduced to the l-letter emptiness problem. It
is taking the product with K that yields here an automaton over a l-letter alphabet.

Let ~b be a branching temporal formula. We associate with ~b an amorphous alternating
automaton A~ = (2 AP, c/0P), 8~, ~b, F~), which accepts precisely all the tree models
of ~b. The details of the construction depends on the logic under consideration; we will
see some examples in the next section, Let K = (W, R, w ~ L) be a Kripke structure.
It is convenient to assume that the nodes of W are ordered. Thus, for every node w, let
succR(w) = (wo , wk-1) be the ordered list of w's R-successors.

We now define the product automaton. AK,,~ = ({a}, W • cl(~b), (w ~ ~b), 8, F)
where 8 and F are defined as follows.

- Let ~ E c/(~b), w E W, succR(w) = (too,. . . , wk-1), and 8~(~, L(w), k) = 0.
Then 8((w, ~), a) = (k, 01), where 0' is obtained from 0 by replacing each atom
(c, r/) in 0 by the atom (c, (we, ~)).

- F is defined according to the acceptance condition F~ of A~. For example, if F~ C_
cl(~b) is a B~chi condition, then F = W x F~ is also a Biichi condition. If F~ =
{(L1, U1),..., (Lm, Urn}} isaRabincondition,thenF = {(W • L1, W • U1), . . . ,
(W • L,~, W • U,~)} is also a Rabin condition.

It is easy to see that AK,~ is of the same type as A,p. In particular, if A~ is a WAA,
then so is AK,~.

Propositionl. (1) IAK,r = O(IKI * IAr
(2) /:(AK,r is nonempty iff K ~ r

Proposition 1 can be viewed as an automata-theoretic generalization of Theorem 4.1 in
[EJS93].

In conclusion, given a branching temporal formula r for which there exists an
automaton Ar such that Ar accepts exactly all the trees that satisfy r model checking
ofa Kripke structure K with respect to r is reducible to checking the l-letter emptiness
of an automaton of the same type as Ar and of size O(IKI �9 IAr In the following
sections, we show how this approach can be used to derive in a uniform way known
coplexity bounds for model checking of CTL and/~-calculus formulas, as well as to
obtain new space complexity bounds.

4 Applications

The efficiency of the method we presented in the previous section depends on the
efficiency of the translation of formulas to automata, as well as the efficiency of the
l-letter nonemptiness test.

4.1 Model checking for CTL

Vardi and Wolper showed how to solve the satisfiability problem for CTL via an exponen-
tial translation of CTL formulas to Biichi automata on infinite trees [VW86a]. MUller et
al. provided a simpler proof, via a linear translation of branching dynamic logic formulas
to WAA [MSS88]. We extend here the ideas of Muller et al. by demonstrating a linear
translation from CTL formulas to amorphous WAA.

149

Theorem 2. Given a CTL formula ~b, we can construct in linear running time an amor-
phous WAA Ar = (2 AP, cl(~b), p, ~b , F) such that s Aq:) is exactly the set of tree models
satisfying ~b.

Proof. The set F of accepting states consists of all formulas in cl(~b) of the form A~ol U~2
or E~I 0~o2. It remains to define the transition function p.

- p (p , a , k) = t r u e i f p E ~ . - p (p , ~ , k) = f a l s e i f p ~ c r .
- p (- ~ p , ~ , k) = t r u e i f p f ~ . - p (- ~ p , ~ , k) = f a l s e i f p E ~ .
- p(~l ^ ~,2,,~, k) = p(~1, ~, k) ^ p (~ , ,~ , k).
- / , (~ 1 v ~o,, ,,, k) = p (~ l , ~, k) v / , (~ 2 , ~, k).

p(AX~2, o', k) k-1 - = Ao=o (c, ~2).
p(EX~2 ~r, k) k-1 - , = Vo=0 (c, ~2).

k-1 A - p(A~vl U~z, o', k) = p(~2, o', k) V (P(~I, or, k) A Ac=o (c, ~ol u~2)).
-- p (E~lU~2,0" ,k) = p(~92,0",k) V (p(~l ,0",k) A Vc=ok-l(e, E~pl U~2)).

k-1 A - - p (A ~ I 0~o2 , a , k) = p(~2, a, k) A (p(~ol, (r, k) V Ae=o (c, ~1U~2)).
- p(E~lO~o'z,cr, k) = p(~2,o' ,k)A(p(!al ,~r,k)V Ve=o~-l(c, E~ol 0~2)).

To show that A,p is a WAA, we define a partition of Q into disjoint sets and a partial
order over the sets. Each formula ~ ~ cl(~b), constitutes a (singleton) set {!a} in the
partition. The partial order is then defined by {!a~ } < {~z} iff ~1 ~ C1(~2). Since each
transition of the automaton from a state ~ leads to states associated with formulas in
cl(~), the weakness conditions hold. In particular, each set is either contained in F or
disjoint from F.

We now describe an efficient algorithm to test 1-1etter nonemptiness of WAA.

Theorem 3. The 1-letter nonemptiness problem for weak alternating automata is decid-
able in linear running time.

Proof. See Appendix A.1

Theorems 2 and 3 yield a model-checking algorithm for CTL with linear (in the size
of the input structure and in the size of the input formula) running time. The bottom-up
labeling of the algorithm used in the proof of Theorem 3 is clearly reminiscent of the
bottom-up labeling that takes place in the standard algorithm for CTL model checking
[CES86]. Thus, the automata-theoretic approach seems to capture the combinatorial
essence of CTL model checking.

4.2 Model Checking for the/~-Calculus

The intimate connection between the #-calculus and alternating automata has been noted
in [EJ91, Eme94]. We show here that our automata-theoretic approach provides a clean
proof that model checking for the/z-calculus is in NPNco-NP. The key steps in the
proof are in showing that/z-calculus formulas can be efficiently translated to amorphous
alternating Rabin automata, and that the l-letter nonemptiness problem for alternating
Rabin automata is in NP.

150

Theorem 4. Given a It-calculus formula ~b, we can construct in linear running-time an
amorphous alternating Rabin automaton Ar = (2 AP , cl(~b), p, ~b, F) such that ~ (Ar)
is exactly the set of tree models satisfying ~b,

Proof Emerson and Jutla showed how to translate/.L-calculus formulas to alternating
Streett automata [EJ91]. The extension to amorphous automata is straightforward. By
constructing an amorphous alternating Streett automaton for ~b and then complementing
it (it is easy to complement alternating automata [MS87]), we obtain an amorphous
alternating Rabin automaton.

Theorem 5. The l-letter nonemptiness problem for alternating Rabin automata is de-
cidable in nondeterministic polynomial running time.

Proof. Without loss of generality we can assume that we are dealing with automata
on trees of fixed branching degree, say k. Since the l-letter k-ary tree is homogeneous
(i.e., all subtrees are the same), we can pretend that successor states which are going
down the same branch of the tree, are actually going down separate branches. Thus, we
can apply techniques from the theory of nondeterministic Rabin automata, developed in
[Eme85, VS85], to show that the l-letter nonemptiness problem is in NP.

Combining Theorems 4 and 5, Proposition 1, and the observation in [EJS93] that
checking for satisfaction of a formula ~b and a formula ~b has the same complexity, we
get that the model-checking problem for the/~-calculus is in NPAco-NP.

For the alternation-free /z-calculus, we can prove an analogue to Theorem 2. It
follows then from Theorem 3, that model checking for the alternation-free/z-calculus
can be done in linear running time.

5 The Space Complexity of Model Checking

Pnueli and Lichtenstein argued that, when analyzing the complexity of model checking,
a distinction should be made between complexity in the size of the input structure and
complexity in the size of the input formula; it is the complexity in size of the structure
that is typically the computational bottleneck [LP85]. The Kripke structures to which
model-checking is applied are often obtained by constructing the reachability graph of
concurrent programs, and can thus be very large. So, even linear complexity (in terms of
the input structure) can be excessive, especially as far as space is concerned. The question
is then whether it is possible to perform model-checking without ever holding the whole
structure to be checked in memory at any one time. For linear temporal formulas, the
answer has long been known to be positive [VW86a]. Indeed, this problem reduces
to checking the emptiness of a Btichi automaton on words which is NLOGSPACE-
complete. Thus, if the Btichi automaton whose emptiness has to be checked is obtained
as the product of the components of a concurrent program (as is usually the case), the
space required will be polynomial in the size of these components rather than of the
order of the exponentially larger Biichi automaton. Pragmatically, this is very significant
and is, to some extent, exploited in the "on the fly" approaches to model checking and
in related memory saving techniques [CVWY92].

151

Is the same true of CTL model-checking? The answer to this question was long
thought to be negative. Indeed, the bottom-up nature of the known model-checking
algorithms seemed to imply that storing the whole structure was required. Using our
automata-theoretic approach to CTL model-checking, we are able to show that this is
not so. Technically, this means that we will now prove that model-checking for CTL
is NLOGSPACE-complete in the size of the Kripke structure. To prove this result, we
will first show that the l-letter WAA we construct for CTL model-checking have a
special property (bounded alternation). Then, we will present an alternative algorithm
for checking emptiness of WAA with this property.

Consider the product automaton AK,,p = K x A~0 for a Kripke structure K and CTL
formula ~b. The states of this automaton are elements of W x clOb) and are partitioned
into subsets Qi according to their second component (two states are in the same Qi if
their second components are identical). Thus the number of Qi's is bounded by the size
of cl(~b) and is independent of the size of the Kripke structure. If one examines the Qi's
closely, one notices that they all fall into one of the following three categories:

1. Sets from which all transitions lead exclusively to states in lower Qi's. These are the
Qi's corresponding to all elements of cl(~b) except U-formulas and U-formulas. We
call these transient Q,i ' s.

2. Sets Qi such that, for all q E Qi, the transition 6(q, a, k) only contain conjunctively
related elements of Qi, i.e. if the transition is rewritten in conjunctive normal form,
there is at most one element of Q~ in each conjunct. These are the Qi's corresponding
to the A~ol U ~ and A~,1U~o2 elements of cl(~b). We call these universal Qi's.

3. Sets Qi such that, for all q E Qi, the transition ~(q, a, k) only contain disjunctively
related elements of Qi. These are the Q,i's corresponding to the E~IU~Oz and
E~,I D~2 elements of cl(~b). We call these existential Qi's.

This means that it is only when moving from one Qi to the next, that alternation actually
occurs (alternation is moving from a state that is conjunctively related to its siblings to
a state that is disjunctively related to its siblings, or vice-versa). If the number of Qi's
is fixed and if the depth of transitions is bounded (i.e., if their parse tree has bounded
depth), we call a WAA that satisfies this property a bounded-alternation WAA.

Let us now turn to the nonemptiness problem for bounded-alternation WAA. The-
orem 3 shows that the problem can be solved in linear running time. Notice that the
algorithm used there is essentially a bottom-up labeling of the Boolean graph of the au-
tomaton. We will now show that by using a top-down exploration of this Boolean graph,
we can get a space efficient l-letter nonemptiness algorithm for bounded-alternation
WAA.

Theorem 6. The l-letter nonemptiness problem for bounded-alternation WAA is
NLOGSPACE-complete.

Proof See Appendix A.2

We note that for general WAA the l-letter nonemptiness problem is P-complete.
Now, let us define the structure complexity of model-checking as the complexity of

this problem in terms of the size of the input Kripke structure, i.e. assuming the formula

152

fixed (this was called program complexity in [VW86a]). The following is then a direct
consequence of Theorem 6.

Theorem 7. ThestructurecomplexityofCTLmodel-checkingisNLOGSPACE-complete.

Theorem 7 can be extended to ECTL* [VW84]. The alternating automata that corre-
spond to ECTL* formula are not in general weak. Nevertheless, a careful analysis shows
that these automata do have a special structure and Theorem 6 can be extended to such
automata.

If the Kripke structure is obtained as the product of the components of a concurrent
program, this implies that CTL (and ECTL*) model-checking can be done in polynomial
space with respect to the size of this program. It is also interesting to note that a less
space-efficient deterministic version of the algorithm given in the proof of Theorem 6 can
be viewed as the automata-theoretic counterpart of the algorithm presented in [VL93].

References

[BeeS0]

[BG93]

[CES86]

C. Beeri. On the membership problem for functional and multivalued dependencies
in relational databases. ACM Trans. on Database Systems, 5:241-259, 1980.
O. Bemboltz and O. Grumberg. Branching time temporal logic and amorphous tree
automata, h Proc. 4th Conferance on Concurrency Theory, volume 715 of Lecture
Notes in Computer Science, pages 262-277, Hildesheim, August 1993. Springer-
Verlag.
E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, January 1986.

[Cle93] R. Cleaveland. A linear-time model-checking algorithm for the alternation-free modal
#-calculus. Formal Methods in System Design, 2:121-147, 1993.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algo-
rithms for the verification of temporal properties. Formal Methods in System Design,
1:275-288, 1992.

[EJ88] E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs.
In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science,
White Plains, oct 1988.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In Pro-
ceedings of the 32nd IEEE Symposium on Foundations of Computer Science, pages
368-377, San Juan, Oct 1991.

[EJS93] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of #-
calculus. In Computer Aided Verification, Proc. 5 th Int. Workshop, volume 697, pages
385-396, Elounda, Crete, June 1993. Lecture Notes in Computer Science, Springer-
Verlag.

[Eme85] E.A. Emerson. Automata, tableaux, and temporal logics. In Proc. Workshop on
Logic of Programs, volume 193 of Lecture Notes in Computer Science, pages 79-87.
Springer-Verlag, 1985.

[Eme90] E.A. Emerson. Temporal and modal logic. Handbookoftheoreticalcomputer science,
pages 997-1072, 1990.

[Eme94] E.A. Emerson. Automated temporal reasoning about reactive systems. In Vlll-th
BANFF Higher Order Workshop, 1994. unpublished abstract of forthcoming talk.

153

[ES841

[J J89]

[Koz831

[Lam80]

[LP851

[MS87]

[MSS86]

[MSS88]

[Pnu81]

[QS81]

[SE84]

[SW91]

[Tho90]

[Var88]

[VL93]

[vs85]

[vw84]

[VW86a]

[VW86b]

A.E. Emerson and A.P. Sistla. Deciding full branching time logics. Information and
Control, 61(3):175-201, 1984.
C. Jard and T. Jeron. On-line model-checking for finite linear temporal logic specifi-
cations. In Automatic Verification Methods for Finite State Systems, Proc. Int. Work-
shop, Grenoble, volume 407, pages 189-196, Grenoble, June 1989. Lecture Notes in
Computer Science, Springer-Verlag.
D. Kozen. Results on the propositional/,-calculus. Theoretical Computer Science,
27:333-354, 1983.
L. Lamport. Sometimes is sometimes"not never" - on the temporal logic of programs.
In Proceedings of the 7th ACM Symposium on Principles of Programming Languages,
pages 174-185, January 1980.
O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the Twelfth ACM Symposiumon Principles
of Programming Languages, pages 97-107, New Orleans, January 1985.
D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54,:267-276, 1987.
D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadie
theory of the tree and its complexity. In Proc. 13th Int. Colloquium on Automata,
Languages and Programming. Springer-Vedag, 1986.
D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In Proceedings 3rd IEEE Symposium on Logic in Computer Science, pages
422--427, Edinburgh, July 1988.
A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45-60, 1981.
J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Ce-
sar. In Proc. 5th Int'l Syrup. on Programming, volume 137, pages 337-351. Springer-
Verlag, Lecture Notes in Computer Science, 1981.
R. S. Street and E. A. Emerson. An elementary decision procedure for the mu-
calculus. In Proc. 11th Int. Colloquium on Automata, Languages and Programming,
volume 172. Lecture Notes in Computer Science, Springer-Verlag, July 1984.
C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theoret-
ical Computer Science, 89(1):161-177, 1991.
W. Thomas. Automata on infinite objects. Handbook oftheoreticalcomputer science,
pages 165-191, 1990.
M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Syrup. on Principles of
Programming Languages, pages 250-259, San Diego, January 1988.
B. Vergauwen and J. Lewi. A linear local model checking algorithm for ctl. In Proc.
CONCUR '93, volume 715 of Lecture Notes in Computer Science, pages 447---461,
Hildesheim, August 1993. Springer-Verlag.
M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of
programs. In Proc 17th ACM Symp. on Theory of Computing, pages 240-251, 1985.
M.Y. Vardi and P. Wolper. Yet another process logic. In Logics of Programs, volume
398, pages 501-512. Lecture Notes in Computer Science, Springer-Verlag, 1984.
M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science,
pages 322-331, Cambridge, June 1986.
M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Science, 32(2): 182-21, April 1986.

[VW94]

[Wo183]

[Wo189]

154

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 110(2), May 1994. (To appear).
P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1-
2):72-99, 1983.
P. Wolper. On the relation of programs and computations to models of temporal
logic. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proc. Temporal Logic
in Specijication, volume 398, pages 75-123. Lecture Notes in Computer Science,
Springer-Verlag, 1989.

A Proofs

A.1 Theorem 3

We present an algorithm with linear running time for checking the nonemptiness of the
language of a WAA A = ({a}, Q, 6, q0, F).

As A is weak, there exists a partition of Q into disjoint sets Q~ such that there exists
a partial order < on the collection of the Q~'s and such that for every q E Q~ and q' E Qj
for which q' occurs in ~(q, a), Q~ < Qi. Thus, transitions from a state in Q~ lead to states
in either the same Qi or a lower one. In addition, each set Qi is classified as accepting,
if Qi C_ F, or rejecting, if Qi 171 F = $.

The algorithm labels the states of A with either 'T', standing for true, or 'F' , standing
for false. Intuitively, states q E Q for which the language of A q (i.e., the language of A
with q as the initial state) is nonempty are labeled with 'T' and states q for which the
language of A q is empty are labeled with 'F'. The language of A is thus nonempty iff
the initial state q0 is labeled with 'T'. The algorithm works in phases and proceeds up
the partial order. Let Q1 < �9 �9 < Q,~ be an extension of the partial order to a total order.
In each phase i, the algorithm handles states from the minimal set Qi which still has not
been labeled.

States that belong to a set Q~ that is minimal in the partial order, are labeled according
to the classification of Q~. Thus, they are labeled with 'T' if Q~ is an accepting set, and
with 'F' if it is rejecting. Once a state q E Qi is labeled with 'T' or 'F', transition functions
in which q occurs are simplified accordingly, i.e., a conjunction with a conjunct 'F' is
simplified to 'F' and a disjunction with a disjunct 'T' is simplified to 'T'. Consequently,
a transition function 6(q', a) for some q', (not necessarily from Qi) can obtain its truth
value, q' is then labeled, and evaluation proceeds further.

Since the algorithm proceeds up the total order, when it reaches a state q E Qi that
is still not labeled, it is guaranteed that all the states in all Qj for which Qj < Q~, have
already been labeled. Hence, all the states that occur in 6(q, a) have the same status as
q. That is, they belong to Qi and are still not labeled. The algorithm then labels q and
all the states in ~5(q, a) according to the classification of Qi. They are labeled 'T' if Qi
is accepting and are labeled 'F' otherwise.

Using an AND/OR graph, as suggested in [Bee80], the algorithm can be implemented
in linear running time. Typically, the graph, induced by the transition function, keeps
the labeling performed during the algorithm execution. Simplification of each transition
function/~(q, a) for all q E Q, then costs O(16(q, a)]).

155

A.2 Theorem 6

The property of bounded-alternation WAA we use is that, from a state of a Qi, it is
possible to search for another reachable state of the same Qi in NLOGSPACE. For
transient Qi, there are no such states. For universal and existential Q~, the exact notion
of reachability we use is the transitive closure of the following notion of immediate
teachability. Assume, we have a Boolean value for all states in sets lower than Qi. Then
a state q' is immediately reachable from a state q, if it appears in the transition from
q when this transition has been simplified using the know Boolean values for states in
lower Qi. Note that the simplified transition is always a conjunction for a state of a
universal Qi, and a disjunction for a state of an existential Qi.

The following procedure labels the states of the automaton with 'T' (accepts) or 'F '
(does not accept).

1. One starts at the initial state.
2. At a transient state q, one applies the procedure to the successor states. The labels

that are obtained for these successor states are then substituted in the transition from
q, and q is labeled with the Boolean value that is thus obtained for the transition.

3. At a state q of a universal Qi, one proceeds as follows. We call a state q' of Qi
provably true if, when the procedure is applied to the successors of q' that are not in
Qi, and the Boolean expression for the transition from q' is simplified, it is identically
true. States that are provably false are defined analogously.
(a) One searches in NLOGSPACE for a reachable state q' of the same Qi that is

provably false (note that this requires applying the procedure recursively to all
states from lower Qi's that are touched by the search). If such a state q' is found,
the state q is labeled 'F'.

(b) If no such state exists, one searches in NLOGSPACE for a state q' of Qi that is
reachable from q and from itself. If such a state is found, q is labeled according
to the classification of the Qi.

(c) if none of the first two cases apply, q is labeled 'T'.
4. At a state q of an existential Qi, one proceeds as follows.

(a) One searches in NLOGSPACE for a reachable state q' of the same Qi that is
provably true. If such a state q' is found, the state q is labeled 'T'.

(b) If no such state exists, one searches in NLOGSPACE for a state q /of Qi that is
reachable from q and from itself. If such a state is found, q is labeled according
to the classification of the Qi.

(c) if none of the first two cases apply, q is labeled 'F'.

The procedure is recursive, but as the depth of the transitions is bounded by the
number of Qi's, so does the depth of recursion. Since each invocation of the procedure
can be executed in NLOGSPACE, the whole procedure is thus NLOGSPACE. Complete-
ness in NLOGSPACE is immediate by reduction from the corresponding problem for
nondeterministic sequential automata.

