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A b s t r a c t .  A hybrid automaton consists of a discrete state component 
represented by a finite automaton, coupled with a (vector) continuous 
state component governed by a differential equation. For hybrid au- 
tomata it is possible to reduce certain verification problems to those of 
checking language containment or language emptiness. Here we present 
a class of hybrid automata called suspension automata for which condi- 
tions can be given under which these problems are decidable. 

1 I n t r o d u c t i o n  

The  state of a hybrid system has two components. There is a discrete compo- 
nent which evolves as in a finite automaton,  and a (vector) continuous compo- 
nent which is governed by a differential equation. The two components  interact: 
the differential equation in force at any time is determined by the s tate  of the 
automaton,  and the occurrence of transitions of the automaton is determined 
by the value of the continuous component.  Details of the modeling formalism 
depend on tradition and on the purpose at hand as seen in the recent volume 
[1]. The model used here is a modification of the 'hybrid au tomaton '  of [2]. It  is 
called the 'suspension automaton. '  

Verification problems for hybrid au tomata  are not always decidable. The 
most  important  decidable special case is the t imed automaton [3, 4, 5]. A t imed 
au tomaton  comprises a finite automaton and a collection of ' t imers. '  A t imer 
has a continuous positive component which increases at rate one. The value 
of the timer states enables or disables discrete transitions of the system. At 
such transitions, a t imer 's  value may be reset to zero. Timed au toma ta  are 
used to impart  real-time constraints on the transitions of finite state machines. 
Impor tan t  digitM circuit t iming analysis and (bounded) t imed Petri  nets can 
be formulated in this way. Software implementations of decision procedures for 
these au tomata  are being developed [6, 7]. 

For many  other hybrid systems the t imed automaton is not a sufficiently 
descriptive model. Among these are common scheduling, synchronization, and 
communication policies. These systems require that ,  at the minimum, one should 
be able to assign timers a rate of 0 as well as 1. The following is a simple example 
of this sort of system. 

* Research supported by National Science Foundation under grants ECSl11907 and 
IRI9120074. 
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Example 1. Scheduling :lobs Under Preemptive Least Time Remaining Policy 

Suppose a single processor must perform several different types of tasks upon 
request. For each task type there is a lower bound on the time between requests 
and a fixed time needed to perform the task. If more than one task has been 
requested at a given time then the processor must have some policy for de- 
termining which task is performed first. One common policy is the least time 
remaining policy. Under this policy the processor performs the task requiring 
the least amount of time to complete. As a concrete example, suppose we have 
two task types with the following characteristics. 

Task 1: interarrival time > 8 and processing time = 2 

Task 2: interarrival time > 4 and processing time = 3 

One question that  is commonly asked is: 'Will the processor complete a task 
of a given type before the next task of that  type is requested?' In this case it is 
easy to see that  the answer to the question will be 'no.' If Task 2 is preempted for 
service of Task 1, then a second request for Task 2 may arrive before completion 
of service to the originally requested task. 

Formally, problems such as those posed for Ex. 1 may be addressed by ex- 
amining the logical sequencing of events possible for the system. One common 
technique is verification through language containment: 

Given a specification represented by a language (set of event sequences) 
s and system behavior represented by a language Z: ~y~ check whether 

This problem is decidable if both s and s are w-regular, that  is finite state 
representations exist for the languages. In generM, the language/:'Y" for a hybrid 
system need not be ,)-regular. This paper is devoted to defining conditions under 
which a finite state representation may be derived. 

A suspension automaton is an extension of a timed automaton in which a 
timer can be 'suspended,' i.e., its rate of increase can be set to 0. A suspended 
timer can later be unsuspended to resume increasing at rate 1. A 'rate assign- 
ment '  specifies which timers are suspended or unsuspended as a function of the 
discrete components of the state. Suspension automata can be used to repre- 
sent scheduling, synchronization, and communication policies in a very natural 
fashion. Unfortunately, the untimed language of a suspension automata is not 
guaranteed to be w-regular. In order to avoid this problem, additional restrictions 
must be made to the form of the automata.  In this paper, a trick is introduced 
by which one may replace the suspension of a timer by the decrementation of its 
value. In Sect. 2 the suspension automaton is defined. It is shown in Sect. 3 that  
the system of Ex. 1 may be modeled using the suspension automaton. In Sect. 4 
a condition is given under which the untimed language is guaranteed to be finite 
state. It is shown that  the system in Ex.1 may be represented by an automaton 
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satisfying the conditions. However, two problems remain. First, the conditions 
given in Sect. 4 are not easily checked. Second, the au tomata  representing the 
systems of interest which satisfy the conditions are not easily derived. In Sect. 
5 a systematic method is given for transforming a class of suspension au tomata  
(including those such as the one given in Sect. 3) into au tomata  guaranteed to 
satisfy the conditions given in Sect. 4. Together these results give a reasonable 
procedure for verifying an interesting class of hybrid systems. 

2 T h e  S u s p e n s i o n  A u t o m a t o n  

The  suspension automaton defined below is similar to the hybrid au tomaton  of 
[2]. I t  limits the dynamic behavior of the timers to a rate of increase of either 
one or zero. In addition, it expands the timer reset operation to allow for the 
decrementat ion of t imer values by integer amounts.  A suspens ion  a u t o m a t o n  is 
a tuple (.4, L0, ~r) where .4 is a suspension transition system denoting the causal 
behavior of the system, L0 _C L is a restriction on the initial conditions of the 
system, and ~ C_ 79(L) (where P( . )  represents the power set) is a restriction on 
the set of locations visited infinitely often. 

Formally, A is a tuple (L, Z,  T, R, Vine, E d g e )  where: 

- L is a finite set of locations representing the discrete state of the system. 
- ~ is a finite event set. 
- T is a collection of timers {Ti}N1. Each t imer has associated with it Vl E IR, 

the value of the timer. Let v be a vector of dimension N representing the 
timer values. 

- R = {R l : l C L} is the rate assignment where R z C (0, 1} y defines the 
possible rates of timers in location l. For any r G R l, ri gives the rate of 
T/. If  R l has a single element for each l E L say that  the au tomaton  is rate 

de termin i s t i c .  

- V/no = {V l : l E L} where each V l _C IR N is an inclusion condition. While in 
any given location l, the timer values must remain in V I. 

- E d g e  C L x ~ x L x 7)(JR N)  x R e s e t  is an edge relation. Each e C E d g e  is 
of the form e =- (l, cr, 1 I, V ~, rese t  e) where: 

�9 l is the current location, a an event, and 11 the next location. This cor- 
responds to the discrete edge transition. 

�9 V e is an enabling condition. In order to make a transition, the current 
timer values must  be in V ~. 

�9 re se t  ~ is a collection of conditions each of which either resets the t imer 
value to 0 (denoted by vi := 0) or decrements the t imer by some fixed 
integer constant (denoted by vi := v~ - c). 

Only very specific forms of V ~ and V z will be considered. These will be called 
s imple  regions. Say that  V C_ 1R N is a simple region if there exists a set of 
constraint equations each of the form; vi .'~ c or vl - vj ~ c where ~ is one of 
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<, >,  <,  > or =,  and c E 77, such that  V is the set of all v E 1R satisfying the 
constraints. 

The suspension automaton may be depicted by a labeled directed graph. Ex. 2 
shows this representation. Here, each location is given as a node with a location 
label, rate assignment, and inclusion set denoted as a collection of constraint 
equations. Edges are represented as directed arcs between nodes labeled with an 
event, a set of constraint equations representing V ~, and reset ~. 

Example 2. The Representation of the Task 1 Component  of the System 

There are two events the arrival of a request denoted by r 1 and the com- 
pletion of task service denoted by c 1. The request interarrival t ime is regulated 
by an interarrival t imer T2 and the service time by a process t imer T1. 

r l  
Start v 2 > 8; v2:=0 

R=(o,1) el 

. i  Vl=2;Vl:=0 

~ ' ) '  (~ ~ ~2:->_8; 

The constraint v2 >_ 8 ensures tha t  the task request event r 1 occurs no more 
often that  every 8 time units. The nondeterministic rate assignment indicates 
tha t  the rate is not under the control of the task, but subject to external con- 
trol. The inclusion condition vl < 2 together with the enabling condition vl = 2 
ensures that  the completion event, c 1 will occur when the task has received the 
required amount  of service. 

2.1 B e h a v i o r  o f  S u s p e n s i o n  Systems 

Formally, the behavior of the system will be represented in terms of runs. The 
run describes the behavior of the system in terms of timer behavior as the sys tem 
moves from location to location. FormMly, given a sequence p drawn from E,  a 
run for p with respect to .A is an object of the following form: 

p(1) p(2) 
~(o)(/(0),t(0)),,(o), '~(1) (/(1),t(1))~,(1), ',(2) (/(2), t(2))~,(2). . .  

where: 

- v ( 0 )  = 0. 
- for a l l n > 0 :  

�9 t ( n )  _> o .  

�9 There exists r E R t where 1 = l(n) such that  d(n)  = v(n) + rt(n). 
�9 For all 0 < t < t(n), v(n) + rt E V t where l = l(n). 
�9 There exists an edge e = (l, a, l ~, V e, reset ~) where: 
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* l = l (n ) ,  cr = p (n  + 1), and I' = l ( n +  1). 
* The enabling conditions are satisfied - v ' (n )  E V e. 
* The reset conditions are satisfied�9 

�9 I f v i  := 0 E rese t  e, then v i (n  + 1) = 0. 
Else if vl := vl - c E rese t  ~, then v i (n  + 1) = v~(n) - c. 
Else, + 1) : 

A run is said to be an accepting run if l(0) 6 L0 and i n f ( { 1 } )  E J: where 
i n f ( { l } )  is the set of all locations visited infinitely often. Let s  Lo, ~ )  be 
the set of all p with accepting runs. 

3 Representation of Scheduling Using Suspension 
Automata 

Scheduling may be represented quite naturally through rate assignment where 
a process timer is assigned rate 1 if its task is of highest priority and rate zero 
otherwise. Fig. 1 shows this for Ex. 1. For the sake of simplicity, the represen- 
tation of interarrival times is omitted. In addition, edges representing requests 
arriving before completion of already requested tasks of the same type are not 
shown. The locations represent the status of the tasks in the system - waiting for 
service, receiving service, or not requested. There are only two timers, process 
timers T1 for Task 1 and T2 for Task 2. The timer values have the interpreta- 
tion of processor time received. Thus the priority decision (and hence the rate 
assignment) may be formulated as a property of the timer values. 

r2 ~ rl 

Fig. 1. Representation of least time remaining policy using timer suspension 
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The automaton in Fig. 2 represents an alternative way of representing schedul- 
ing. This automaton is not as straightforward to interpret, but  can be show to 
have a finite state representation for its untimed language. In this case, pre- 
empted tasks have their process timers decremented by the service time of the 
preempting task. Although the automaton is similar to that  of Fig. 1 several 
complications are introduced. Now a distinction must be made between a task 
request arriving and having to wait and a task which is receiving service being 
preempted. Also, the timer values when decremented no longer have the inter- 
pretation of processor time received. Although this does not affect transitions 
for two task systems, in general, this will make the priority decision harder to 
formulate in terms of timer values. 

h=2; I R={1.1) 

3_,2-v,;/ ~ v,=2j / 2<3-v2; 
/ ! v= :=v2 . 

r 1 : r2 ~ " 

r2 ~ rl 
~1:=~,-~ Iv~ '--U ~ _____~ ~ 

I su pTaskl I v~:=O ~ [ Wait Task I I 

Fig. 2. Representation of least time remaining policy using timer decrementation 

4 A D e c i d a b i l i t y  R e s u l t  f o r  D e c r e m e n t a t i o n  A u t o m a t a  

In general, the untimed language of a suspension automaton need not be finite 
state. In this section one set of conditions is given under which a finite state 
representation is guaranteed. The result presented here is a simple extension of 
the result for timed automata [4, 5]. The reasoning is as follows. The full state 
of any suspension automaton is given by the location, current rate, and values 
of the timers. This state evolves continuously with time. However, for a given 
location and rate assignment, the evolution of the timer values may be fully 
predicted for the duration of the location knowing their values when the system 
first entered that  location. Thus one may define a sampled transition system 
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on the state space L x {0, 1} N x I ~  N where only the values of the timers upon 
initially entering a location are tracked. This transition system is by no means 
finite state. However, one may combine states which are indistinguishable in 
terms of past and future logical behavior. The resulting automaton is called the 
t imer  region automaton. 

The above approach is the one taken in [4] to show that timed automata  
have w-regular languages. The proposed state equivalence groups timer values 
into t imer regions based on the following two observations. First, in terms of 
the transitions taken, it is enough to know the integer components of the timer 
values and the relative ordering of the fractional components of the timer values. 
Second, there is some upper bound past which the value of the timer no longer 
matters  at all. 

This result may be extended by making two more observations: 

- If vi = 0, then the suspension of T/ is  represented by keeping vi = O. 
- If vl is decremented by an integer amount, the relative ordering of the frac- 

tional parts of the timers does not change, and the change in the integer 
value is predictable. 

Thus, under the above two conditions it should still be sufficient to track just  
the relative ordering of the fractional values and the integer values of the timers. 
What  remains is to give conditions under which suitable upper and lower bounds 
on the region of interest for the timer values may be derived. The following 
theorem gives one such set of conditions. This set of conditions is not in itself 
checkable, but in Sect. 5 it is shown how to derive automata that are guaranteed 
to satisfy the conditions and model interesting systems such scheduling policies. 

T h e o r e m  1. Given an accepting run for a rate deterministic automaton (.4, Lo, jz) 
let dec(i, n) be the amount vi was decremented by upon the n th transition. 

Suppose for all accepting runs for each Ti �9 T there exists K~ and K 2 such 
that: 

-- [ f  r i  --~ O, t h e n  vi = O. 
M For all M ,  }-]-m=] dec(i, m) - t (m)  <_ K 1 

- For all M ,  whenever v i (M)  >_ K~, vi is no longer decremented and for any 
edge taken, the constraints representing V ~ do not involve the comparison of 
vi to another timer. 

I f  the above conditions are satisfied, then s L0,5 r) is w-regular. 

Intuitively, the first condition ensures that timers may be suspended only if 
their value is fixed. The second condition gives the lower bound and the third 
condition gives the upper bound. A timer may never have a value less than IQ 
and once it is greater than Is its actual value ceases to be of importance. 

Note that  the automaton of Fig. 2 satisfies the condition of Theorem 1. That  
is, ri = 0 only when vi = 0, and the values K~ = 3, K1 ~ = 2, K~ = 2, and 
K~ = 3 satisfy the remaining conditions. 
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4 . 1  D e f i n i n g  A T i m e r  R e g i o n  A u t o m a t o n  

In order to prove Theorem 1, we will first define the timer regions and then 
specify the transition function between regions as a function of the edges of the 
suspension automaton. This is sufficient to define a finite state machine accepting 
L:ssq(A, L0,~'). The appropriate equivalence classes are similar to those in [4, 
5]. For each timer 3) let Ci be the largest constant appearing in a constraint 
equation involving vi defining either an enabling or inclusion condition. Let Ui = 
m a z ( K  2, Ci) and Li = - K ~ .  Let int( . )  be the integer component of a number 
and f r a c t ( . )  the fractional component. Say that  v ~ v t if either: 

�9 �9 I - for some z,3 , vi < Li and vj < Lj  
- or for all i, vi > Li and for all i, j 

I �9 either in t (v i )  = int(v~) or both vi > Ui and v i > Ui 
�9 and whenever vi < Ui and vj ~ Uj 

f r a c t ( v i )  < f r a c t ( v j )  if and only if f rac t (v~)  <_ f r a c t ( v j ) .  

Let [v] indicate the equivalence class containing v and [IRN]~ the set of all 
equivalence classes induced by ~.  These equivalence classes will be the timer 
regions. Note that  there are only a finite number of timer regions�9 The key to 
constructing an automaton accepting L:seq(,4, L0, :F) is to describe the transition 
from one timer region to the next. Below, the succession of timer regions is 
described. Two sorts of transitions are possible for timer regions - an e-transition 
denoting the passage of time and a a transition denoting the occurrence of a 
discrete event. Assume the system is in location I. 

- T i m e  Success ion:  Say that [v'] r [v] is a time successor of Iv] if for some 
t > O, v + t r  I e [v'],for all 0 < t '  < t, v + t ' r  t E [v] U [v'], and [v'] C Y "--y where 
V z is the closure of V t. That  is, Iv ~] is the first timer region reachable from 
any point in Iv] by the passage of time. 

- D i s c r e t e  T r a n s i t i o n :  Say that  [v'] is a ~ successor of [v] if there exists an 
edge e = (l, a, l ~, V e, reset  s) such that: 

�9 [v] g v s. 
�9 ~v n E Iv t] such that: 

/ /  0 .  * If vi := 0 E reset  e, then v i = 
t !  . Else i fvi  := vi - c E reset  e, then v i -- vi - c. 

I t  * Elsev  i = v i .  
�9 [v'] c_ V e.  

L e m m a 2 ,  Given (,4, L0 , ~ )  satisfying the conditions of  Theorem 1, the lan- 
guage accepted by the t imer  region automaton is exactly f.2eq(A, Lo, 3:). 

Proof. Let (A, L0, I ' )  be a suspension automaton satisfying the conditions of 
Theorem 1. 

Suppose we are given a run for p with respect to (,4, L0, ~'). Note that  for 
I this run it is never the case that either ~ < Li or v i < Li. It can be seen 

that  [v'(n)] is reachable from [v(n)] by a series of e-transitions denoting time 
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succession. Similarly, it can be seen that  [v(n + 1)] may be reached from [v'(n)] 
by a p(n + 1) transition. 

Now suppose that  we have a run for p through the timer region automaton.  
A run for (,4, L0, ~r) may be constructed as follows. Note that  the timer region 
[v] where for some T/, vi < Li, is not reachable. Let {[v]} be the sequence of 
timer regions visited. Define a subsequence {[v](kn)} where [v](k0) = [v](0) and 
[v](kn+l) is the next timer region reached from [v](kn) after a series of time 
transitions by a a-transition (specifically p(n + 1)). Next define the subsequence 
{[v](k~)} by [v](k~) = [v](k,+l - 1). In other words, [v](k~,) is the last timer re- 
gion reached from [v](k,) by a series of timer transitions and for which [v](kn+l) 
is a p(n + 1) successor. Let v(0) E [v](k0). Recursively construct {v} and {v'} as 
follows: 

- Given [v](kn) and [v](k~n) we can choose a t(n) Such that 
v'(n) = v(n) + t(n)r z e [v](k~) where r I is the current rate assignment. 

- Given V(n) applying reset rules will lead to v(n + 1) E [v](kn+l). 

Now, since v(n) and v'(n) are in the appropriate equivalence classes it is ensured 
that  the enabling and inclusion conditions are satisfied. D 

5 Translation of Suspension To Decrementation 

In this section, a procedure is given for transforming a suspension based automa- 
ton into a decrementation based automaton. Provided that  certain conditions 
are met, the decrementation based automaton is guaranteed to satisfy the condi- 
tions of Theorem 1. This procedure is designed with the structure of scheduling, 
communication, and synchronization policies in mind. As a basic step it requires 
the definition of a precedence or priority relation among timers as a function of 
location. In general, the priority assignment can be linked to system concepts 
such as the notion of task priority. 

To gain intuition, consider the evolution of v2 for the automata of Figs. 1 
and 2 in the case that  Task 2 is requested at time 8 and Task 1 is requested at 
time 8.5. This evolution is shown in Fig. 3. 

~ ~ ~1~.5 1A3 ~t 

Fig. 3. A comparison of runs 

Here, the suspension and decrementation of T2 is closely linked to the behav- 
ior of T1. Tha t  is, between times 8.5 and 10.5 we can think of T1 as being in an 
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'active state. '  T2 is suspended while T1 is in this state. Furthermore, the time 
T1 is in this state is predictable (it is the time of service for Task 1) and this 
predictability may be used to determine the amount v~ should be decremented 
by. Finally, note that  given vl, the decremented value of v2 may be deduced from 
the suspended value and vice versa. 

5.1 P r e c e d e n c e  S y s t e m  

The precedence system formalizes the notion of timer behavior and interaction 
shown in Fig. 3. Suppose we are given an automaton ,4. Say that  a timer is 
pi-valued for ,4 if its behavior can be characterized in the following way. The 
timer has two states - an idle state where its rate and value are both zero, and 
an active state where its value and rate may be non-zero. The timer transitions 
from the active to idle state if and only if its value reaches pi and the timer may 
not be reset or decremented while in the active state. 

A precedence assignment  for ..4 is a collection of relations P r e c  = { P r  I : I E 
L} with P r  I C Tj_ x T (where T• = T L3 {_l_}) denoting the relative priorities of 
the timers while in location 1. (_L, T/) is used to indicate timer T~ being of high 
precedence without there being a timer of lower precedence. 

Fig. 4 gives a precedence assignment for the least time remaining policy. Only 
the top half is given, the bot tom half may be defined in a similar fashion. Note 
that  the precedence assignment corresponds to the task priority assignment as 
it is given in Fig. 1. 

Fig. 4. Precedence for least time remaining policy 

A precedence sys tem provides a link between precedence assignment and rate 
assignment for pi-valued timers. Let T = T "< O T g where T "< is the set of timers 
involved in the precedence assignment. Require that  all timers in T "< be pl-valued 
and that timers in Tg are never decremented. Explicitly represent the state of 
the timers in T "< as follows. Let TO C T "< be the set of idle timers. Require 
that  a timer leave TO the first time a location I is reached where (T/,Tj) E P r  l 
and there does not exist (Tj, Tk) E P r  z. Call the new automaton including the 
explicit representation of timer state the precedence automaton. Say that P r e c  
is consistent with R if the following condition holds: 
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Vl �9 L, r~ = 0 if and only if either Ti �9 TO or 3 ( ~ , T j )  �9 P r  z. 

A precedence sys tem is a precedence automaton .4 where P r e c  is consistent with 
R. 

In order to define a precedence system for the automaton in Fig. 4 the only 
thing to do is make TO an explicit part of the location. This is done in Fig. 5. 
For this automaton P r e c  is consistent with R. In terms of discrete transitions, 
this brings the representation closer to that of Fig. 2. However, scheduling is still 
represented through the suspension of timers. 

Fig. 5. Precedence system for least time remaining policy 

In order to provide the final link between timer behavior and decrementation 
a few more conditions must be satisfied. Most importantly, it must be possible 
to identify which timer is suspending which at any time, and to ensure that  
this suspension relation doesn't change arbitrarily. This may be achieved by 
restricting the form of Prec .  Say that P r e c  is prioritizing if for all p the following 
condition holds for any run: 

Given a transition from (1, TO) to (l', TO'), if Ti, ~ ~ TO and (T/, Tj) �9 
P r  l, then either (~ ,  Tj) �9 P r  l' or Tj �9 TO'. 

Thus, during the active period of any two timers their precedence relation to 
each other remains fixed. The prioritizing condition may either be ensured by 
design or checked as a language property. Say that P r  I is tree-like if whenever 
(T i ,T j )  E P r  z and (Ti,Tk) C P r  z then either (Tj,Tk) �9 P r  z or (Tk,Tj) �9 P r (  
P r e c  is tree-like if for all l �9 L, P r  z is tree-like. Finally, say that  P r  t is complete 
if whenever (T/,Tj)  �9 P r  z and (2~,Tk) �9 P r  l, then (T/,Tk) �9 P r  t. Note that  
any precedence assignment may be completed. 

It is also necessary to restrict the form of the enabling and inclusion condi- 
tions. Say that  V C_ lR N is rectangular if there exists a set of constraint equations 
all of the form v/ --~ c describing it. Note that the precedence system given in Fig. 
5 satisfies the tree-like and prioritizing conditions and has rectangular enabling 
and inclusion regions. 
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5.2 T r a n s l a t i o n  o f  P r e c e d e n c e  A u t o m a t o n  to  D e c r e m e n t a t i o n  

Suppose that  ,4 is a precedence system where Prec  is prioritizing, tree-like, and 
complete, and for all I and e, V ~ and V e are rectangular. An automaton Dec(,4) 
may be produced as follows. 

- D e c r e m e n t a t i o n :  Let e be an edge transitioning from (l, TO) to (l', TO'). 
Suppose that  T+ E TO, but  T+ ~ TO'. For all Tj ~ TO' such that (Tj, T+) E 
P r  t', add vj := vj - Pi to reset ~. 

- R a t e  A s s i g n m e n t :  Set the rate assignment so that timers are rate zero if 
and only if they are in TO. 

- Sk e wi n g  V 1 a n d  Ve: Given v, TO, and P r  I, define -~ = skew(v ,  TO, P r  l) as 
follows. I f  Ti" E TO then ~i = O. Otherwise, ~i = vi - ~'~+je~,(PJ - vj)  where 
Si = { j  : ( ~ , T j )  E Pr t } .  
Let skew(V,  TO, P r  z) = {~: 3v E V s.t. ~ - -  skew(v ,  TO, Pr l ) } .  

* For all 1E L replace V z by skew(VI ,TO,  PrZ). 
�9 For all e E Edge replace V + by skew(Ve ,TO,  PrZ). 

For any rectangular V, skew(V,  TO, P r  z) may be represented as follows. For 
all T+ ~ TO if there exists Tj+ such that  (:~, Tj,)  E P r  t and there does not 
exist 7~ such that (7)+,Tj) E P r  z, then replace all constraint equations of 
the form vi ~ c by vi - vj+ + pj+ .+ c. 

Dec(,4) for the precedence system of Fig. 5 is shown in Fig. 6. Two changes 
are made to ,4 - in the case that  Task 2 is preempted, its process timer is 
decremented and the inclusion condition is skewed. 

o | ~ : = v 2 - 2  

Fig. 6. Dec(A) for least time remaining policy 

T h e o r e m  3. Suppose ,4 is a precedence system where Prec  is prioritizing, tree- 
like, and complete, and for  all I and e, V I and V e are rectangular. In this case, 
Lseq(,4) = Lseq(nec( ,4)) .  

Proof. Given a run with respect to one of the automata, it is enough to construct 
the appropriate timer values to prove there exists a corresponding run with 
respect to the other. Let ~ denote the timer values for Dec(,4) and v denote the 
timer values for `4. 
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Given a run with respect to ,4, let ~(n) = skew(v(n),  PrZ(n), TO(n)) and 
~ (n )  = skew(v'(n),  Prl(n), TO(n)). It  is easy to verify that  this indeed defines a 
run  with respect to Dec(A). 

Similarly, suppose we are given a run with respect to Dec(A).  Let vi(n) = 
~ i ( n ) - ~ j , ( n ) + p j  i where ji satisfies (hq, Tj,) E Pr  z(n) and there does not exist Tj 
such that  (7~,, 7~) E Pr  l("). Define v~(n) in a similar fashion. It  can be verified 
tha t  this defines a run with respect to A. [7 

T h e o r e m 4 .  Suppose A is a precedence system where Prec is prioritizing, tree- 
like, and complete, and for all I and e, V t and V e are rectangular. In this case, 
Dec(A) satisfies the conditions of Theorem 1. 

Proof. By the definition of the precedence system and the construction of 
Dec(A) it is clear tha t  ri = 0 only i fv i  = 0. Let Ji = {j  : 31 s.t. (T/, Tj) E PrZ}. 
Then K~ = ~ j e J ~  PJ satisfies the second condition of Theorem 1. K~ = Pi 
satisfies the final condition of Theorem 1. [] 

6 D i s c u s s i o n  

In this paper,  a class of hybrid au tomata  for which language containment is de- 
cidable is defined. The conditions presented are somewhat  restrictive, but  they 
do allow for the representation of interesting systems tha t  could not be repre- 
sented using rate 1 automata .  Future work should seek to relax these conditions, 
for instance, a relaxation of the requirement that  timers are suspended for a fixed 
amount  of time. In addition, techniques should be explored to minimize the s tate  
explosion problem inherent in all the current t imer-based hybrid automata .  
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