
Suspension Automata: A Decidable Class of
Hybrid Automata*

Jennifer McManis and Pravin Varaiya

University of California at Berkeley

A b s t r a c t . A hybrid automaton consists of a discrete state component
represented by a finite automaton, coupled with a (vector) continuous
state component governed by a differential equation. For hybrid au-
tomata it is possible to reduce certain verification problems to those of
checking language containment or language emptiness. Here we present
a class of hybrid automata called suspension automata for which condi-
tions can be given under which these problems are decidable.

1 I n t r o d u c t i o n

The state of a hybrid system has two components. There is a discrete compo-
nent which evolves as in a finite automaton, and a (vector) continuous compo-
nent which is governed by a differential equation. The two components interact:
the differential equation in force at any time is determined by the s tate of the
automaton, and the occurrence of transitions of the automaton is determined
by the value of the continuous component. Details of the modeling formalism
depend on tradition and on the purpose at hand as seen in the recent volume
[1]. The model used here is a modification of the 'hybrid au tomaton ' of [2]. It is
called the 'suspension automaton. '

Verification problems for hybrid au tomata are not always decidable. The
most important decidable special case is the t imed automaton [3, 4, 5]. A t imed
au tomaton comprises a finite automaton and a collection of ' t imers. ' A t imer
has a continuous positive component which increases at rate one. The value
of the timer states enables or disables discrete transitions of the system. At
such transitions, a t imer 's value may be reset to zero. Timed au toma ta are
used to impart real-time constraints on the transitions of finite state machines.
Impor tan t digitM circuit t iming analysis and (bounded) t imed Petri nets can
be formulated in this way. Software implementations of decision procedures for
these au tomata are being developed [6, 7].

For many other hybrid systems the t imed automaton is not a sufficiently
descriptive model. Among these are common scheduling, synchronization, and
communication policies. These systems require that , at the minimum, one should
be able to assign timers a rate of 0 as well as 1. The following is a simple example
of this sort of system.

* Research supported by National Science Foundation under grants ECSl11907 and
IRI9120074.

106

Example 1. Scheduling :lobs Under Preemptive Least Time Remaining Policy

Suppose a single processor must perform several different types of tasks upon
request. For each task type there is a lower bound on the time between requests
and a fixed time needed to perform the task. If more than one task has been
requested at a given time then the processor must have some policy for de-
termining which task is performed first. One common policy is the least time
remaining policy. Under this policy the processor performs the task requiring
the least amount of time to complete. As a concrete example, suppose we have
two task types with the following characteristics.

Task 1: interarrival time > 8 and processing time = 2

Task 2: interarrival time > 4 and processing time = 3

One question that is commonly asked is: 'Will the processor complete a task
of a given type before the next task of that type is requested?' In this case it is
easy to see that the answer to the question will be 'no.' If Task 2 is preempted for
service of Task 1, then a second request for Task 2 may arrive before completion
of service to the originally requested task.

Formally, problems such as those posed for Ex. 1 may be addressed by ex-
amining the logical sequencing of events possible for the system. One common
technique is verification through language containment:

Given a specification represented by a language (set of event sequences)
s and system behavior represented by a language Z: ~y~ check whether

This problem is decidable if both s and s are w-regular, that is finite state
representations exist for the languages. In generM, the language/:'Y" for a hybrid
system need not be ,)-regular. This paper is devoted to defining conditions under
which a finite state representation may be derived.

A suspension automaton is an extension of a timed automaton in which a
timer can be 'suspended,' i.e., its rate of increase can be set to 0. A suspended
timer can later be unsuspended to resume increasing at rate 1. A 'rate assign-
ment ' specifies which timers are suspended or unsuspended as a function of the
discrete components of the state. Suspension automata can be used to repre-
sent scheduling, synchronization, and communication policies in a very natural
fashion. Unfortunately, the untimed language of a suspension automata is not
guaranteed to be w-regular. In order to avoid this problem, additional restrictions
must be made to the form of the automata. In this paper, a trick is introduced
by which one may replace the suspension of a timer by the decrementation of its
value. In Sect. 2 the suspension automaton is defined. It is shown in Sect. 3 that
the system of Ex. 1 may be modeled using the suspension automaton. In Sect. 4
a condition is given under which the untimed language is guaranteed to be finite
state. It is shown that the system in Ex.1 may be represented by an automaton

107

satisfying the conditions. However, two problems remain. First, the conditions
given in Sect. 4 are not easily checked. Second, the au tomata representing the
systems of interest which satisfy the conditions are not easily derived. In Sect.
5 a systematic method is given for transforming a class of suspension au tomata
(including those such as the one given in Sect. 3) into au tomata guaranteed to
satisfy the conditions given in Sect. 4. Together these results give a reasonable
procedure for verifying an interesting class of hybrid systems.

2 T h e S u s p e n s i o n A u t o m a t o n

The suspension automaton defined below is similar to the hybrid au tomaton of
[2]. I t limits the dynamic behavior of the timers to a rate of increase of either
one or zero. In addition, it expands the timer reset operation to allow for the
decrementat ion of t imer values by integer amounts. A suspens ion a u t o m a t o n is
a tuple (.4, L0, ~r) where .4 is a suspension transition system denoting the causal
behavior of the system, L0 _C L is a restriction on the initial conditions of the
system, and ~ C_ 79(L) (where P(.) represents the power set) is a restriction on
the set of locations visited infinitely often.

Formally, A is a tuple (L, Z, T, R, Vine, E d g e) where:

- L is a finite set of locations representing the discrete state of the system.
- ~ is a finite event set.
- T is a collection of timers {Ti}N1. Each t imer has associated with it Vl E IR,

the value of the timer. Let v be a vector of dimension N representing the
timer values.

- R = {R l : l C L} is the rate assignment where R z C (0, 1} y defines the
possible rates of timers in location l. For any r G R l, ri gives the rate of
T/. If R l has a single element for each l E L say that the au tomaton is rate

de termin i s t i c .

- V/no = {V l : l E L} where each V l _C IR N is an inclusion condition. While in
any given location l, the timer values must remain in V I.

- E d g e C L x ~ x L x 7)(JR N) x R e s e t is an edge relation. Each e C E d g e is
of the form e =- (l, cr, 1 I, V ~, rese t e) where:

�9 l is the current location, a an event, and 11 the next location. This cor-
responds to the discrete edge transition.

�9 V e is an enabling condition. In order to make a transition, the current
timer values must be in V ~.

�9 re se t ~ is a collection of conditions each of which either resets the t imer
value to 0 (denoted by vi := 0) or decrements the t imer by some fixed
integer constant (denoted by vi := v~ - c).

Only very specific forms of V ~ and V z will be considered. These will be called
s imple regions. Say that V C_ 1R N is a simple region if there exists a set of
constraint equations each of the form; vi .'~ c or vl - vj ~ c where ~ is one of

108

<, >, <, > or =, and c E 77, such that V is the set of all v E 1R satisfying the
constraints.

The suspension automaton may be depicted by a labeled directed graph. Ex. 2
shows this representation. Here, each location is given as a node with a location
label, rate assignment, and inclusion set denoted as a collection of constraint
equations. Edges are represented as directed arcs between nodes labeled with an
event, a set of constraint equations representing V ~, and reset ~.

Example 2. The Representation of the Task 1 Component of the System

There are two events the arrival of a request denoted by r 1 and the com-
pletion of task service denoted by c 1. The request interarrival t ime is regulated
by an interarrival t imer T2 and the service time by a process t imer T1.

r l
Start v 2 > 8; v2:=0

R=(o,1) el

. i Vl=2;Vl:=0

~ ') ' (~ ~ ~2:->_8;

The constraint v2 >_ 8 ensures tha t the task request event r 1 occurs no more
often that every 8 time units. The nondeterministic rate assignment indicates
tha t the rate is not under the control of the task, but subject to external con-
trol. The inclusion condition vl < 2 together with the enabling condition vl = 2
ensures that the completion event, c 1 will occur when the task has received the
required amount of service.

2.1 B e h a v i o r o f S u s p e n s i o n Systems

Formally, the behavior of the system will be represented in terms of runs. The
run describes the behavior of the system in terms of timer behavior as the sys tem
moves from location to location. FormMly, given a sequence p drawn from E, a
run for p with respect to .A is an object of the following form:

p(1) p(2)
~(o)(/(0),t(0)),,(o), '~(1) (/(1),t(1))~,(1), ',(2) (/(2), t(2))~,(2). . .

where:

- v (0) = 0.
- for a l l n > 0 :

�9 t (n) _> o .

�9 There exists r E R t where 1 = l(n) such that d(n) = v(n) + rt(n).
�9 For all 0 < t < t(n), v(n) + rt E V t where l = l(n).
�9 There exists an edge e = (l, a, l ~, V e, reset ~) where:

109

* l = l (n) , cr = p (n + 1), and I' = l (n + 1).
* The enabling conditions are satisfied - v ' (n) E V e.
* The reset conditions are satisfied�9

�9 I f v i := 0 E rese t e, then v i (n + 1) = 0.
Else if vl := vl - c E rese t ~, then v i (n + 1) = v~(n) - c.
Else, + 1) :

A run is said to be an accepting run if l(0) 6 L0 and i n f ({ 1 }) E J: where
i n f ({ l }) is the set of all locations visited infinitely often. Let s Lo, ~) be
the set of all p with accepting runs.

3 Representation of Scheduling Using Suspension
Automata

Scheduling may be represented quite naturally through rate assignment where
a process timer is assigned rate 1 if its task is of highest priority and rate zero
otherwise. Fig. 1 shows this for Ex. 1. For the sake of simplicity, the represen-
tation of interarrival times is omitted. In addition, edges representing requests
arriving before completion of already requested tasks of the same type are not
shown. The locations represent the status of the tasks in the system - waiting for
service, receiving service, or not requested. There are only two timers, process
timers T1 for Task 1 and T2 for Task 2. The timer values have the interpreta-
tion of processor time received. Thus the priority decision (and hence the rate
assignment) may be formulated as a property of the timer values.

r2 ~ rl

Fig. 1. Representation of least time remaining policy using timer suspension

110

The automaton in Fig. 2 represents an alternative way of representing schedul-
ing. This automaton is not as straightforward to interpret, but can be show to
have a finite state representation for its untimed language. In this case, pre-
empted tasks have their process timers decremented by the service time of the
preempting task. Although the automaton is similar to that of Fig. 1 several
complications are introduced. Now a distinction must be made between a task
request arriving and having to wait and a task which is receiving service being
preempted. Also, the timer values when decremented no longer have the inter-
pretation of processor time received. Although this does not affect transitions
for two task systems, in general, this will make the priority decision harder to
formulate in terms of timer values.

h=2; I R={1.1)

3_,2-v,;/ ~ v,=2j / 2<3-v2;
/ ! v= :=v2 .

r 1 : r2 ~ "

r2 ~ rl
~1:=~,-~ Iv~ '--U ~ _____~ ~

I su pTaskl I v~:=O ~ [Wait Task I I

Fig. 2. Representation of least time remaining policy using timer decrementation

4 A D e c i d a b i l i t y R e s u l t f o r D e c r e m e n t a t i o n A u t o m a t a

In general, the untimed language of a suspension automaton need not be finite
state. In this section one set of conditions is given under which a finite state
representation is guaranteed. The result presented here is a simple extension of
the result for timed automata [4, 5]. The reasoning is as follows. The full state
of any suspension automaton is given by the location, current rate, and values
of the timers. This state evolves continuously with time. However, for a given
location and rate assignment, the evolution of the timer values may be fully
predicted for the duration of the location knowing their values when the system
first entered that location. Thus one may define a sampled transition system

111

on the state space L x {0, 1} N x I ~ N where only the values of the timers upon
initially entering a location are tracked. This transition system is by no means
finite state. However, one may combine states which are indistinguishable in
terms of past and future logical behavior. The resulting automaton is called the
t imer region automaton.

The above approach is the one taken in [4] to show that timed automata
have w-regular languages. The proposed state equivalence groups timer values
into t imer regions based on the following two observations. First, in terms of
the transitions taken, it is enough to know the integer components of the timer
values and the relative ordering of the fractional components of the timer values.
Second, there is some upper bound past which the value of the timer no longer
matters at all.

This result may be extended by making two more observations:

- If vi = 0, then the suspension of T/ is represented by keeping vi = O.
- If vl is decremented by an integer amount, the relative ordering of the frac-

tional parts of the timers does not change, and the change in the integer
value is predictable.

Thus, under the above two conditions it should still be sufficient to track just
the relative ordering of the fractional values and the integer values of the timers.
What remains is to give conditions under which suitable upper and lower bounds
on the region of interest for the timer values may be derived. The following
theorem gives one such set of conditions. This set of conditions is not in itself
checkable, but in Sect. 5 it is shown how to derive automata that are guaranteed
to satisfy the conditions and model interesting systems such scheduling policies.

T h e o r e m 1. Given an accepting run for a rate deterministic automaton (.4, Lo, jz)
let dec(i, n) be the amount vi was decremented by upon the n th transition.

Suppose for all accepting runs for each Ti �9 T there exists K~ and K 2 such
that:

-- [f r i --~ O, t h e n vi = O.
M For all M , }-]-m=] dec(i, m) - t (m) <_ K 1

- For all M , whenever v i (M) >_ K~, vi is no longer decremented and for any
edge taken, the constraints representing V ~ do not involve the comparison of
vi to another timer.

I f the above conditions are satisfied, then s L0,5 r) is w-regular.

Intuitively, the first condition ensures that timers may be suspended only if
their value is fixed. The second condition gives the lower bound and the third
condition gives the upper bound. A timer may never have a value less than IQ
and once it is greater than Is its actual value ceases to be of importance.

Note that the automaton of Fig. 2 satisfies the condition of Theorem 1. That
is, ri = 0 only when vi = 0, and the values K~ = 3, K1 ~ = 2, K~ = 2, and
K~ = 3 satisfy the remaining conditions.

112

4 . 1 D e f i n i n g A T i m e r R e g i o n A u t o m a t o n

In order to prove Theorem 1, we will first define the timer regions and then
specify the transition function between regions as a function of the edges of the
suspension automaton. This is sufficient to define a finite state machine accepting
L:ssq(A, L0,~'). The appropriate equivalence classes are similar to those in [4,
5]. For each timer 3) let Ci be the largest constant appearing in a constraint
equation involving vi defining either an enabling or inclusion condition. Let Ui =
m a z (K 2, Ci) and Li = - K ~ . Let int(.) be the integer component of a number
and f r a c t (.) the fractional component. Say that v ~ v t if either:

�9 �9 I - for some z,3 , vi < Li and vj < Lj
- or for all i, vi > Li and for all i, j

I �9 either in t (v i) = int(v~) or both vi > Ui and v i > Ui
�9 and whenever vi < Ui and vj ~ Uj

f r a c t (v i) < f r a c t (v j) if and only if f rac t (v~) <_ f r a c t (v j) .

Let [v] indicate the equivalence class containing v and [IRN]~ the set of all
equivalence classes induced by ~. These equivalence classes will be the timer
regions. Note that there are only a finite number of timer regions�9 The key to
constructing an automaton accepting L:seq(,4, L0, :F) is to describe the transition
from one timer region to the next. Below, the succession of timer regions is
described. Two sorts of transitions are possible for timer regions - an e-transition
denoting the passage of time and a a transition denoting the occurrence of a
discrete event. Assume the system is in location I.

- T i m e Success ion: Say that [v'] r [v] is a time successor of Iv] if for some
t > O, v + t r I e [v'],for all 0 < t ' < t, v + t ' r t E [v] U [v'], and [v'] C Y "--y where
V z is the closure of V t. That is, Iv ~] is the first timer region reachable from
any point in Iv] by the passage of time.

- D i s c r e t e T r a n s i t i o n : Say that [v'] is a ~ successor of [v] if there exists an
edge e = (l, a, l ~, V e, reset s) such that:

�9 [v] g v s.
�9 ~v n E Iv t] such that:

/ / 0 . * If vi := 0 E reset e, then v i =
t ! . Else i fvi := vi - c E reset e, then v i -- vi - c.

I t * Elsev i = v i .
�9 [v'] c_ V e.

L e m m a 2 , Given (,4, L0 , ~) satisfying the conditions of Theorem 1, the lan-
guage accepted by the t imer region automaton is exactly f.2eq(A, Lo, 3:).

Proof. Let (A, L0, I ') be a suspension automaton satisfying the conditions of
Theorem 1.

Suppose we are given a run for p with respect to (,4, L0, ~'). Note that for
I this run it is never the case that either ~ < Li or v i < Li. It can be seen

that [v'(n)] is reachable from [v(n)] by a series of e-transitions denoting time

113

succession. Similarly, it can be seen that [v(n + 1)] may be reached from [v'(n)]
by a p(n + 1) transition.

Now suppose that we have a run for p through the timer region automaton.
A run for (,4, L0, ~r) may be constructed as follows. Note that the timer region
[v] where for some T/, vi < Li, is not reachable. Let {[v]} be the sequence of
timer regions visited. Define a subsequence {[v](kn)} where [v](k0) = [v](0) and
[v](kn+l) is the next timer region reached from [v](kn) after a series of time
transitions by a a-transition (specifically p(n + 1)). Next define the subsequence
{[v](k~)} by [v](k~) = [v](k,+l - 1). In other words, [v](k~,) is the last timer re-
gion reached from [v](k,) by a series of timer transitions and for which [v](kn+l)
is a p(n + 1) successor. Let v(0) E [v](k0). Recursively construct {v} and {v'} as
follows:

- Given [v](kn) and [v](k~n) we can choose a t(n) Such that
v'(n) = v(n) + t(n)r z e [v](k~) where r I is the current rate assignment.

- Given V(n) applying reset rules will lead to v(n + 1) E [v](kn+l).

Now, since v(n) and v'(n) are in the appropriate equivalence classes it is ensured
that the enabling and inclusion conditions are satisfied. D

5 Translation of Suspension To Decrementation

In this section, a procedure is given for transforming a suspension based automa-
ton into a decrementation based automaton. Provided that certain conditions
are met, the decrementation based automaton is guaranteed to satisfy the condi-
tions of Theorem 1. This procedure is designed with the structure of scheduling,
communication, and synchronization policies in mind. As a basic step it requires
the definition of a precedence or priority relation among timers as a function of
location. In general, the priority assignment can be linked to system concepts
such as the notion of task priority.

To gain intuition, consider the evolution of v2 for the automata of Figs. 1
and 2 in the case that Task 2 is requested at time 8 and Task 1 is requested at
time 8.5. This evolution is shown in Fig. 3.

~ ~ ~1~.5 1A3 ~t

Fig. 3. A comparison of runs

Here, the suspension and decrementation of T2 is closely linked to the behav-
ior of T1. Tha t is, between times 8.5 and 10.5 we can think of T1 as being in an

114

'active state. ' T2 is suspended while T1 is in this state. Furthermore, the time
T1 is in this state is predictable (it is the time of service for Task 1) and this
predictability may be used to determine the amount v~ should be decremented
by. Finally, note that given vl, the decremented value of v2 may be deduced from
the suspended value and vice versa.

5.1 P r e c e d e n c e S y s t e m

The precedence system formalizes the notion of timer behavior and interaction
shown in Fig. 3. Suppose we are given an automaton ,4. Say that a timer is
pi-valued for ,4 if its behavior can be characterized in the following way. The
timer has two states - an idle state where its rate and value are both zero, and
an active state where its value and rate may be non-zero. The timer transitions
from the active to idle state if and only if its value reaches pi and the timer may
not be reset or decremented while in the active state.

A precedence assignment for ..4 is a collection of relations P r e c = { P r I : I E
L} with P r I C Tj_ x T (where T• = T L3 {_l_}) denoting the relative priorities of
the timers while in location 1. (_L, T/) is used to indicate timer T~ being of high
precedence without there being a timer of lower precedence.

Fig. 4 gives a precedence assignment for the least time remaining policy. Only
the top half is given, the bot tom half may be defined in a similar fashion. Note
that the precedence assignment corresponds to the task priority assignment as
it is given in Fig. 1.

Fig. 4. Precedence for least time remaining policy

A precedence sys tem provides a link between precedence assignment and rate
assignment for pi-valued timers. Let T = T "< O T g where T "< is the set of timers
involved in the precedence assignment. Require that all timers in T "< be pl-valued
and that timers in Tg are never decremented. Explicitly represent the state of
the timers in T "< as follows. Let TO C T "< be the set of idle timers. Require
that a timer leave TO the first time a location I is reached where (T/,Tj) E P r l
and there does not exist (Tj, Tk) E P r z. Call the new automaton including the
explicit representation of timer state the precedence automaton. Say that P r e c
is consistent with R if the following condition holds:

115

Vl �9 L, r~ = 0 if and only if either Ti �9 TO or 3 (~ , T j) �9 P r z.

A precedence sys tem is a precedence automaton .4 where P r e c is consistent with
R.

In order to define a precedence system for the automaton in Fig. 4 the only
thing to do is make TO an explicit part of the location. This is done in Fig. 5.
For this automaton P r e c is consistent with R. In terms of discrete transitions,
this brings the representation closer to that of Fig. 2. However, scheduling is still
represented through the suspension of timers.

Fig. 5. Precedence system for least time remaining policy

In order to provide the final link between timer behavior and decrementation
a few more conditions must be satisfied. Most importantly, it must be possible
to identify which timer is suspending which at any time, and to ensure that
this suspension relation doesn't change arbitrarily. This may be achieved by
restricting the form of Prec . Say that P r e c is prioritizing if for all p the following
condition holds for any run:

Given a transition from (1, TO) to (l', TO'), if Ti, ~ ~ TO and (T/, Tj) �9
P r l, then either (~ , Tj) �9 P r l' or Tj �9 TO'.

Thus, during the active period of any two timers their precedence relation to
each other remains fixed. The prioritizing condition may either be ensured by
design or checked as a language property. Say that P r I is tree-like if whenever
(T i ,T j) E P r z and (Ti,Tk) C P r z then either (Tj,Tk) �9 P r z or (Tk,Tj) �9 P r (
P r e c is tree-like if for all l �9 L, P r z is tree-like. Finally, say that P r t is complete
if whenever (T/,Tj) �9 P r z and (2~,Tk) �9 P r l, then (T/,Tk) �9 P r t. Note that
any precedence assignment may be completed.

It is also necessary to restrict the form of the enabling and inclusion condi-
tions. Say that V C_ lR N is rectangular if there exists a set of constraint equations
all of the form v/ --~ c describing it. Note that the precedence system given in Fig.
5 satisfies the tree-like and prioritizing conditions and has rectangular enabling
and inclusion regions.

116

5.2 T r a n s l a t i o n o f P r e c e d e n c e A u t o m a t o n to D e c r e m e n t a t i o n

Suppose that ,4 is a precedence system where Prec is prioritizing, tree-like, and
complete, and for all I and e, V ~ and V e are rectangular. An automaton Dec(,4)
may be produced as follows.

- D e c r e m e n t a t i o n : Let e be an edge transitioning from (l, TO) to (l', TO').
Suppose that T+ E TO, but T+ ~ TO'. For all Tj ~ TO' such that (Tj, T+) E
P r t', add vj := vj - Pi to reset ~.

- R a t e A s s i g n m e n t : Set the rate assignment so that timers are rate zero if
and only if they are in TO.

- Sk e wi n g V 1 a n d Ve: Given v, TO, and P r I, define -~ = skew(v , TO, P r l) as
follows. I f Ti" E TO then ~i = O. Otherwise, ~i = vi - ~'~+je~,(PJ - vj) where
Si = { j : (~ , T j) E Pr t } .
Let skew(V, TO, P r z) = {~: 3v E V s.t. ~ - - skew(v , TO, Pr l) } .

* For all 1E L replace V z by skew(VI ,TO, PrZ).
�9 For all e E Edge replace V + by skew(Ve ,TO, PrZ).

For any rectangular V, skew(V, TO, P r z) may be represented as follows. For
all T+ ~ TO if there exists Tj+ such that (:~, Tj,) E P r t and there does not
exist 7~ such that (7)+,Tj) E P r z, then replace all constraint equations of
the form vi ~ c by vi - vj+ + pj+ .+ c.

Dec(,4) for the precedence system of Fig. 5 is shown in Fig. 6. Two changes
are made to ,4 - in the case that Task 2 is preempted, its process timer is
decremented and the inclusion condition is skewed.

o | ~ : = v 2 - 2

Fig. 6. Dec(A) for least time remaining policy

T h e o r e m 3. Suppose ,4 is a precedence system where Prec is prioritizing, tree-
like, and complete, and for all I and e, V I and V e are rectangular. In this case,
Lseq(,4) = Lseq(nec(,4)) .

Proof. Given a run with respect to one of the automata, it is enough to construct
the appropriate timer values to prove there exists a corresponding run with
respect to the other. Let ~ denote the timer values for Dec(,4) and v denote the
timer values for `4.

117

Given a run with respect to ,4, let ~(n) = skew(v(n), PrZ(n), TO(n)) and
~ (n) = skew(v'(n), Prl(n), TO(n)). It is easy to verify that this indeed defines a
run with respect to Dec(A).

Similarly, suppose we are given a run with respect to Dec(A). Let vi(n) =
~ i (n) - ~ j , (n) + p j i where ji satisfies (hq, Tj,) E Pr z(n) and there does not exist Tj
such that (7~,, 7~) E Pr l("). Define v~(n) in a similar fashion. It can be verified
tha t this defines a run with respect to A. [7

T h e o r e m 4 . Suppose A is a precedence system where Prec is prioritizing, tree-
like, and complete, and for all I and e, V t and V e are rectangular. In this case,
Dec(A) satisfies the conditions of Theorem 1.

Proof. By the definition of the precedence system and the construction of
Dec(A) it is clear tha t ri = 0 only i fv i = 0. Let Ji = {j : 31 s.t. (T/, Tj) E PrZ}.
Then K~ = ~ j e J ~ PJ satisfies the second condition of Theorem 1. K~ = Pi
satisfies the final condition of Theorem 1. []

6 D i s c u s s i o n

In this paper, a class of hybrid au tomata for which language containment is de-
cidable is defined. The conditions presented are somewhat restrictive, but they
do allow for the representation of interesting systems tha t could not be repre-
sented using rate 1 automata . Future work should seek to relax these conditions,
for instance, a relaxation of the requirement that timers are suspended for a fixed
amount of time. In addition, techniques should be explored to minimize the s tate
explosion problem inherent in all the current t imer-based hybrid automata .

R e f e r e n c e s

1. R. Grossman, A. Nerode, A Ravn, and H. Rischel, editors. Hybrid Systems, volume
LNCS 736. Springer, 1993.

2. R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In Hybrid
Systems, volume LNCS 736, pages 209-229. Springer, 1993.

3. D. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Automatic Verification Methods for Finite State Systems, volume LNCS 407.
Springer, 1989.

4. R. Alur and D. Dill. Automata for modeling real-time systems. In Proceedings o]
the 17th Annual Colloquium on Automata, Languages, and Programming, 1990.

5. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In
IEEE Proceedings of the Fifth Annual Symposium on Logic and Computer Science,
1990.

6. A. Olivero and S. Yovine. Kronos: A tool for verifying real-time systems, user's
guide and reference manual, draft 0.0. Preprint. VERIMAG, B.P. 53X, 38401 Greno-
ble, France, May 1993.

7. P. Tzounakis. Verification of real time systems: The extension of COSPAN in dense
time. Master's thesis, University of Crete, 1992.

