
Real-Time System Verification using P/T Nets *

Roberto Gorrieri t Glauco Siliprandi t

tDipartimento di Matematica, Universitg di Bologna
Piazza di Porta S. Donato 5, 1-40127 Bologna, Italy
:Dipartimento di Matematica, Universit/t di Siena

Via del Capitano 15, 1-53100 Siena, Italy
e-mail:{gorrieri,silipran}@cs.unibo.it

A b s t r a c t

Timed Nets are proposed to model the behavior of real-time systems. Net
transitions are annotated by timing constraints, using finitely many real-
valued clocks. A timed net accepts timed words, i.e. infinite sequences in
which a time of occurrence is associated with each symbol We study ex-
pressiveness, closure properties and decision problems of such nets, where
the acceptance condition is based on actions. The main result of the paper
is an algorithm for deciding the inclusion problem for timed languages.

1 I n t r o d u c t i o n

There is a great variety of automata-based approaches to the specification and
verification of real-time systems, depending mainly on the assumptions about
the nature of time. The use of dense-time domains (events may happen arbi-
trarily close to each other) is an important feature whenever one is interested in
modeling heterogeneous systems, i.e., systems composed of digital and analogical
(hence, continuous) devices.

Among the models based on dense-time, particular interest has been stirred
up by Timed Automata, proposed by Alur and Dill [1, 2]. This model is essen-
tially the timed version of finite-state w-automata, hence recognizing timed words
- infinite sequences in which a real-valued time is associated with each symbol.
A timed word is recognized by one of such automata if, for instance, the set of
those states passed through infinitely often is equal to a given set of accepting
states. The behavior of a real-time system is modeled by a timed language s
since also the requirements the system must satisfy can be expressed as a timed
language s the problem of verifying that a system satisfies a certain prop-
erty essentially reduces to the inclusion problem of the implementation timed
language s into the specification timed language s Due to the decid-
ability of the inclusion problem, Timed Automata have been profitably used for
the automatic formal verification of real-time finite-state systems [2].

*This research has been partially supported by CNR grant N.92.00069.CT12.115.25585 and
by MURST.

15

Despite of their elegant characterization and strong properties, T imed Au-
t o m a t a are not expressive enough to model systems with an infinite number of
states. Here, we extend the approach of Alur and Dill to a more general class
of au tomata , namely Place/Transit ion Petri Nets, where the number of tokens
in each place can increase unboundedly~ As the global s tate of a system is the
collection of the tokens in the places, the number of global states of the system
a P / T net represents is infinite.

Our approach follows an action based acceptance condition: a t imed word is
accepted iff the set of those transitions fired infinitely often belongs to a given
family of sets of transitions. The choice of such an acceptance condition is due to
the fact that the set of transitions of a (Timed) P / T Net is finite. This permits
to prove some relevant decidability results: the problem of language emptiness
and the problem of inclusion of a t imed P / T net language in a (deterministic)
t imed regular language. These are at the base of au tomat ic verification of real-
t ime properties, expressed as Timed Automata , of real-time systems, expressed
as .Timed P / T Nets.

An example in Section 7 shows a simple real-time system which is modeled by
a Timed P / T Net and which cannot be represented through a Timed Automaton ,
hence proving that the class of systems we can model is strictly larger. The final
section introduces a simple example of application of our theoretical results.

2 w- languages and w-automata .

In this section we give some basic definitions about w-words and their recognizing
au tomata . For more details see [4, 5].
Let ~ be a finite alphabet. ~* is the set of all finite sequences over ~. An infinite
sequence over ~, also called w-word, is a map c~ : ~W + --~ ~. Since ai denotes
the i th symbol of a, we also write c~ = crier 2 The set of all w-words over ~ is
denoted by ~ . If A is another alphabet, h : ~ -* A and a E ~ , we use h(a)
to denote the w-word h(al)h(o'2). .. E A '~. L C ~'~ will be called a w-language.
With 3~176 we denote a property P which holds infinitely often: Vm E

?

/N.~n > m . P (n) holds. We define In(a) de~ ~[a E El 3~176 - a}.
In the literature various types of finite state w-au tomata have been studied:
among these, we recall Bfichi automata . A Transition Table (TT for short) is
a tuple ,4 = (~, S, So, E), where ~ is an alphabet, S is a finite set of states,
So C_ S is a set of s tart states, and E C S x S x ~ is a set of transitions. A run
r = (s0, sl, a l) (S l , S 2 , a s) . . . E E ~ on an w-word a is such that so E So. The
sequence of reached states in the run r is the w-word s l s2s3 . . . E S ~, denoted
by St(r) . A nfichi Au toma ta (BA for short) is a tuple ~4 -- (~, S, So, E, F) such
that (~, S, So, E) is a T T and F _C S. A run r is accepted iff In(S t (r)) A F 7s O.

The accepted w-language is s de__f {0 E ~..~[there is a run on cr accepted
by A}. The class of languages accepted by BAs, called regular w-languages, is
denoted by BA.

16

D e f i n i t i o n 2.1 (P l a c e / T r a n s i t i o n P e t r i N e t s) N = (~, P, T, F, W, h, m0) is
a PTP, where E is an input alphabet, P is a finite set of places, T is a finite
set of transitions (disjoint from P), F C_ (P x T) U (T x P) is the flow rela-
tion, W : F ~ g i + is the weight function, h : T --* ~ is the labeling function,
rao G xW P is the initial marking (the functions from P to ~W, are called markings
for N; such a set will be usually denoted by M and ranged over by m).

The pre-set of a transition t is *t ~ f {Pl (P,t) G F}, and its post-set is t ' ~ f
{p] (t, p) E f } . N has concession in m iff re(p) > W(p, t) for all p e ' t . If t has
concession in m then t fires m to m ~, where m'(p) = re(p) - W(p, t) if p E~ \ t ~
m'(p) = re(p) + W(t , p) i fp E t ~ \~ m'(p) = re(p) - W(p, t) + W(t, p) i fp E~ ~
and m~(p) = re(p) i f p E P \ (it U t ') . This relation on M x T x M is the firing
relation, denoted by m (t)m'.
We say that r E T ~ is a run of N over a E ~ iff h(r) = a and there are
m r , m s , . . . E M such that Vi E ~W.rn~ (r i+t)mi+l . too, m 1 , . . , is the sequence of
markings associated to r. 0

In [6] PTPs are provided with acceptance conditions based on transitions fired
infinitely often in a run. Among the various notions proposed there, we consider
the one for which the class of accepted languages is the largest.

D e f i n i t i o n 2.2 (A c t i o n B a s e d P T P) N -- (~, P, T, F, W, h, m0, ~') is an ABP,
where (E, P, T, F, W, h, mo) is a PWP and Y" C p+(T) . A run r is accepted iff
In (r) G ~'..AB7 ~ denotes the class of w-languages accepted by ABPs. []

T h e o r e m 2.3 [6] The emptiness problem is decidable for A B e .

3 T i m e d L a n g u a g e s

In this section we present the timed languages, as introduced in [2].

D e f i n i t i o n 3.1 (T i m e S e q u e n c e) A time sequence r = r l r a . . . is an infinite
sequence of positive reals ri E ~>0 , satisfying

Monotonicity: ri < ri+l for all i _> 1.

Progress: for every t E ~>_0 there is some i _> 1 such that r / > t.
def

For any time sequence r = rlr2 . . . we assume r0 = 0. D

The progress condition is introduced to avoid the Zeno paradox: it will never be
the case that infinitely many events happen in a bounded time interval.

D e f i n i t i o n 3.2 (T i m e d W o r d s a n d L a n g u a g e s) A timed word over ~ is a
pair (a , r) where cr E ~ and r is a time sequence. S t, ranged over by r
denotes the set of all timed words over ~. A timed language is a set L C ~t. ['1

The Untime operation discards the time values associated w i th the symbols,
i.e., it considers the projection of a timed word (~r, r) on the first component.

D e f i n i t i o n 3.3 (U n t l m e d L a n g u a g e) Given a timed language L, we define

Vnti [L] do__f OI e L}, also denoted by ~rl(L). []

17

4 T i m e d Fin i te State A u t o m a t a

In [1, 2] the definition of finite state w-au tomata is augmented, so tha t they
accept t imed languages. In this section we recall some results presented there
and a new result of ours.
Transition tables are extended to timed TTs so that they can read t imed words.
When executing a transition, the choice of the next state depends also on the
t ime of the input symbol w.r.t, the times of the previously read symbols. For
this purpose a finite set of clocks is associated with each TT. A clock can be set
to zero simultaneously with the execution of a transition, while its value is equal
to the t ime elapsed since the last t ime of reset. A clock constrain~ is associated
with each transition and a transition may be taken only if the cu r ren t values of
the clocks satisfy its constraint.

D e f i n i t i o n 4.1 (C l o c k s) For a set C of clock variables, the set ~ (C) of clock
constraints is defined inductively by

6 : = c < q Iq<c l ~6 l~^6

where c is a clock in C and q is a nonnegative rational constant. A clock inter-
pretation (CI for short) for C is a function v : C --* ~ > 0 . We say that v satisfies

6 iff 6 evaluates to true. Uo denotes the CI such tha t Vc E C.vo(c) dd 0. If
t E ~ > o , then v + t is the CI mapping every clock c to v(c) + t, and t . v the one
assigning t - v(c) to each clock c. For Y C C, v[t /Y] denotes the CI assigning t
to each c E Y and agreeing with v over the other clocks, n

A Timed Transition Table (T T T for short) is a tuple A : (~2, S, So, C, E), where
C is a finite set of clocks, and E C S • S • 5] • 2 c > (I~(C) is the set of transitions.
(s, s I, a, y, 5) represents a transition from s to s I on input symbol a. The set
y C C gives the clocks to be reset when executing this transition, and 6 is a
clock constraint to be satisfied. A run of A on (a, r) is an infinite sequence of
transitions r = (so, sl, oh, Yl, 61)(sl, s2, a2, Y2, 62) . . . such that (i) So 6 So and
(ii) there are vl, v2 , . . . CIs such that ~+1 is satisfied by vi + (r~+l - 7-~) and

def
vi+l : (vl + (~-i+1 - ri))[0/yi+l]. We say that v0, u l , . . , is the sequence of CIs

associated to r, and St(r) def : sls2s3 . . . is the sequence of reached states.

D e f i n i t i o n 4.2 (T i m e d Bfichi A u t o m a t a)
A TBA is a tuple A = (~, S, So, C, E, F) , where (~], S, So, C, E) is a T T T , and
F C S. A run r is accepted i f f I n (S t (r)) n F ~ 0. The accepted t imed language is

•(A) dej {~b E ~'~[,,4 has an accepting run over r The class of t imed languages
accepted by TBAs, called timed regular languages, is denoted by TB~4. []

D e f i n i t i o n 4.3 (T i m e d M u l l e r A u t o m a t a)
A TMA is a tuple A : (E, S, So, C, E, ~'), where (~, S, So, C, E) is a T T T , and
~" C p+(S) . A run r is accepted iff In (S t (r)) E 9 c. The set of t imed languages
accepted by TMAs is denoted by T A 4 A . []

18

T h e o r e m 4.4 [2] (i) TI3A : T A 4 A
(i i) T B A is closed under finite union and intersection.

In order to define a class of timed languages closed under all boolean operations,
deterministic automata are investigated. A TMA (~, S, So, C, E, ~') is called
deterministic (DTMA) if and only if [So[1 and for all s e S, for all a E E, for
every pair of transitions of the form is, - , a, - , 61) and is, - , a, - , 62), we have
that 61 A 62 is unsatisfiable. The class of timed languages accepted by DTMA is
denoted by 7)TAAA.

T h e o r e m 4.5 [2] (i) ~)T.A4A C TA4A
(ii) ~ T ~ A is closed under finite union, intersection and complementation.

We now study new acceptance conditions based on transitions rather than states.
We define the action based timed B~chi automata and the action based timed
Muller automata, and we prove that these have the same expressive power of
TBAs and TMAs.

D e f i n i t i o n 4.6 (A c t i o n B a s e d T B A) .4 = (~, S, So, C, E, F) is an ABTBA,
where i ~, S, So, C, E) is a T T T , and F C E is the set of accepting transitions.
A run r is accepted iff In(r) N F • O. The set of accepted t imed languages is
denoted by A B T B A . []

D e f i n i t i o n 4.7 (A c t i o n B a s e d T M A) A : (E, S, So, C, E, yr) is an ABTMA,
where (S, S, So, C, E) is a T T T , and 9 c C_ ~+(E) specifies an acceptance family.
A run r is accepted iff In ir) E :T. The set of timed languages accepted by
ABTMAs is denoted by ABTA4.4. []

T h e o r e m 4.8 [3] A B T B A = T B A = T A 4 A : A B T A 4 A .

5 Timed Place/Transi t ion Nets

In this section we augment the definition of PTPs following the same idea illus-
trated in the previous section, so that they can recognize timed words.

D e f i n i t i o n 5.1 (Timed P / T Net) N = (~, P, T, F, W, h, m0, C, c c, c r) is a TP,
where N I = (1~, P, T, F, W, h, m0) is a PTP, C is a finite set of clocks, c c : T --*
@(C) gives the clock constraint associated to each transition, and c" : T --* 2 c
gives the set of clocks to be reset when a transition is executed.
A snapshot for N is a couple (re, v) such that m is a marking for N I and v
is a CI for C. The set of snapshots is denoted by r . A transition t of N has
concession in (m, v) for N iff t has concession in m for N ' and v satisfies &(t).
If t has concession in (m, v), then t fires (m, v) to (m', v ~) where m (t) m' and
v ~ : v[0/c '(t)] . This relation on F x T x F is the timed firing relation denoted by
ira, v) (t) ira', v O. A run of N over in, r) is an infinite sequence r = t i t 2 . . . E T ~
such that hi t) : a and there are (ml, Vl), ira2, v2),. �9 �9 snapshots for N such that
Vi e Jl~r.irn~, vi -t-/ri+l - ri)) (t i+l) im/+l , vi+l). (too, v0), (ml, Vl) is the se-
quence of snapshots associated to r. []

19

a b

x:=0 x:=0

Figure 1: An example of t imed P / T ne t .

For example, consider the T P in Figure 1, where a and b are the labels for t l
and t~. In every run, in each moment of the execution, the number m of fired
t l transitions is not less than the number n of executed t2 transitions; indeed
the place keeps exactly m - n tokens. The t iming constraints impose tha t a
transit ion must be fired after each t ime unit, thus the first transit ion in the run
fires at t ime 1, the second at t ime 2 and so on.
We provide TPs with an action based acceptance condition.

Defini t ion 5.2 (Act ion B a s e d T P) N = (~, P, T, F, W, h, mo, C, c c, c r , ~r) is
an ATP, where (E, P, T, F, W, h, mo, C, cC, c ") is a T P and Y C_ ~+(T) is an
acceptance family. A run r is accepted iff In(r) E ~'. The accepted t imed

language is s dej {0 E Y]'t I N has an accepting run over 0}. The class of
accepted t imed languages is denoted by . 4 T P . Q

Consider again the net in Figure 1, with acceptance family 5 r d~j {{tl}, {tl, t2}}:
it can be proved that every run is accepted and the recognized t imed language is
{(a, r) E {a, b}tlVi e J.W.#{n _< il ~= = a} > # { n < il ~= = b} A T = 1 2 3 . . . } .

6 Emptiness

In this section we develop an algorithm that, given an ATP accepting a t imed
language L, constructs an ABP recognizing Untime[L] (in [2] an analogous pro-
cedure was defined for TBAs). This important result allows us to state the
decidability of the emptiness problem for t imed languages in .ATT), and defines
a limit to the expressive power of ATPs, in the sense that a t imed language may
be accepted by an ATP only if its Untime is recognized by an ABP. We use this
fact to prove the nonclosure of AT7 ~ under complementat ion.
First of all we want to prove that it suffices to consider those nets in which only
integer constants are used in clock constraints.

D e f i n i t i o n 6.1 (M u l t i p l i e d Clock C o n s t r a i n t s)
Given a T P N and t E ~ > 0 , N, is the TP obtained by replacing each constant
q, in each ~ appearing in N, by t �9 q. []

L e m m a 6.2 Consider a TP N, a timed word (c~, r), and a positive rational t.
Then r is a run of N over (a, T) iff r is a run of N~ over (a , t . v).

If we choose t to be the least common multiple of all nonzero constants appearing
in the clock constraints of N, then the clock constraints in Nt use only nonnega-
tive integers; furthermore, if N is an ATP then Untime[s = Untime[s

20

as a consequence, s = @ iff s = @. Thus, in the remainder of the section
we assume that clock constraints use nonnegative integers only.
The problem of checking the emptiness of the t imed language recognized by an
ATP N can be more easily coped with if we show that this is equivalent to
checking the emptiness of the language recognized by an ABP N ~. This could be
done, in principlei by adding places for clock interpretations: a snapshot (m, v)
in N is simulated in N ~ by putt ing a token in the place corresponding to r,. Even
if the CIs for N are infinite, we can define an equivalence relation ~ on CIs, with
a finite number of classes, and then add a new place for each of such classes. In
[2] ~ has been defined in the case of TBAs.

D e f i n i t i o n 6.3 (C l o c k R e g i o n s) Let qc denote the largest integer q such tha t
c ~_ q or q _ c is a subformula of some 6 appearing in the net N; for any
nonnegative real t , / t a c t (t) denotes the fractional part of t, and k tj denotes the
integer part of t; that is t = It] + f rac t (t) .
t, - u ~ iff the following three conditions hold:

1. Vc E C. Iv(c)] = [vt(c)J V (t,(c) > qc A r,'(c) > q=)

2. Vc, d E C.(r,(c) < qc A t/(d) ___ qd) ::~
(f rac t (u (c)) < f r a c t (v (d)) r f r a c t (v ' (c)) < f r ac t (v ' (d)))

3. Vc E C.u(c) < qc ~ (f rac t (u (c)) = 0 r f rac t (u ' (c)) : O) []

It can be proved that ~ is an equivalence relation. An equivalence class is called
a clock region (CR for short). [t,] denotes the CR which u belongs to. The set
of CRs is ranged over by 6.

P r o p o s i t i o n 6.4 Let c E C, ~ ~- ~ and t E T . Then

1. v satisfies c~(t) i # ~' satisfies c~(t)

s. = 0 i # = o and > qo q > qo.

Thus in the remainder of the section we shall say that [v] satisfies cC(t) if v
satisfies cC(t), and we shall use [~][0/c'(t)] instead of [~[0/c'(t)]].
In [3] an algori thm producing a representative CI for each clock region is pro-
vided: ~ denotes the representative of class ct. As a consequence

P r o p o s i t i o n 6.5
1. The set of clock regions is finite.

2. I f t, ~ v I and t > O, then there ezists t I > 0 such that v + t "~ t / + t t.

Then a new place is introduced for each clock region. When a transition fires,
it puts a token in a clock region place. This means that the CI reached just
after the firing of the transition belongs to the clock region corresponding to
that place. Moreover, the previous proposition states that, if v -~ v I, v and v I
visit the same clock regions as t ime progresses.

D e f i n i t i o n 6 .6 (T i m e - s u c c e s s o r) A CR e I is a t ime-successor of a CR ~ iff
for each v E ~ there exists ~ > 0 such that v + t E e I. []

21

In [3] we provide an algorithm building the representative of any t ime successor
of a given CR. Now we define the ABP recognizing Untime[s

D e f i n i t i o n 6.7 (R e g i o n N e t) Given a TP N = (E, P, T, F, W, h, too, C, c ~, c')

we define the P T P 7~(N) ~ f (E, P ' , T', F ' , W', h', too') where

�9 p , a_,f p U {a[a is a CR for N}

�9 T ' %f {(t, a, a91 t ~ T and there is an an time-successor of a, such that a "
satisfies c~ and a ' = a"[O/c'(t)]}

�9 F' %~ {(p, (t, ~, ~'))1 (P, t) ~ F} U {((t, ~, ~'), V)I (t, p) ~ F) U
{(~, (t, ~, ~9)1 (t, ~, ~') ~ T'} U {((t, ~, a'), ~')1 (t , - , ~9 C T'}

aef f W(p, t) i f (p , t) E F
Wl(p, (t, otg)

= ~ 1 otherwise
d,f f W(t ,p) i f (t , p) E F

Wl((t ,a , al),p)
= ~ 1 otherwise

�9 h'(t , ,~, ,~') %~ h(t)

{ , ~ (p) i f p e P
�9 m0'(p) dr 1 if p = [v0] []

0 otherwise

In the net 7~(N), any reachable marking has one token in only one of the clock
region places, while all the other CR places are empty.

D e f i n i t i o n 6.8 (TO(N) M a r k i n g s) Let m be a marking of N. (m, a) denotes

the marking in 7r such that (m,a)(p) ~f re(p) i f p E P, (m , a) (a) ~ f 1, and

(rn, ~)(p) d=ef 0 otherwise. []

Now we want to establish a correspondence between each run in N and some
run in 7r

D e f i n i t i o n 6.9 (R u n P r o j e c t i o n)
Let r = t i t s . . , be a run of N on (a, r) and (too, vo), (ml, vl), �9 �9 be the sequence

of snapshots associated to r. We define the run projection of r to be Iv] ~ f
(t~, [,~o], [~])(t~, [~,1], [~,~]) []

L e m m a 6.10 [r] is a run of the region net T~(N).

Because of the progress condition, every clock in a run is either reset infinitely
often, or from a certain time onwards it increases unboundedly.

D e f i n i t i o n 6.11 (P r o g r e s s i v e R u n) A run of T~(N), with associated sequence
of markings (too, [u0]/, (ml, [Ul]),..., is progressive iff Vc E C, 3~176 =
0 V vi(c) > qc)- []

L e m m a 6.12 If r is a run of N, then [r] is a progressive run of 'R(N).

22

Conversely, we now claim that, given a progressive run r! of 7~(N), a run r of N
can be defined such that r ' is its projection.

L e m m a 6.13 I f r' = (tl , so, al)(t~, a l , a s) . . , is a progressive run of T~(N)
over a, then there ezist a t ime sequence r and a run r of N over (cr, r) such that
r'= It].
Finally we define the acceptance family. A set of accepting transitions has to
ensure that a run in R(N) may be accepted only if it is progressive.

De f in i t i on 6.14 (P rogres s ive Aecep to r) A set R C T I is a progressive ac-
ceptor if and only if Vc E C.3(t , a', a) E R.-5(c) = 0 V -5(c) > qc. []

T h e o r e m 6.15 Given an A T P N , there ezists an A B P N ~ such that s =
rrntim~[s162

N ' is T~(N) provided with the acceptance family ~r, a~ {R' C T'J 7r~(R') E T
and R I is a progressive acceptor }. As a consequence, the following holds

T h e o r e m 6.16 The emptiness problem for A T P s is decidable.

Proof : L = 0 iff Untime[L] = 0; the thesis follows by Th.6.15 and 2.3. �9

7 E x p r e s s i v e n e s s and Closure P r o p e r t i e s

In this section we compare ATPs with timed finite state automata and show
some closure properties w.r.t, boolean operations.

T h e o r e m 7.1 [3] TB.A C A7"7 ~.

The basic idea underlying the proof is that every ABTMA can be simulated by an
ATP: a place in the net corresponds to a state in the ABTMA. On the contrary,
there exist nets recognizing non regular timed languages. A counterexample is

illustrated by the net N in Figure 1, with acceptance family :7 ~ f {{tx}, {tl, t2}}.
It can be proved that Unt ime[s = {a E {a, b}'~[Vk E Er < k I ai = a} >
•{i < k[ai = b}} is not a regular w-language. In [2] hlur and Dill proved that
this fact implies that s is not a timed regular language.

T h e o r e m 7.2 [3] A T 7 ~ is closed under finite union and intersection.

.47-7) is not closed under complementation; consider the ATP N in Figure 1

with no clock constraints, and acceptance family 9 r ~ f {{tx}, {tz,t2}}. It can

be proved that s ~ f {(a, r) E {a, b}tl Vk E JN.#{i < k I ai = a} _> # { i <
kl r --- b}}, Thus s clef {(O', T) e {a, b} t] 3k E -/~r.#{i < kl cri = a} < ~{ i <_
k] al = b}}. Suppose there exists an ATP N' such that s --- s Then,
for Theorem 6.15 there exists an ABP N " such that s ---- {a E {a, b}~l 3k E
~W.#{i < k tai = a} < # { i < k lai = b}}, but it can be proved that such an
ABP does not exist.

23

8 Ver i f icat ion

Here we discuss how to use the theory of timed P / T nets to prove correctness
of some infinite-state real-time systems. A trace will be a timed word over sets
of events: if two events a and b happen simultaneously, the trace will have the
set {a, b}.

Defini t ion 8.1 (T i m e d Traces and T imed P r o c e s s e s)
r E ~+(A) t is a timed trace over alphabet A. A timed process is a pair (A, L)
where A is a finite set of observable events, and L is a timed language over
p+(A). The set of timed processes is denoted by T7 ~. The class of processes

modeled by ATPs is A T P P ~f {(A, L) E TP] L E A T P } . []

R e m a r k 8.2 A property II can be represented as the set of traces satisfying it.
Hence verifying that a process P = (A, L) satisfies property II is equivalent to
cheek that L C 1I, i.e. that all the ezecution traces satisfy the property II.

Various operations can be defined on processes; these are useful for describing
complex systems as composed of simpler ones. We will consider only parallel
composition, which prescribes the joint behavior of a set of processes running
concurrently.
The parallel composition operator can be conveniently defined using the pro-
jection operation. The projection of (or, r) �9 ~+(A) t onto B C A is formed by
intersecting each event set in a with B and deleting all the empty sets from the
sequence. Notice that the projection operation may result in a finite sequence,
thus we define the set of timed traces projectable onto B.

D e f i n i t i o n 8.3 (P r o j e c t a b l e T i m e d Traces)

AFB def { (a , r) �9 ~+(g)tl 3~176 i . c r iN B # 0}. I f B 1 , . . . , B , ~ C_ A, we define

Al iBi de f {r �9 ~+(A)t I A i r ~ A[Bi}. []

D e f i n i t i o n 8.4 (P r o j e c t i o n) Assume (a, r) �9 A[B. We define ~1 dezf min{i �9

~V ~+] O" i N B ~ 0} , ~ k + l def min{i > ~k[ai (3 B # O}, o 1 def 7" I def = = o'~1o'~2 . . . , =

v(1r(~.. . , and (a, r) [B de__f (a', r '). []

D e f i n i t i o n 8.5 (P a r a l l e l C o m p o s i t i o n) Assume P i = (Ai, Li) is a t imed
process for i = 1 , 2 , . . . , n . Their parallel composition is the t imed process

Ill Pi def (UiAi, 1[i Li) where I[i Li dej {r �9 (U i A i) [j A j] Aj r [Aj �9 Lj }. []

We want to prove that .ATT)P is closed under parallel composition. Assume
P~ = (Ai, L~) �9 MTT:7) for i = 1 , 2 , . . . , n , and N~ is an ATP such that s =
Li. O(Lt) denotes the timed language {r �9 (o i A i) [j A j l r �9 L i} . The
first step will be, for each k �9 { 1 , . . . , n } , to define an ATP O(N~) such that
C(G(Nk)) = G(Lk).

24

D e f i n i t i o n 8.6 (G e n e r a l i z a t i o n C o n s t r u c t i o n)
Given the net Nk = (p+ (Ak), Pt , Tt, Ft , Wt, ht, mr , c~, c~, Y-t), we define below

the net G(Nt) def (~+(U~Ai),Pt,T~,F~, ' ' m ,c ,~ ~-,, : W~,ht , k , % , % , c - t) as follows.

�9 T~ def At U {(t, A)I A = 0 V A e At} where Ak doj ~+(U~Ai \ At);

�9 EL de_f {(p, (t, A))I (p,t) e El} U {((t, A),P)I (t,p) e El);
t d e f �9 Ws (t, A)) = Wt(p , t) and W~((t, A),p) def Wt(t ,p) ;

�9 h~(A) def A and h~(t, A) d~f h t (t)U A.

�9 c~C(A) clef tr?Ae a n d e~c(t, A) dej e l (t) ;

�9 c~r (A)def: O a n d c~'(t,A) def= c~ (t) ;

�9 Given T C_ T~, we say that T is complete iff Vj.St E T._Aj N h~(t) # O.
When R E -Tt, we say that T emulates R i f f ~ t (T \ A t) = R. Then

def { T C_ T~[T is complete and there exists R E :Tt such that T ~-~ =
emulates R). []

It can be proved that s = G(Lt); since M T P is closed under intersection,
the following holds

T h e o r e m 8.7 MTT~7 ~ is closed under parallel composition.

Typically, a system implementation is described as a composition of several
components; if each component is a timed process modeled by an ATP and the
specification is given as a property modeled by a DTMA, then the correctness
of the implementation can be checked, due to the following

T h e o r e m 8.8 Given Pi = (Ai ,L(Ni)) e .ATT)7 9, modeled by ATPs Ni (for
i = 1 , . . . , n), and a specification as a DTMA ,4, the inclusion of II, L(N,) in
s can be decided effectively.

For deciding if [[, L(Ni) C s in fact, it suffices to check if tl, s =
O, and this can be done due to Theorems 8.7, 4.5, 7.2, and 6.16.

9 A Verification Example

As an example of automatic verification using ATPs, we consider a simple process
to produce wooden black horses. In Figure 2 we show an ATP modeling a
workman that carves a raw block of wood producing a wooden horse. We impose
that both transitions must be fired infinitely often: thus the process ensures that
if a new block is provided, then a new horse is refined within 2 minutes. Notice
that the workman does not accept a new block until it has completely carved
the previous one. This process could have been modeled by a TMA, too.

l i t A E Ak, then events in A can happen at any t ime, thus we int roduce a new transi t ion
for each of such an A; furthermore, events in A can happen contemporaneously to events in
Ak hence, for each t ransi t ion t E Th, we introduce a new transi t ion (t, A).

25

{"block of wood"}

{"wooden horse"}

Figure 2: CARVER.

{ "wooden horse" } {" black horse" }

I-"1"--~" r ' ' '~" I-1
y:=O y<5

y:=O

Figure 3: PAINTER.

b

h

"111

Figure 4: Strong Efficiency Property.

h,b,z<7,z:=O

"1 h, "l b f ' " ~ ~ ~ - " 1 h,"! b

"-] h, b ,z:=0 ~ O ~ . ~ ' -] h, b ,z:=0

h,b,z<7,z:=0

Figure 5: Weak Efficiency Property.

26

In Figure 3 we show an ATP modeling a workman that obtains a wooden horse
and paints it. Again, we impose that both transitions must be repeated infinitely
often. The painter can accept more than one horse (we could say that he can put
them on a shelf, and this operation makes him busy). However, if no new horse
arrives for at least 5 minutes, then the workman has the t ime to concentrate
on painting, and a black horse is produced. Since the process ' remembers ' the
number of carved horses that are still unpainted, this process cannot be modeled
by a t imed finite state automaton.
The complete process (Horse Manufactory) for the production of black horses is

HM de___f CARVER II PAINTER. The factory administrator could be tempted to
require tha t if a new block of wood is provided then, in no more than 7 minutes,
a new black horse is produced. This property is modeled by the DTMA in Figure
4 (b denotes "block of wood", and h denotes "black horse"): a b-labeled edge
stands for any event set containing b, and a -,b-labeled edge means any event
set not containing b. We impose that both states are reached infinitely often in
an accepted run. Using Theorem 8.8, it can be proved that HM does not satisfy
this property. On the other hand, the administrator could be pleased with the
HM ensuring that if a new block is provided and for at least 7 minutes no new
block is supplied, allowing all workmen to concentrate on the refining job, then
at least a black horse is completed. This property is modeled by the DTMA in
Figure 5, in which a run is accepted only if it reaches both states infinitely often.
Using Theorem 8.8, it can be proved that HM satisfies this weaker property.

R e f e r e n c e s

[1] R. Alur, D. Dill. "Automata for Modeling Real-Time Systems". In Proc. ICALP
90, LNCS 443, 322-335. Springer, 1990.

[2] R. Alur, D. Dill. "The Theory of Timed Automata". In Proc. o] the REX workshop
"Real-Time: Theory in Practice", LNCS 600, 45-73. Springer, 1992.

[3] R. Gorrieri, G. Siliprandi. "A Theory of P / T Nets for Timed Languages". In
preparation.

[4] W. Thomas. "Automata on Infinite Objects". Handbook of Theoretical Computer
Science. Elsevier, 133-191, 1990.

[5] R. Valk. "Infinite Behavior of Petri Nets". TCS 25, 311-341, 1983.

[6] R. Valk, M. Jantzen. "The Residue of Vector Sets with Applications to Decidabil-
ity Problems in Petri Nets". Acts Informatica 21,643-647, 1985.

