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A b s t r a c t  

Timed Nets are proposed to model the behavior of real-time systems. Net 
transitions are annotated by timing constraints, using finitely many real- 
valued clocks. A timed net accepts timed words, i.e. infinite sequences in 
which a time of occurrence is associated with each symbol We study ex- 
pressiveness, closure properties and decision problems of such nets, where 
the acceptance condition is based on actions. The main result of the paper 
is an algorithm for deciding the inclusion problem for timed languages. 

1 I n t r o d u c t i o n  

There is a great variety of automata-based approaches to the specification and 
verification of real-time systems, depending mainly on the assumptions about  
the nature of time. The use of dense-time domains (events may happen arbi- 
trarily close to each other) is an important  feature whenever one is interested in 
modeling heterogeneous systems, i.e., systems composed of digital and analogical 
(hence, continuous) devices. 

Among the models based on dense-time, particular interest has been stirred 
up by Timed Automata, proposed by Alur and Dill [1, 2]. This model is essen- 
tially the timed version of finite-state w-automata, hence recognizing timed words 
- infinite sequences in which a real-valued time is associated with each symbol. 
A timed word is recognized by one of such automata  if, for instance, the set of 
those states passed through infinitely often is equal to a given set of accepting 
states. The behavior of a real-time system is modeled by a timed language s 
since also the requirements the system must satisfy can be expressed as a timed 
language s the problem of verifying that a system satisfies a certain prop- 
erty essentially reduces to the inclusion problem of the implementation timed 
language s into the specification timed language s Due to the decid- 
ability of the inclusion problem, Timed Automata have been profitably used for 
the automatic formal verification of real-time finite-state systems [2]. 

*This research has been partially supported by CNR grant N.92.00069.CT12.115.25585 and 
by MURST. 
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Despite of their elegant characterization and strong properties, T imed  Au- 
t o m a t a  are not expressive enough to model systems with an infinite number  of 
states. Here, we extend the approach of Alur and Dill to a more general class 
of au tomata ,  namely Place/Transit ion Petri Nets, where the number  of tokens 
in each place can increase unboundedly~ As the global s tate of a system is the 
collection of the tokens in the places, the number  of global states of the system 
a P / T  net represents is infinite. 

Our approach follows an action based acceptance condition: a t imed word is 
accepted iff the set of those transitions fired infinitely often belongs to a given 
family of sets of transitions. The choice of such an acceptance condition is due to 
the fact that  the set of transitions of a (Timed) P / T  Net is finite. This permits  
to prove some relevant decidability results: the problem of language emptiness 
and the problem of inclusion of a t imed P / T  net language in a (deterministic) 
t imed regular language. These are at the base of au tomat ic  verification of real- 
t ime properties, expressed as Timed Automata ,  of real-time systems, expressed 
as .Timed P / T  Nets. 

An example in Section 7 shows a simple real-time system which is modeled by 
a Timed P / T  Net and which cannot be represented through a Timed Automaton ,  
hence proving that  the class of systems we can model is strictly larger. The final 
section introduces a simple example of application of our theoretical results. 

2 w- languages  and w-automata .  

In this section we give some basic definitions about  w-words and their recognizing 
au tomata .  For more details see [4, 5]. 
Let ~ be a finite alphabet.  ~* is the set of all finite sequences over ~. An infinite 
sequence over ~, also called w-word, is a map  c~ : ~W + --~ ~. Since ai denotes 
the i th symbol of a, we also write c~ = crier 2 . . . .  The set of all w-words over ~ is 
denoted by ~ .  If A is another alphabet,  h : ~ -* A and a E ~ ,  we use h(a)  
to denote the w-word h(al)h(o'2). .. E A '~. L C ~'~ will be called a w-language. 
With 3~176 we denote a property P which holds infinitely often: Vm E 

? 

/N.~n > m . P ( n )  holds. We define In(a) de~ ~[a E El 3~176 - a}. 
In the literature various types of finite state w-au tomata  have been studied: 
among these, we recall Bfichi automata .  A Transition Table (TT  for short) is 
a tuple ,4 = (~, S, So, E), where ~ is an alphabet,  S is a finite set of states, 
So C_ S is a set of s tart  states, and E C S x S x ~ is a set of transitions. A run 
r = (s0, sl,  a l ) ( S l , S 2 , a s ) . . .  E E ~ on an w-word a is such that  so E So. The 
sequence of reached states in the run r is the w-word s l s2s3 . . .  E S ~, denoted 
by St(r) .  A nfichi Au toma ta  (BA for short) is a tuple ~4 -- (~, S, So, E,  F )  such 
that  (~, S, So, E) is a T T  and F _C S. A run r is accepted iff In(S t (r ) )  A F 7s O. 

The accepted w-language is s de__f {0 E ~..~[ there is a run on cr accepted 
by A}. The class of languages accepted by BAs, called regular w-languages, is 
denoted by BA. 
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D e f i n i t i o n  2.1 ( P l a c e / T r a n s i t i o n  P e t r i  N e t s )  N = (~, P, T, F, W, h, m0) is 
a PTP,  where E is an input alphabet, P is a finite set of places, T is a finite 
set of transitions (disjoint from P),  F C_ (P  x T) U (T x P )  is the flow rela- 
tion, W : F ~ g i  + is the weight function, h : T --* ~ is the labeling function, 
rao G xW P is the initial marking (the functions from P to ~W, are called markings 
for N; such a set will be usually denoted by M and ranged over by m). 

The pre-set of a transition t is *t ~ f  {Pl (P,t) G F},  and its post-set is t '  ~ f  
{p] (t, p) E f } .  N has concession in m iff re(p) > W(p,  t) for all p e ' t .  If t has 
concession in m then t fires m to m ~, where m'(p) = re(p) - W(p,  t) if p E~ \ t ~ 
m'(p) = re(p) + W(t ,  p) i fp  E t ~ \~ m'(p) = re(p) - W(p,  t) + W(t, p) i fp  E~ ~ 
and m~(p) = re(p) i f p  E P \ (it U t ' ) .  This relation on M x T x M is the firing 
relation, denoted by m (t)m'. 
We say that  r E T ~ is a run of N over a E ~ iff h(r) = a and there are 
m r , m s , . . .  E M such that Vi E ~W.rn~ (r i+t)mi+l .  too, m 1 , . . ,  is the sequence of 
markings associated to r. 0 

In [6] PTPs  are provided with acceptance conditions based on transitions fired 
infinitely often in a run. Among the various notions proposed there, we consider 
the one for which the class of accepted languages is the largest. 

D e f i n i t i o n  2.2 ( A c t i o n  B a s e d  P T P )  N -- (~, P, T, F, W, h, m0, ~') is an ABP, 
where (E, P, T, F, W, h, mo) is a PWP and Y" C p+(T) .  A run r is accepted iff 
In ( r )  G ~'..AB7 ~ denotes the class of w-languages accepted by ABPs. [] 

T h e o r e m  2.3 [6] The emptiness problem is decidable for A B e .  

3 T i m e d  L a n g u a g e s  

In this section we present the timed languages, as introduced in [2]. 

D e f i n i t i o n  3.1 ( T i m e  S e q u e n c e )  A time sequence r = r l r a  . . .  is an infinite 
sequence of positive reals ri E ~>0 ,  satisfying 

Monotonicity: ri < ri+l for all i _> 1. 

Progress: for every t E ~>_0 there is some i _> 1 such that r / >  t. 
def  

For any time sequence r = rlr2 . . .  we assume r0 = 0. D 

The progress condition is introduced to avoid the Zeno paradox: it will never be 
the case that  infinitely many events happen in a bounded time interval. 

D e f i n i t i o n  3.2 ( T i m e d  W o r d s  a n d  L a n g u a g e s )  A timed word over ~ is a 
pair ( a , r )  where cr E ~ and r is a time sequence. S t, ranged over by r 
denotes the set of all timed words over ~. A timed language is a set L C ~t. ['1 

The Untime operation discards the time values associated w i th  the symbols, 
i.e., it considers the projection of a timed word (~r, r )  on the first component.  

D e f i n i t i o n  3.3 ( U n t l m e d  L a n g u a g e )  Given a timed language L, we define 

Vnti [L] do__f OI e L}, also denoted by ~rl(L). [] 
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4 T i m e d  Fin i te  State  A u t o m a t a  

In [1, 2] the definition of finite state w-au tomata  is augmented,  so tha t  they 
accept t imed languages. In this section we recall some results presented there 
and a new result of ours. 
Transition tables are extended to timed TTs  so that  they can read t imed words. 
When executing a transition, the choice of the next state depends also on the 
t ime of the input symbol w.r.t, the times of the previously read symbols.  For 
this purpose a finite set of clocks is associated with each TT.  A clock can be set 
to zero simultaneously with the execution of a transition, while its value is equal 
to the t ime elapsed since the last t ime of reset. A clock constrain~ is associated 
with each transition and a transition may be taken only if the cu r ren t  values of 
the clocks satisfy its constraint. 

D e f i n i t i o n  4.1 ( C l o c k s )  For a set C of clock variables, the set ~ ( C )  of clock 
constraints is defined inductively by 

6 : = c <  q Iq<c l  ~6 l~^6 

where c is a clock in C and q is a nonnegative rational constant.  A clock inter- 
pretation (CI for short) for C is a function v : C --* ~ > 0 .  We say that  v satisfies 

6 iff 6 evaluates to true. Uo denotes the CI such tha t  Vc E C.vo(c) dd 0. If  
t E ~ > o ,  then v + t is the CI mapping every clock c to v(c) + t, and t .  v the one 
assigning t -  v(c) to each clock c. For Y C C, v[t /Y] denotes the CI assigning t 
to each c E Y and agreeing with v over the other clocks, n 

A Timed Transition Table ( T T T  for short) is a tuple A : (~2, S, So, C, E),  where 
C is a finite set of clocks, and E C S • S • 5] • 2 c > (I~(C) is the set of transitions. 
(s, s I, a, y, 5) represents a transition from s to s I on input symbol a. The set 
y C C gives the clocks to be reset when executing this transition, and 6 is a 
clock constraint to be satisfied. A run of A on (a, r )  is an infinite sequence of 
transitions r = (so, sl, oh, Yl, 61)(sl, s2, a2, Y2, 62) . . .  such that  (i) So 6 So and 
(ii) there are vl, v2 , . . .  CIs such that  ~+1 is satisfied by vi + (r~+l - 7-~) and 

def 
vi+l : (vl + (~-i+1 - ri))[0/yi+l]. We say that  v0, u l , . . ,  is the sequence of CIs 

associated to r, and St(r)  def : sls2s3 . . .  is the sequence of reached states. 

D e f i n i t i o n  4.2 ( T i m e d  Bfichi  A u t o m a t a )  
A TBA is a tuple A = (~, S, So, C, E,  F) ,  where (~], S, So, C, E)  is a T T T ,  and 
F C S. A run r is accepted i f f I n ( S t ( r ) ) n F  ~ 0. The accepted t imed language is 

•(A) dej {~b E ~'~[ ,,4 has an accepting run over r The class of t imed languages 
accepted by TBAs, called timed regular languages, is denoted by TB~4. [] 

D e f i n i t i o n  4.3 ( T i m e d  M u l l e r  A u t o m a t a )  
A TMA is a tuple A : (E, S, So, C, E, ~'), where (~, S, So, C, E)  is a T T T ,  and 
~" C p+(S) .  A run r is accepted iff In (S t ( r ) )  E 9 c. The set of t imed languages 
accepted by TMAs is denoted by T A 4 A .  [] 
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T h e o r e m  4.4 [2] (i)  TI3A : T A 4 A  
(i i)  T B A  is closed under finite union and intersection. 

In order to define a class of timed languages closed under all boolean operations, 
deterministic automata  are investigated. A TMA ( ~, S, So, C, E,  ~') is called 
deterministic (DTMA) if and only if [So[ 1 and for all s e S, for all a E E, for 
every pair of transitions of the form is, - ,  a, - ,  61) and is, - ,  a, - ,  62), we have 
that  61 A 62 is unsatisfiable. The class of timed languages accepted by DTMA is 
denoted by 7)TAAA. 

T h e o r e m  4.5 [2] ( i)  ~)T.A4A C TA4A 
(ii)  ~ T ~ A  is closed under finite union, intersection and complementation. 

We now study new acceptance conditions based on transitions rather than states. 
We define the action based timed B~chi automata and the action based timed 
Muller automata, and we prove that these have the same expressive power of 
TBAs  and TMAs. 

D e f i n i t i o n  4.6 ( A c t i o n  B a s e d  T B A )  .4 = (~, S, So, C, E,  F )  is an ABTBA, 
where i ~, S, So, C, E) is a T T T ,  and F C E is the set of accepting transitions. 
A run r is accepted iff In(r)  N F • O. The set of accepted t imed languages is 
denoted by A B T B A .  [] 

D e f i n i t i o n  4.7 ( A c t i o n  B a s e d  T M A )  A : (E, S, So, C, E,  yr) is an ABTMA, 
where ( S, S, So, C, E) is a T T T ,  and 9 c C_ ~+(E)  specifies an acceptance family. 
A run r is accepted iff In ir  ) E :T. The set of timed languages accepted by 
ABTMAs is denoted by ABTA4.4.  [] 

T h e o r e m  4.8 [3] A B T B A  = T B A  = T A 4 A  : A B T A 4 A .  

5 Timed  Place/Transi t ion Nets  

In this section we augment the definition of PTPs  following the same idea illus- 
trated in the previous section, so that they can recognize timed words. 

D e f i n i t i o n  5.1 (Timed P / T  Net) N = (~, P, T, F, W, h, m0, C, c c, c r) is a TP, 
where N I = (1~, P, T, F, W, h, m0) is a PTP, C is a finite set of clocks, c c : T --* 
@(C) gives the clock constraint associated to each transition, and c" : T --* 2 c 
gives the set of clocks to be reset when a transition is executed. 
A snapshot for N is a couple (re, v) such that  m is a marking for N I and v 
is a CI for C. The set of snapshots is denoted by r .  A transition t of N has 
concession in (m, v) for N iff t has concession in m for N '  and v satisfies &(t). 
If t has concession in (m, v), then t fires (m, v) to (m', v ~) where m (t) m' and 
v ~ : v[0/c '( t)] .  This relation on F x T x F is the timed firing relation denoted by 
ira, v) (t) ira', v O. A run of N over in, r )  is an infinite sequence r = t i t 2 . . .  E T ~ 
such that  hi t  ) : a and there are (ml, Vl), ira2, v2),. �9 �9 snapshots for N such that  
Vi e Jl~r.irn~, vi -t-/ri+l - ri)) ( t i+l) im/+l ,  vi+l). (too, v0), (ml,  Vl) . . . .  is the se- 
quence of snapshots associated to r. [] 
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a b 

x:=0 x:=0 

Figure 1: An example of t imed P / T  ne t .  

For example,  consider the T P  in Figure 1, where a and b are the labels for t l  
and t~. In every run, in each moment  of the execution, the number  m of fired 
t l  transitions is not less than the number n of executed t2 transitions; indeed 
the place keeps exactly m - n tokens. The t iming constraints impose tha t  a 
transit ion must be fired after each t ime unit, thus the first transit ion in the run 
fires at t ime 1, the second at t ime 2 and so on. 
We provide TPs  with an action based acceptance condition. 

Defini t ion 5.2 (Act ion B a s e d  T P )  N = (~, P, T, F, W, h, mo, C, c c, c r , ~r) is 
an ATP, where (E, P, T, F, W, h, mo, C, cC, c ") is a T P  and Y C_ ~+(T)  is an 
acceptance family. A run r is accepted iff In(r)  E ~'. The accepted t imed 

language is s  dej {0 E Y]'t I N has an accepting run over 0}. The class of 
accepted t imed languages is denoted by . 4 T P .  Q 

Consider again the net in Figure 1, with acceptance family 5 r d~j {{tl}, {tl, t2}}: 
it can be proved that  every run is accepted and the recognized t imed language is 
{(a, r )  E {a, b}tlVi e J.W.#{n _< il ~= = a} > # { n  < il ~= = b} A T = 1 2 3 . . . } .  

6 Emptiness  

In this section we develop an algorithm that,  given an ATP accepting a t imed 
language L, constructs an ABP recognizing Untime[L] (in [2] an analogous pro- 
cedure was defined for TBAs). This important  result allows us to state the 
decidability of the emptiness problem for t imed languages in .ATT), and defines 
a limit to the expressive power of ATPs, in the sense that  a t imed language may  
be accepted by an ATP only if its Untime is recognized by an ABP. We use this 
fact to prove the nonclosure of AT7 ~ under complementat ion.  
First of all we want to prove that  it suffices to consider those nets in which only 
integer constants are used in clock constraints. 

D e f i n i t i o n  6.1 ( M u l t i p l i e d  Clock  C o n s t r a i n t s )  
Given a T P  N and t E ~ > 0 ,  N, is the TP  obtained by replacing each constant 
q, in each ~ appearing in N, by t �9 q. [] 

L e m m a  6.2 Consider a TP N,  a timed word (c~, r), and a positive rational t. 
Then r is a run of N over (a, T) iff r is a run of N~ over ( a , t .  v). 

If  we choose t to be the least common multiple of all nonzero constants appearing 
in the clock constraints of N,  then the clock constraints in Nt use only nonnega- 
tive integers; furthermore, if N is an ATP then Untime[s = Untime[s 
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as a consequence, s  = @ iff s  = @. Thus, in the remainder of the section 
we assume that  clock constraints use nonnegative integers only. 
The problem of checking the emptiness of the t imed language recognized by an 
ATP N can be more easily coped with if we show that  this is equivalent to 
checking the emptiness of the language recognized by an ABP N ~. This could be 
done, in principlei by adding places for clock interpretations: a snapshot (m, v) 
in N is simulated in N ~ by putt ing a token in the place corresponding to r,. Even 
if the CIs for N are infinite, we can define an equivalence relation ~ on CIs, with 
a finite number  of classes, and then add a new place for each of such classes. In 
[2] ~ has been defined in the case of TBAs. 

D e f i n i t i o n  6.3 ( C l o c k  R e g i o n s )  Let qc denote the largest integer q such tha t  
c ~_ q or q _ c is a subformula of some 6 appearing in the net N; for any 
nonnegative real t , / t a c t ( t )  denotes the fractional part  of t, and k tj denotes the 
integer part  of t; that  is t = It] + f rac t ( t ) .  
t, - u ~ iff the following three conditions hold: 

1. Vc E C. Iv(c)] = [vt(c)J V (t,(c) > qc A r,'(c) > q=) 

2. Vc, d E C.(r,(c) < qc A t/(d) ___ qd) ::~ 
( f rac t (u ( c ) )  < f r a c t ( v ( d ) )  r f r a c t ( v ' ( c ) )  < f r ac t (v ' (d ) ) )  

3. Vc E C.u(c)  < qc ~ ( f rac t (u (c ) )  = 0 r f rac t (u ' ( c ) )  : O) [] 

It  can be proved that  ~ is an equivalence relation. An equivalence class is called 
a clock region (CR for short). [t,] denotes the CR which u belongs to. The set 
of CRs is ranged over by 6.  

P r o p o s i t i o n  6.4 Let c E C,  ~ ~- ~ and t E T .  Then 

1. v satisfies c~(t) i #  ~' satisfies c~(t) 

s. = 0 i #  = o and > qo q > qo. 

Thus in the remainder of the section we shall say that  [v] satisfies cC(t) if v 
satisfies cC(t), and we shall use [~][0/c'(t)] instead of [~[0/c'(t)]]. 
In [3] an algori thm producing a representative CI for each clock region is pro- 
vided: ~ denotes the representative of class ct. As a consequence 

P r o p o s i t i o n  6.5 
1. The set  of clock regions is finite. 

2. I f  t, ~ v I and t > O, then there ezists t I > 0 such that v + t "~ t /  + t t. 

Then a new place is introduced for each clock region. When a transition fires, 
it puts a token in a clock region place. This means that  the CI reached just  
after the firing of the transition belongs to the clock region corresponding to 
that  place. Moreover, the previous proposition states that,  if v -~ v I, v and v I 
visit the same clock regions as t ime progresses. 

D e f i n i t i o n  6 .6  ( T i m e - s u c c e s s o r )  A CR e I is a t ime-successor of a CR ~ iff 
for each v E ~ there exists ~ > 0 such that  v + t E e I. [] 
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In [3] we provide an algorithm building the representative of any t ime successor 
of a given CR. Now we define the ABP recognizing Untime[s 

D e f i n i t i o n  6.7 ( R e g i o n  N e t )  Given a TP  N = (E, P, T, F, W, h, too, C, c ~, c') 

we define the P T P  7~(N) ~ f  (E, P ' ,  T', F ' ,  W', h', too') where 

�9 p ,  a_,f p U {a[ a is a CR for N} 

�9 T '  %f {(t, a, a91 t ~ T and there is an an time-successor of a,  such that  a "  
satisfies c~ and a ' =  a"[O/c'(t)]} 

�9 F'  %~ {(p, (t, ~, ~'))1 (P, t) ~ F}  U {((t, ~, ~'), V)I (t, p) ~ F )  U 
{(~,  (t, ~,  ~9)1 (t, ~, ~')  ~ T'} U {((t, ~, a'), ~')1 ( t , - ,  ~9 C T'} 

aef f W(p, t )  i f (p , t )  E F  
Wl(p, (t, otg) 

= ~ 1 otherwise 
d,f f W(t ,p)  i f ( t , p )  E F 

Wl((t ,a ,  al),p) 
= ~ 1 otherwise 

�9 h'(t ,  ,~, ,~') %~ h(t )  

{ , ~ ( p )  i f p  e P 
�9 m0'(p)  dr 1 if p = [v0] [] 

0 otherwise 

In the net 7~(N), any reachable marking has one token in only one of the clock 
region places, while all the other CR places are empty. 

D e f i n i t i o n  6.8 (TO(N) M a r k i n g s )  Let m be a marking of N. (m, a)  denotes 

the marking in 7r such that (m,a)(p) ~f  re(p) i f p  E P,  ( m , a ) ( a )  ~ f  1, and 

(rn, ~)(p) d=ef 0 otherwise. [] 

Now we want to establish a correspondence between each run in N and some 
run in 7r 

D e f i n i t i o n  6.9 ( R u n  P r o j e c t i o n )  
Let r = t i t s . . ,  be a run of N on (a, r )  and (too, vo), (ml,  vl), �9 �9 be the sequence 

of snapshots associated to r. We define the run projection of r to be Iv] ~ f  
(t~, [,~o], [~])(t~, [~,1], [~,~]) . . . .  [] 

L e m m a  6.10 [r] is a run of the region net T~(N). 

Because of the progress condition, every clock in a run is either reset infinitely 
often, or from a certain time onwards it increases unboundedly. 

D e f i n i t i o n  6.11 ( P r o g r e s s i v e  R u n )  A run of T~(N), with associated sequence 
of markings (too, [u0]/, (ml, [Ul]),..., is progressive iff Vc E C, 3~176 = 
0 V vi(c) > qc)- [] 

L e m m a  6.12 If  r is a run of N, then [r] is a progressive run of 'R(N).  
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Conversely, we now claim that, given a progressive run r! of 7~(N), a run r of N 
can be defined such that r '  is its projection. 

L e m m a  6.13 I f  r' = (tl ,  so,  al)( t~,  a l ,  a s ) . . ,  is a progressive run of T~(N) 
over a,  then there ezist a t ime sequence r and a run r of N over (cr, r)  such that 
r'= It]. 
Finally we define the acceptance family. A set of accepting transitions has to 
ensure that  a run in R(N)  may be accepted only if it is progressive. 

De f in i t i on  6.14 (P rogres s ive  Aecep to r )  A set R C T I is a progressive ac- 
ceptor if and only if Vc E C.3(t ,  a', a)  E R.-5(c) = 0 V -5(c) > qc. [] 

T h e o r e m  6.15 Given an A T P  N ,  there ezists an A B P  N ~ such that s  = 
rrntim~[s162 

N '  is T~(N) provided with the acceptance family ~r, a~ {R' C T'J 7r~(R') E T 
and R I is a progressive acceptor }. As a consequence, the following holds 

T h e o r e m  6.16 The emptiness problem for A T P s  is decidable. 

Proof :  L = 0 iff Untime[L] = 0; the thesis follows by Th.6.15 and 2.3. �9 

7 E x p r e s s i v e n e s s  and Closure  P r o p e r t i e s  

In this section we compare ATPs with timed finite state automata  and show 
some closure properties w.r.t, boolean operations. 

T h e o r e m  7.1 [3] TB.A  C A7"7 ~. 

The basic idea underlying the proof is that every ABTMA can be simulated by an 
ATP: a place in the net corresponds to a state in the ABTMA. On the contrary, 
there exist nets recognizing non regular timed languages. A counterexample is 

illustrated by the net N in Figure 1, with acceptance family :7 ~ f  {{tx}, {tl, t2}}. 
It can be proved that Unt ime[s  = {a E {a, b}'~[ Vk E Er < k I ai = a} > 
•{i < k[ ai = b}} is not a regular w-language. In [2] hlur  and Dill proved that  
this fact implies that s  is not a timed regular language. 

T h e o r e m  7.2 [3] A T 7  ~ is closed under finite union and intersection. 

.47-7) is not closed under complementation; consider the ATP N in Figure 1 

with no clock constraints, and acceptance family 9 r ~ f  {{tx}, {tz,t2}}. It can 

be proved that  s  ~ f  {(a, r) E {a, b}tl Vk E JN.#{i < k I ai = a} _> # { i  < 
kl r --- b}}, Thus s  clef {(O', T) e {a, b} t ] 3k E -/~r.#{i < kl cri = a} < ~{ i  <_ 
k] al = b}}. Suppose there exists an ATP N'  such that s  --- s  Then, 
for Theorem 6.15 there exists an ABP N "  such that s  ---- {a E {a, b}~l 3k E 
~W.#{i < k tai = a} < # { i  < k lai = b}}, but it can be proved that such an 
ABP does not exist. 
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8 Ver i f icat ion  

Here we discuss how to use the theory of timed P / T  nets to prove correctness 
of some infinite-state real-time systems. A trace will be a timed word over sets 
of events: if two events a and b happen simultaneously, the trace will have the 
set {a, b}. 

Defini t ion  8.1 ( T i m e d  Traces and T imed  P r o c e s s e s )  
r E ~+(A) t is a timed trace over alphabet A. A timed process is a pair (A, L) 
where A is a finite set of observable events, and L is a timed language over 
p+(A). The set of timed processes is denoted by T7 ~. The class of processes 

modeled by ATPs is A T P P  ~f  {(A, L) E TP ]  L E A T P } .  [] 

R e m a r k  8.2 A property II can be represented as the set of traces satisfying it. 
Hence verifying that a process P = (A, L) satisfies property II is equivalent to 
cheek that L C 1I, i.e. that all the ezecution traces satisfy the property II. 

Various operations can be defined on processes; these are useful for describing 
complex systems as composed of simpler ones. We will consider only parallel 
composition, which prescribes the joint behavior of a set of processes running 
concurrently. 
The parallel composition operator can be conveniently defined using the pro- 
jection operation. The projection of (or, r)  �9 ~+(A) t onto B C A is formed by 
intersecting each event set in a with B and deleting all the empty sets from the 
sequence. Notice that the projection operation may result in a finite sequence, 
thus we define the set of timed traces projectable onto B. 

D e f i n i t i o n  8.3 ( P r o j e c t a b l e  T i m e d  Traces )  

AFB def { ( a , r )  �9 ~+(g)tl 3~176 i .  c r iN B # 0}. I f B 1 , . . . , B , ~  C_ A, we define 

Al iBi  de f {r �9 ~+(A)t I A i r  ~ A[Bi}.  [] 

D e f i n i t i o n  8.4 ( P r o j e c t i o n )  Assume (a, r)  �9 A[B. We define ~1 dezf min{i �9 

~V ~+ ] O" i N B ~ 0} ,  ~ k + l  def min{i > ~k[ ai (3 B # O}, o 1 def 7" I def = = o'~1o'~2 . . . ,  = 

v(1r(~.. . ,  and (a, r ) [ B  de__f (a', r ').  [] 

D e f i n i t i o n  8.5 ( P a r a l l e l  C o m p o s i t i o n )  Assume P i =  (Ai, Li) is a t imed 
process for i = 1 , 2 , . . . , n .  Their parallel composition is the t imed process 

Ill Pi def (UiAi, 1[i Li) where I[i Li dej {r �9 ( U i A i ) [ j A j ]  Aj r [Aj �9 Lj }. [] 

We want to prove that .ATT)P is closed under parallel composition. Assume 
P~ = (Ai, L~) �9 MTT:7 ) for i = 1 , 2 , . . . , n ,  and N~ is an ATP such that  s = 
Li. O(Lt)  denotes the timed language {r �9 ( o i A i ) [ j A j l r  �9 L i} .  The 
first step will be, for each k �9 { 1 , . . . , n } ,  to define an ATP O(N~) such that  
C(G(Nk)) = G(Lk). 
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D e f i n i t i o n  8.6 ( G e n e r a l i z a t i o n  C o n s t r u c t i o n )  
Given the net Nk = (p+ (Ak), Pt ,  Tt, Ft ,  Wt, ht, mr ,  c~, c~, Y-t), we define below 

the net G(Nt)  def (~+(U~Ai),Pt,T~,F~, ' ' m ,c ,~ ~-,, : W~,ht ,  k , % , % , c - t )  as follows. 

�9 T~ def At U {(t, A)I A = 0 V A e  At} where Ak doj ~+(U~Ai \ At); 

�9 EL de_f {(p, (t, A))I (p,t) e El} U {((t, A),P)I (t,p) e El); 
t d e f  �9 Ws (t, A)) = Wt(p , t )  and W~((t, A),p) def Wt(t ,p) ;  

�9 h~(A) def A and h~(t, A) d~f h t ( t )U A. 

�9 c~C(A) clef tr?Ae a n d  e~c(t, A) dej e l ( t ) ;  

�9 c~r (A )def: O a n d  c~'(t,A) def= c~ ( t ) ;  

�9 Given T C_ T~, we say that T is complete iff Vj.St E T._Aj N h~(t) # O. 
When R E -Tt, we say that T emulates R i f f ~ t ( T \ A t )  = R. Then 

def { T  C_ T~[T is complete and there exists R E :Tt such that  T ~-~ = 
emulates R).  [] 

It can be proved that  s  = G(Lt); since M T P  is closed under intersection, 
the following holds 

T h e o r e m  8.7 MTT~7 ~ is closed under parallel composition. 

Typically, a system implementation is described as a composition of several 
components; if each component is a timed process modeled by an ATP and the 
specification is given as a property modeled by a DTMA, then the correctness 
of the implementation can be checked, due to the following 

T h e o r e m  8.8 Given Pi = (Ai ,L(Ni) )  e .ATT)7 9, modeled by ATPs Ni (for 
i = 1 , . . . ,  n), and a specification as a DTMA ,4, the inclusion of II, L(N,) in 
s can be decided effectively. 

For deciding if [[, L(Ni) C s  in fact, it suffices to check if tl, s  = 
O, and this can be done due to Theorems 8.7, 4.5, 7.2, and 6.16. 

9 A Verification Example  

As an example of automatic verification using ATPs, we consider a simple process 
to produce wooden black horses. In Figure 2 we show an ATP modeling a 
workman that  carves a raw block of wood producing a wooden horse. We impose 
that  both transitions must be fired infinitely often: thus the process ensures that  
if a new block is provided, then a new horse is refined within 2 minutes. Notice 
that  the workman does not accept a new block until it has completely carved 
the previous one. This process could have been modeled by a TMA, too. 

l i t  A E Ak,  then events in A can happen  at any t ime, thus we int roduce a new transi t ion 
for each of such an A; furthermore,  events in A can happen  contemporaneously  to events in 
Ak hence, for each t ransi t ion t E Th, we introduce a new transi t ion (t, A). 
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{"block of wood"} 

{"wooden horse"} 

Figure 2: CARVER. 

{ "wooden horse" } {" black horse" } 
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y:=O y<5 

y:=O 

Figure 3: PAINTER. 
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Figure 4: Strong Efficiency Property. 

h,b,z<7,z:=O 

"1 h, "l b f ' " ~  ~ ~ - " 1  h,"! b 

"-] h, b ,z:=0 ~ O ~ . ~ ' - ]  h, b ,z:=0 

h,b,z<7,z:=0 

Figure 5: Weak Efficiency Property. 
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In Figure 3 we show an ATP modeling a workman that  obtains a wooden horse 
and paints it. Again, we impose that  both transitions must be repeated infinitely 
often. The painter can accept more than one horse (we could say that  he can put 
them on a shelf, and this operation makes him busy). However, if no new horse 
arrives for at least 5 minutes, then the workman has the t ime to concentrate 
on painting, and a black horse is produced. Since the process ' remembers '  the 
number  of carved horses that  are still unpainted, this process cannot be modeled 
by a t imed finite state automaton.  
The complete process (Horse Manufactory) for the production of black horses is 

HM de___f CARVER II PAINTER.  The factory administrator  could be tempted  to 
require tha t  if a new block of wood is provided then, in no more than 7 minutes, 
a new black horse is produced. This property is modeled by the DTMA in Figure 
4 (b denotes "block of wood", and h denotes "black horse"): a b-labeled edge 
stands for any event set containing b, and a -,b-labeled edge means any event 
set not containing b. We impose that  both states are reached infinitely often in 
an accepted run. Using Theorem 8.8, it can be proved that  HM does not satisfy 
this property. On the other hand, the administrator  could be pleased with the 
HM ensuring that  if a new block is provided and for at least 7 minutes no new 
block is supplied, allowing all workmen to concentrate on the refining job, then 
at  least a black horse is completed. This property is modeled by the DTMA in 
Figure 5, in which a run is accepted only if it reaches both states infinitely often. 
Using Theorem 8.8, it can be proved that  HM satisfies this weaker property. 
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