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Abs t rac t .  Software maintenance can be a difficult and time consuming 
process. To facilitate this process, application development must pro- 
duce software that is designed to continually evolve. While object ori- 
ented methodologies address some of the maintenance issues that have 
troubled traditional functional techniques, object oriented development 
must overcome the problems involved in maintaining existing object be- 
havior when the underlying class structure evolves. Utilizing adaptable 
abstraction models for defining class structure and behavior can facili- 
tate software maintenance during class evolution. This paper describes 
adaptive software development using the Demeter Model for defining ob- 
ject structure and behavior. The maintenance impact of class evolution 
on existing behavioral implementations is detailed. 

1 I n t r o d u c t i o n  

Evolution can be a difficult force to manage during the software development 
process. The natural  tendency of application domains to change and expand can 
quickly turn software development into a primarily maintenance-oriented pro- 
cess. Object oriented programming facilitates many aspects of software develop- 
ment and maintenance through the features of class reuse, information hiding 
and delegation. However, an object oriented program is typically implemented 
based on a particular class structure, and it can be difficult to maintain existing 
behavioral implementations when the class structure evolves. Class evolution 
occurs often throughout  the software life cycle, due to both a continual improve- 
ment in the understanding of the application domain as software development 
proceeds, as well as the tendency for application domains to evolve to support  
changing business needs. While class transformations have been studied previ- 
ously, [1, 18, 19, 7, 4, 6, 14], the research has been primarily based on structural 
transformations and the consequences of maintaining existing object structure, 
not addressing the maintenance of existing object behavior. 

This paper describes an adaptive software development technique for imple- 
menting applications. Since class structures tend to evolve frequently, it is de- 
sirable to implement behavior in a flexible manner  that  can adapt  to a changing 
class organization. Object behavior is described using an abstraction technique 
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called Propagation Patterns [17, 15, 10], which are specifications of class col- 
laborations from which C + +  code is generated. The ways that class structures 
evolve are detailed, and strategies for maintaining propagation patterns based on 
those transformations are given. While there exist other models for specifying 
inter-object behavior and patterns [3, 11, 5, 8], .Propagation Patterns provide 
formal language support  for the specification and implementation of behavior, 
with emphasis on supporting class evolution. 

The ideas presented here are based on experience gained while using the 
Demeter CASE tools to implement systems for Citibank and Merrill Lynch. 
The systems were developed using class models that were under constant flux, 
requiring propagation patterns to be maintained to support the changing class 
structures. 

1.1 D e s c r i b i n g  Class  S t r u c t u r e  with Class Dictionary G r a p h s  

The examples presented in this paper are described using the Demeter data  
model for defining class structure and behavior [17]. Class structure can be 
represented graphically in a Class Dictionary Graph defined as s = (V, A, E).  
V is a set of vertices in the graph which represent classes. E is a set of edges 
between vertices which represent relations among classes. A is a set of labels 
which represent the names of the relations. 

The Demeter class model defines several kinds of classes, drawn as different 
types of vertices in the class dictionary graph. A Construction class denotes 
a concrete definition of some entity, and is drawn as a rectangular vertex. An 
Alternation class is an abstraction of the common attributes and behavior found 
among a group of objects, and is drawn as a hexagon. A Repetition class is a 
container class used to aggregate multiple instances of a class, and is drawn as a 
hexagon containing a rectangle. A Terminal class represents a basic data  type, 
such as a Number, Ident, or Real, and is drawn as a rectangle. Construction, 
terminal and repetition classes are instantiable, while alternation classes are used 
purely for inheritance [9]. 

The Demeter model defines several types of relations among classes. A Con- 
struction edge represents the uses or part-of relation, and is drawn as a single 
line arrow. An Alternation edge represents the isa relation, and is drawn from 
superclass to subclass as a double line arrow. The inverse of the alternation re- 
lation is the inheritance relation, which is represented by an Inheritance edge, 
and is drawn from subclass to superclass as a double dashed line arrow. It is 
not necessary for the model to include both inheritance and alternation edges, 
since existence of one will imply the other in an inverse direction. Allowing the 
existence of both edges can simplify the visual depiction of paths in the graph. 

A Repetition edge indicates the relation between a Repetition class and the 
class that  it aggregates. Finally, a Behavioral edge indicates a relation between a 
source and target class which results from the source class executing a behavior 
which creates a relation to the target class, and is drawn as a single dashed line 
arrow. A model for extending the class dictionary graph to include behavior as 
a relation was initially presented in [16]. 
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Fig. 1. A Class Dictionary Graph Describing the University Domain. 

Figure 1 contains a class dictionary graph that describes the organization 
of classes in the university domain. The instantiable construction classes are 
University, Address, Professor and Student. Person is an alternation class. Stu- 
dent and Professor are the alternatives, or subclasses of Person, that inherit the 
common attributes and behavior of the Person class, a name and home address. 
ProfessorList and StudentList are repetition vertices, each representing a class 
that collects multiple instances of the associated class, Professor or Student. 
Ident is a terminal class, a predefined class that will instantiate identifier ob- 
jects. The class dictionary graph describes only the structural relationships of 
the classes; behavior has not yet been added to the graph. 

Given a class dictionary graph, the Demeter Tool generates C + +  code to 
represent the organization of classes. It is easy to evolve the class structure by 
simply reorganizing the class dictionary graph. C++  code will be generated to 
correspond to the new class structure. 

2 D e f i n i n g  O b j e c t  B e h a v i o r  

An object has certain responsibility and can make requests of other objects 
to help it accomplish a task. One task in the university domain might be to 
determine which professors have a long commute to work, which may be rele- 
vant in trying to schedule early morning classes. In an object oriented program, 
functionality is implemented by attaching responsibilities to classes, abstract- 
ing common behavior to a superclass, and using message passing protocols to 
disperse responsibility among many classes to accomplish a task. 

It is often the case when implementing a task that it is necessary to involve 
several classes, each responsible for requesting some behavior of another class 
which may contain data relevant to the task at hand.' Often behavior consists 
of propagating a request along a path of relations in the class dictionary graph, 
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with certain classes along the path performing work in addition to message prop- 
agation. Following the guidelines of encapsulation and delegation to implement 
behavior can facilitate the maintenance of code if each class minimizes its' de- 
pendency on knowledge of the structure of other classes. Well written programs 
that follow the Law of Demeter [13] may be more easily maintained when class 
structures evolve, due to a coding style which minimizes reliance on a partic- 
ular class structure. While this style of coding improves maintenance in some 
aspects, it forces one to write many small methods which primarily consist of 
code to propagate a message along a path of relations. There exists the issue of 
maintaining these methods when class structures change and new message paths 
must be found. Propagation Patterns facilitate this process. 

~ ] Professor ] I uni .... ity ] prof ..... s ~ LProfessor ~ 

Fig. 2. Propagation Graph Describing A Path From University To Professor 

For instance, to collect a list of commuting professors in a given university, 
the University class would need to request a list of commuting professors us- 
ing the professors relation. The professors relation produces an instance of the 
ProfessorList class, which would iterate through each of the Professor objects 
that it aggregates. Each Professor class instance would be responsible for sup- 
plying behavior to provide its' address for comparison. The implementation of 
this task consists of several small methods being implemented, with reliance on 
the current class structure and relationships. The subgraph of the Class Dic- 
tionary Graph involved in implementing this task is shown in Figure 2. This 
is called the Propagation Graph and describes the classes and relations used in 
accomplishing the task. 

2.1 Descr ib ing Behavior  wi th  P r o p a g a t i o n  P a t t e r n s  

Code designed to propagate a message request along a path of class relations 
can be time consuming to produce and difficult to maintain. Certain communica- 
tion paths among classes tend to be reused often, with different tasks attaching 
behavior to different classes along those communication paths. It is useful to 
define paths among classes, and augment those paths with task specific code to 
implement a particular behavior. 

A Propagation Pattern [17, 15, 10] defines behavior by specifying the class 
collaborations which occur to implement a task, while avoiding writing traversal 
code that is overly dependent on the class structure. They provide a necessary 
level of abstraction when implementing object behavior which can facilitate class 



329 

evolution. The propagation pattern to accomplish the task of determining com- 
muting professors is shown in Figure 3. While propagation patterns have been 
implemented based on the Demeter class model, most of the concepts presented 
in this paper could easily apply to other data models. 

* o p e r a t i o n *  P r o f e s s o r L i s t *  commuters()  
* i n i t *  (@ new P r o f e s s o r L i s t ( )  @) 

*dir* allProfsPath = *from* University *to* Professor 

* t r a v e r s e *  a l l P r o f s P a t h  

*carry* Address*univAddress 
*along* allProfsPath 

*at* University univAddress = (@ location @) 

*wrapper* Professor *prefix* 
(~ 

if (univAddress->fa~From(get_address 0)) 
return_val- > append (this) ; 

c) 

Fig. 3. A Propagation Pattern For Obtaining The List Of Commuting Professors. 

The structure of this propagation pattern contains an interface statement 
with the method name commuters and return type ProfessorList*. A message 
is sent along a path from the University class to the Professor class, with the 
University's location being transported along the path as an object that is ac- 
cessible to other classes. The Professor class has the responsibility shown in the 
wrapper code which adds the current Professor object to the resulting list if the 
Professor's address is far from the University's address. 

The behavior implemented by this propagation pattern effectively modifies 
the class structure defined in the original class dictionary graph to add a behav- 
ioral edge to the University class. The propagation pattern adds a new relation 
called commuters between the University class and the ProfessorList class. This 
new edge can now be used by other propagation patterns in defining paths. 

Def ini t ion 1. The definition of a Propagation Pattern for a given class dictio- 
nary graph F = (V, A, E) is a tuple of the form (S, M, PD, TP, CF). 

- S is the Signature of the behavior being defined, and is of the form 
(rettype, fname, init) Where: 

�9 rettype is the return type of the behavior, rettype 6 V 
�9 fname is the name of the behavior 
�9 init is an optional expression which initializes the result of the behavior. 
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The Signature S can be described in a textual form as: 

*operation* rettype fname() [ *init* (@ expression @) ] 

There is a special variable named returnval of type rettype, which holds the 
return value of the behavior being implemented. It can be initialized using 
the *init* expression, and modified by any class that  has t he /name  message 
propagated to it. 
M is a Meta Declaration, which is used to define censtraints in the propa- 
gation pattern.  While there may be several types of constraints, this paper 
will only describe a Meta Graph Directive constraint, which is used to spec- 
ify a subgraph of the class dictionary graph. A Meta Graph Directive has 
the form (GDNarne, GD), where GDName is a variable name used to repre- 
sent the graph directive GD. A propagation pat tern can define several graph 
directives. 
A Meta Graph Directive has a textual form: 

*dir* GDName = GD 

GD is a Graph Directive which specifies a subgraph of a class dictionary 
graph. A GD has the form (F, I, X, V, T) where: 

. F is a non-empty set of vertices in the class dictionary graph specifying 
the starting or source vertices in the subgraph, or *from* classes. 

�9 T is a set of vertices in the class dictionary graph specifying the ending 
or target vertices in the subgraph, or *to* classes. 

. V is a set of vertices in the class dictionary graph specifying vertices 
which the subgraph must contain as intermediary vertices along the sub- 
graph, these are the *via* classes. 

�9 I is a set of edges in the class dictionary graph which the subgraph must 
include. These are the *through* edges. 

�9 X is a set of edges in the class dictionary graph which the subgraph must 
exclude. These are the *bypassing* edges. 

A graph directive GD has the textual form: 

*from* class 

[ *through* edge-patterns ] 
[ *bypassing* edge-patterns ] 
[ *via* class-set ] 
[ *to* class-set ] 

A class-set refers to a comma-separated list of class names, and an edge- 
pattern has one of the following textual forms: 

-> class, label, class 

= >  class, class 

<= class, class 

"> class, class 

(a construct ion  or behavioral  edge) 
(an a l t ernat ion  edge) 
(an inheritance ' edge) 
(a repetition edge) 
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Given a class dictionary graph F and Graph Directive GD, the corresponding 
subgraph is abstracted. A vertex v or edge e is included in the subgraph if it 
is located alongthe path defined between the ~'from* vertices and the *to w 
vertices. The path must contain all vertices in the ~'via ~" clause and edges 
in the *through ~" clause, while excluding all edges given in the ~'bypassing* 
clause. 

- PD is a Propagation Directive which specifies a Propagation Graph, a sub- 
graph of a class dictionary graph which collaborates in the implementation 
of the behavior. A PD is defined using a graph directive. 
The Propagation Directive PD can be described in a textual form as: 

* t r a v e r s e *  GDNarae 

GDName must be a defined meta graph directive variable. 
A propagation directive will define a subgraph of the class dictionary graph, 
the Propagation Graph. Each class along the propagation graph will have a 
C + +  member function generated that will propagate the behavior to any 
outgoing edges for that vertex that are in the propagation graph. 

- TP is a Transportation Pattern which specifies how to transport objects 
along portions of the propagation graph. A propagation pattern can define 
several Transportation Patterns. Transportation allows classes along a sub- 
graph of the propagation graph to transport information for use by other 
classes. A TP has the form (TT,  T N ,  TD,  T A )  where: 

�9 T T  is the type of the object being transported, T T  E V. 
�9 TN  is the name of the object being transported. 
�9 TD is the Transportation Directive which defines a Transportation Graph, 

a subgraph of the propagation graph along which the object is trans- 
ported. A transportation directive is defined using a graph directive. 

�9 TA specifies the value assignment of the transported object at a partic- 
ular class along the transportation graph. It is of the form (v, e) where v 
specifies a vertex, and e specifies the expression that the object is being 
assigned in the method generated for vertex v. 

The Transportation Pattern TP can be described in a textual form as : 

*carry* 
var type varname, 
*along* GDName 

*at* class-set 

varname = (~ expression @) 

Transportation indicates an additional argument added to the signature of 
the method for each class Mong the Transportation Graph, which has the 
name and type of the transported object. This allows classes along the Trans- 
portation Graph to access or modify the transported object. 

- CF is a Code Fragment, which has the form (t, v, c f ) .  A propagation pattern 
can define many code fragments. Code fragments define behavior for class 
v in addition to the traversal behavior that is defined by the Propagation 
Graph. 
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�9 t specifies the type of code fragment, which is either prefix or suffix. 
Prefix code fragments contain behavior which should be executed before 
traversal behavior for the class v. Suffix code fragments contain behavior 
that should be executed after traversal behavior. 

�9 v is a vertex in the propagation graph. 
�9 cf is a code fragment describing the prefix or suffix behavior for vertex 

V .  

Code fragments are represented in a textual form as: 

*wrapper* class 
*prefix* 
(�9 C++ statements @) 
*suffix* 
(@ C++ statements @) 

Demeter implements the propagation pattern functionality by generating 
code to perform the behavior defined by the propagation pattern. For each 
vertex in the propagation graph, a C++  member function is created for the 
corresponding class that the vertex represents. The member function will con- 
tain traversal code to propagate the message along each outgoing edge contained 
in the propagation graph. In addition to this traversal code, any prefix or suffix 
code fragments that were defined for the vertex will be added into the C++  
member function. The signature of the member function is extended for any 
class along the transportation graph to include an argument for the transported 
object. 

A propagation pattern, as defined for a particular class dictionary graph, 
must satisfy several constraints in order to be considered Legal [17]. A propaga- 
tion pattern is legal for a particular class dictionary graph if the propagation and 
transportation directives define valid paths in the class dictionary graph. There 
must exist at least one path in the class dictionary graph between the source or 
*from* vertices and the target or ,to* vertices, including all *through, edges 
and , v ia ,  vertices, while avoiding any ,bypassing* edges. The propagation pat- 
tern must also satisfy legality constraints involving code fragments. Each code 
fragment specified must be for a vertex that is defined in the propagation graph. 
The propagation pattern must satisfy legality constraints for the transporta- 
tion pattern, which include specifying a legal transportation graph, as well as 
ensuring that assignments occur only at vertices defined in the graph. 

3 P r o p a g a t i o n  P a t t e r n s  F a c i l i t a t i n g  C l a s s  E v o l u t i o n  

Behavior is often implemented based on the hope of a sturdy initial class design, 
yet it is usually the case that the class design must continually adapt as the 
application domain evolves. This can be difficult to do once there exists a large 
body of methods which rely on a particular class structure. 
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Fig. 4. A Different Class Dictionary Graph For The University Domain 

Propagation patterns ease this maintenance issue by providing a more ab- 
stract manner to implement behavior than reliance on hand written C + +  cod- 
ing. If the class dictionary graph in Figure 4 is used instead of the original, 
the propagation pattern in Figure 3 does not need to be modified to maintain 
behavior, whereas hand-written C + +  code would have to be modified to use the 
new class relations. Class transformations have been studied in [1, 7, 4, 6, 14], 
most of which discuss structural transformations, but do not address the impact 
of class evolution on existing behavioral implementations. In [2] the maintenance 
of C + + and CLOS code during class evolution is compared. In [12] the effects 
of class evolution on propagation patterns are introduced, however the model 
for propagation patterns and class dictionary graphs did not include behavioral 
edges or transportation directives. In this section, class transformations are pre- 
sented, and the potential impact and maintenance requirements are detailed. 

3.1 M a i n t a i n i n g  or  E x t e n d i n g  O b j e c t  B e h a v i o r  

Given an existing class dictionary graph G and propagation pattern P, a trans- 
formation is applied to G which will result in a new class dictionary graph G ~ 
and may potentially require adaptation of P to remain legal. 

When adapting a class structure, there are primarily two approaches one can 
take concerning the maintenance of existing behavior. One approach is to strictly 
maintain the original behavior, such that  any object that  can be described by 
both the original and the transformed class dictionary graph should behave in 
essentially the same manner, while excluding behavior from new objects. This 
approach may require the propagation pattern to be modified to define new 
propagation and transportation directives in an at tempt  to preserve the original 
propagation and transportation graphs, as well as ensure that  the propagation 
pattern is still legal. 
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The other approach taken during class evolution is to allow the propagation 
pattern to remain essentially the same, checking only that  it is still legal and 
evolving it minimally to ensure this. In this second approach, the propagation 
pattern may now extend or decrease the behavior of objects from their original 
behavior. For instance if a new relation is added to the class dictionary graph 
which adds an additional path to the propagation graph, objects will now com- 
municate using this new relation, as well as the other relations which existed 
in the old propagation graph. Under the first approach,.the new relation would 
automatically be added to a .bypassing* clause in order to strictly maintain the 
original behavior. 

3.2 Class  T r a n s f o r m a t i o n s  

In this section primitive and compound transformations are described, with the 
resulting maintenance requirements for propagation patterns detailed. Modifica- 
tions which occur along a portion of the class dictionary graph that  fall within 
the bounds defined by the propagation graph or transportat ion graph can auto- 
matically be maintained when the propagation pattern is regenerated. 

The maintenance requirements for Primitive Class Transformations are now 
presented. 

- Addition of a new vertex v to the existing set of vertices. This basic trans- 
formation alone, without the addition of edges which include v, will have no 
effect on existing propagation patterns, since there does not yet exist a path 
which could include it. 

- Deletion of a vertex v. It is assumed that  all edges which include a vertex 
v must first be deleted before v can be deleted. If v is used in a propaga- 
tion pattern,  then most issues which occur in deleting v will have already 
been covered during deletion of edges which utilize v. The only remaining 
requirement is that  v not exist in a propagation or transportat ion directive, 
signature return type, or code fragment. If v is found in the signature return 
type, the propagation pattern is no longer legal, since the result of the prop- 
agation pattern is no longer an existent class. If v has a prefix or suffix code 
fragment attached to it, the propagation pattern is not legal since behavior 
is being defined for a nonexistent class. If v is found in a directive, it must be 
removed in order for the directive to be legal. Removal of v from the directive 
may cause it to no longer define a legal path, in which case the propagation 
pattern is no longer legal. This may imply that  the behavior can no longer 
be implemented. 

- Rename a vertex v to vq Vertex v must be replaced with v ~ wherever v 
is referred to in the propagation pattern signature, propagation directive, 
t ransportat ion directive or code fragment. While this may require manual 
intervention, there is no work required when other vertices contained within 
the graph defined by a directive are renamed, since the code will be regen- 
erated using the correct name. 
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- Addition of a new edge. To maintain the original behavior, automatically 
add the edge to the ,bypassing. set (X) for any Graph Directive which 
will otherwise include the edge in its' defined subgraph. To extend or refine 
behavior, allow the new edge to potentially be used in the original directives 
to define new propagation and transportation graphs. This second approach 
may drastically change the behavior being defined by the propagation and 
transportation directives. 

- Deletion of an edge. If the edge is defined in the *bypassing* set (X), remove 
the edge from the set to maintain a legal propagation pattern. If the edge is 
included in the *through* set (I), the propagation pattern will no longer be 
legal. The edge can be removed from (I) and another path will be used, if one 
exists. If deletion of the edge causes the propagation or transportation graph 
to become disconnected, the propagation pattern is no longer legal. If the 
edge is used in a code fragment, or initialization expression, the propagation 
pattern is no longer legal. 

- Rename an edge e to e ~. If the edge e is referred to in the *bypassing. or 
*through* sets (X, I), a code fragment or initialization expression, it must 
be updated to e I. Renaming of an edge which is not explicitly defined in a 
graph directive, but contained in a propagation or transportation graph, does 
not require manual maintenance since the correct code will be regenerated. 

Single primitive transformations by themselves are not typically the way a 
class dictionary graph evolves. Experience based on transforming class dictio- 
nary graphs during application development shows that  compound class trans- 
formations are often performed to a class dictionary graph and the maintenance 
of propagation patterns should support these higher level transformations. The 
maintenance requirements for compound class transformations are presented. 

- Transform a construction edge to a behavioral edge. This transforms a rela- 
tion from being stored (a construction edge) to being derived (a behavioral 
edge), and is a common transformation. From a modeling viewpoint, these 
two edge types should be interchangeable, since it is usually a design or 
performance decision to either store or calculate an attribute. This transfor- 
mation should require no maintenance of the Propagation or Transportation 
Directives. It may be necessary to add code to handle storage issues in- 
volving the allocation and deMlocation of objects, but this is dependent on 
garbage collection tactics [16]. Code fragments which refer to the original 
relation may need to be adapted to add argument parenthesis 0 after the 
label, which could be automated. 

- Transform a behavioral edge to a construction edge. Opposite requirement 
of previous transformation. 

- Abstract a relation I up the inheritance hierarchy to a superclass, indicating 
the deletion of a construction edge (v, l, w) and the addition of a construction 
edge (v', 1, w), where v' is a superclass of v. This transformation occurs when 
a relation found in a subclass is deemed appropriate to be inherited from a 
superclass. If there is a subclass u of v ~ which did not originally have the 
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relation l, to maintain original behavior an inheritance edge (w, v') and an 
alternation edge (v ~, w) must be added to the *bypassing* set X. If the 
original edge (v, l, w) was contained in a bypassing (X) or through (I) edge 
directive, it must be replaced either with the new edge (v ~, l, w) to affect 
all of the subclasses which now inherit the relation, or replaced with the 
inheritance edge (v ~, v) or alternation edge (v, v ~) to maintain the directive. 
Using meta-characters for edge specifications can avoid this problem, such 
as specifying a *bypassing* edge as (*, l, *) instead of specifying the source 
and target class names of the relation I. 

- Distribute a construction edge down the inheritance hierarchy. Again if the 
edge is specified in a graph directive, the new edge(s) will have to be speci- 
fied. If the edge is not specified directly, the propagation and transportation 
graphs will be correctly computed and the C + +  code regenerated. If the 
relation represented by the construction edge was used in a code fragment, 
initialization or transportation assignment attached to the superclass, this 
would have to be modified to attach the code fragment or assignment to 
each subclass which now contains the relation. 

- Replace a direct relation or edge between two vertices with a sequence of 
edges. This transformation often occurs when additional partitioning of ob- 
jects is needed. Two objects must go through a longer sequence of objects 
to communicate a message. If the original edge was used in a directive, it 
must be replaced with enough of the new path to distinguish the new path 
from any other paths, potentially replacing it with the entire new path. If 
the old edge was not directly contained in a directive, but was contained in 
either the propagation or transportation graph, the new path should also be 
contained in the graphs, and therefore the correct code will be regenerated 
to utilize the new path. 

- Replace a sequence of edges between two vertices with a direct edge. This 
transformation occurs when it is decided to simplify the object structure. 
The maintenance requirements are similar to the previous case. 

- Generalize the domain of a relation. In this case a construction edge (v, l, w) 
is replaced by a construction edge (v,1, u) where u is a superclass of w. 
To maintain the original behavior, it is necessary to exclude any of the 
new objects which might have behavior propagated to them, namely the 
subclasses of u other than w. Therefore an alternation edge (w, w') and 
an inheritance edge (w ~, w) are added to the ,bypassing. set (X) for each 
subclass (minus w) of u. 
If the original edge (v, l, w) was contained in a propagation or transportation 
directive, it must be replaced with the new generalized edge (v, l, u) for the 
directives to remain legal. Any code fragments which utilized the old edge 
should still hold correct. This maintenance effort would not be necessary if 
meta-characters are used in the edge specification. 

- Specialize the domain of a relation. Here construction edge (v,l, w) is re- 
placed by construction edge (v, l, u), where w is a superclass of u. The origi- 
nal behavior can not be maintained, since objects which received a message 
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request given the original class dictionary graph will not be contained in the 
new propagation graph. 
The behavior can only be refined, with substitution of the old edge for the 
new in any graph directives to ensure the propagation pattern is still legal. 

4 C o n c l u s i o n  

As many of the transformations show, there may be manual effort required to 
maintain a propagation pattern when the class dictionary evolves. However there 
are many transformations that require minimal effort in comparison to maintain- 
ing hand-written C++  code. Using graph directives to specify traversal paths 
can greatly facilitate the maintenance of object oriented programs, which are 
highly reliant on class structures when implementing behavior. Defining a graph 
directive in a meta declaration and reusing it in many propagation directives 
and carry directives also facilitates maintenance since the communication paths 
among objects in the form of a graph directive need only be specified and main- 
tained in one place. The benefit of propagation patterns is the ability to minimize 
hard-coding the class structures into C++  code, so that evolution is supported. 

Propagation Patterns have been used in industry in situations where the class 
structure was under continuous change. The effort required to maintain existing 
propagation patterns was minimal as compared to maintenance of C++  code. 
In many cases, the graph directives were consistent with the new class structure 
and no change was required, the code was simply regenerated to fit the new 
structure. 

Utilizing high-level abstractions like class dictionary graphs and propaga- 
tion patterns can further expand the benefits of object oriented technology by 
minimizing the maintenance effort required when application domains change. 
The ability to support and encourage change is a necessary part of any software 
development model. 
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