
Utilizing Behavioral Abstractions to Facilitate
Maintenance During Class Evolution

Linda M. Keszenheimer

Northeastern University, College of Computer Science
Cullinane Hall, 360 Huntington Avenue, Boston MA, USA 02115

seiter@ccs.neu.edu

Abs t rac t . Software maintenance can be a difficult and time consuming
process. To facilitate this process, application development must pro-
duce software that is designed to continually evolve. While object ori-
ented methodologies address some of the maintenance issues that have
troubled traditional functional techniques, object oriented development
must overcome the problems involved in maintaining existing object be-
havior when the underlying class structure evolves. Utilizing adaptable
abstraction models for defining class structure and behavior can facili-
tate software maintenance during class evolution. This paper describes
adaptive software development using the Demeter Model for defining ob-
ject structure and behavior. The maintenance impact of class evolution
on existing behavioral implementations is detailed.

1 I n t r o d u c t i o n

Evolution can be a difficult force to manage during the software development
process. The natural tendency of application domains to change and expand can
quickly turn software development into a primarily maintenance-oriented pro-
cess. Object oriented programming facilitates many aspects of software develop-
ment and maintenance through the features of class reuse, information hiding
and delegation. However, an object oriented program is typically implemented
based on a particular class structure, and it can be difficult to maintain existing
behavioral implementations when the class structure evolves. Class evolution
occurs often throughout the software life cycle, due to both a continual improve-
ment in the understanding of the application domain as software development
proceeds, as well as the tendency for application domains to evolve to support
changing business needs. While class transformations have been studied previ-
ously, [1, 18, 19, 7, 4, 6, 14], the research has been primarily based on structural
transformations and the consequences of maintaining existing object structure,
not addressing the maintenance of existing object behavior.

This paper describes an adaptive software development technique for imple-
menting applications. Since class structures tend to evolve frequently, it is de-
sirable to implement behavior in a flexible manner that can adapt to a changing
class organization. Object behavior is described using an abstraction technique

326

called Propagation Patterns [17, 15, 10], which are specifications of class col-
laborations from which C + + code is generated. The ways that class structures
evolve are detailed, and strategies for maintaining propagation patterns based on
those transformations are given. While there exist other models for specifying
inter-object behavior and patterns [3, 11, 5, 8], .Propagation Patterns provide
formal language support for the specification and implementation of behavior,
with emphasis on supporting class evolution.

The ideas presented here are based on experience gained while using the
Demeter CASE tools to implement systems for Citibank and Merrill Lynch.
The systems were developed using class models that were under constant flux,
requiring propagation patterns to be maintained to support the changing class
structures.

1.1 D e s c r i b i n g Class S t r u c t u r e with Class Dictionary G r a p h s

The examples presented in this paper are described using the Demeter data
model for defining class structure and behavior [17]. Class structure can be
represented graphically in a Class Dictionary Graph defined as s = (V, A, E).
V is a set of vertices in the graph which represent classes. E is a set of edges
between vertices which represent relations among classes. A is a set of labels
which represent the names of the relations.

The Demeter class model defines several kinds of classes, drawn as different
types of vertices in the class dictionary graph. A Construction class denotes
a concrete definition of some entity, and is drawn as a rectangular vertex. An
Alternation class is an abstraction of the common attributes and behavior found
among a group of objects, and is drawn as a hexagon. A Repetition class is a
container class used to aggregate multiple instances of a class, and is drawn as a
hexagon containing a rectangle. A Terminal class represents a basic data type,
such as a Number, Ident, or Real, and is drawn as a rectangle. Construction,
terminal and repetition classes are instantiable, while alternation classes are used
purely for inheritance [9].

The Demeter model defines several types of relations among classes. A Con-
struction edge represents the uses or part-of relation, and is drawn as a single
line arrow. An Alternation edge represents the isa relation, and is drawn from
superclass to subclass as a double line arrow. The inverse of the alternation re-
lation is the inheritance relation, which is represented by an Inheritance edge,
and is drawn from subclass to superclass as a double dashed line arrow. It is
not necessary for the model to include both inheritance and alternation edges,
since existence of one will imply the other in an inverse direction. Allowing the
existence of both edges can simplify the visual depiction of paths in the graph.

A Repetition edge indicates the relation between a Repetition class and the
class that it aggregates. Finally, a Behavioral edge indicates a relation between a
source and target class which results from the source class executing a behavior
which creates a relation to the target class, and is drawn as a single dashed line
arrow. A model for extending the class dictionary graph to include behavior as
a relation was initially presented in [16].

327

University
name" / ' ~ ~ n~tion

/l' " ' j . 4 r , . /IProf r

, - - , , I / Pr.' s or [

no' :,.o" r " -
Fig. 1. A Class Dictionary Graph Describing the University Domain.

Figure 1 contains a class dictionary graph that describes the organization
of classes in the university domain. The instantiable construction classes are
University, Address, Professor and Student. Person is an alternation class. Stu-
dent and Professor are the alternatives, or subclasses of Person, that inherit the
common attributes and behavior of the Person class, a name and home address.
ProfessorList and StudentList are repetition vertices, each representing a class
that collects multiple instances of the associated class, Professor or Student.
Ident is a terminal class, a predefined class that will instantiate identifier ob-
jects. The class dictionary graph describes only the structural relationships of
the classes; behavior has not yet been added to the graph.

Given a class dictionary graph, the Demeter Tool generates C + + code to
represent the organization of classes. It is easy to evolve the class structure by
simply reorganizing the class dictionary graph. C++ code will be generated to
correspond to the new class structure.

2 D e f i n i n g O b j e c t B e h a v i o r

An object has certain responsibility and can make requests of other objects
to help it accomplish a task. One task in the university domain might be to
determine which professors have a long commute to work, which may be rele-
vant in trying to schedule early morning classes. In an object oriented program,
functionality is implemented by attaching responsibilities to classes, abstract-
ing common behavior to a superclass, and using message passing protocols to
disperse responsibility among many classes to accomplish a task.

It is often the case when implementing a task that it is necessary to involve
several classes, each responsible for requesting some behavior of another class
which may contain data relevant to the task at hand.' Often behavior consists
of propagating a request along a path of relations in the class dictionary graph,

328

with certain classes along the path performing work in addition to message prop-
agation. Following the guidelines of encapsulation and delegation to implement
behavior can facilitate the maintenance of code if each class minimizes its' de-
pendency on knowledge of the structure of other classes. Well written programs
that follow the Law of Demeter [13] may be more easily maintained when class
structures evolve, due to a coding style which minimizes reliance on a partic-
ular class structure. While this style of coding improves maintenance in some
aspects, it forces one to write many small methods which primarily consist of
code to propagate a message along a path of relations. There exists the issue of
maintaining these methods when class structures change and new message paths
must be found. Propagation Patterns facilitate this process.

~] Professor] I uni ity] prof s ~ LProfessor ~

Fig. 2. Propagation Graph Describing A Path From University To Professor

For instance, to collect a list of commuting professors in a given university,
the University class would need to request a list of commuting professors us-
ing the professors relation. The professors relation produces an instance of the
ProfessorList class, which would iterate through each of the Professor objects
that it aggregates. Each Professor class instance would be responsible for sup-
plying behavior to provide its' address for comparison. The implementation of
this task consists of several small methods being implemented, with reliance on
the current class structure and relationships. The subgraph of the Class Dic-
tionary Graph involved in implementing this task is shown in Figure 2. This
is called the Propagation Graph and describes the classes and relations used in
accomplishing the task.

2.1 Descr ib ing Behavior wi th P r o p a g a t i o n P a t t e r n s

Code designed to propagate a message request along a path of class relations
can be time consuming to produce and difficult to maintain. Certain communica-
tion paths among classes tend to be reused often, with different tasks attaching
behavior to different classes along those communication paths. It is useful to
define paths among classes, and augment those paths with task specific code to
implement a particular behavior.

A Propagation Pattern [17, 15, 10] defines behavior by specifying the class
collaborations which occur to implement a task, while avoiding writing traversal
code that is overly dependent on the class structure. They provide a necessary
level of abstraction when implementing object behavior which can facilitate class

329

evolution. The propagation pattern to accomplish the task of determining com-
muting professors is shown in Figure 3. While propagation patterns have been
implemented based on the Demeter class model, most of the concepts presented
in this paper could easily apply to other data models.

* o p e r a t i o n * P r o f e s s o r L i s t * commuters()
* i n i t * (@ new P r o f e s s o r L i s t () @)

dir allProfsPath = *from* University *to* Professor

* t r a v e r s e * a l l P r o f s P a t h

carry Address*univAddress
along allProfsPath

at University univAddress = (@ location @)

wrapper Professor *prefix*
(~

if (univAddress->fa~From(get_address 0))
return_val- > append (this) ;

c)

Fig. 3. A Propagation Pattern For Obtaining The List Of Commuting Professors.

The structure of this propagation pattern contains an interface statement
with the method name commuters and return type ProfessorList*. A message
is sent along a path from the University class to the Professor class, with the
University's location being transported along the path as an object that is ac-
cessible to other classes. The Professor class has the responsibility shown in the
wrapper code which adds the current Professor object to the resulting list if the
Professor's address is far from the University's address.

The behavior implemented by this propagation pattern effectively modifies
the class structure defined in the original class dictionary graph to add a behav-
ioral edge to the University class. The propagation pattern adds a new relation
called commuters between the University class and the ProfessorList class. This
new edge can now be used by other propagation patterns in defining paths.

Def ini t ion 1. The definition of a Propagation Pattern for a given class dictio-
nary graph F = (V, A, E) is a tuple of the form (S, M, PD, TP, CF).

- S is the Signature of the behavior being defined, and is of the form
(rettype, fname, init) Where:

�9 rettype is the return type of the behavior, rettype 6 V
�9 fname is the name of the behavior
�9 init is an optional expression which initializes the result of the behavior.

330

The Signature S can be described in a textual form as:

operation rettype fname() [*init* (@ expression @)]

There is a special variable named returnval of type rettype, which holds the
return value of the behavior being implemented. It can be initialized using
the *init* expression, and modified by any class that has t he /name message
propagated to it.
M is a Meta Declaration, which is used to define censtraints in the propa-
gation pattern. While there may be several types of constraints, this paper
will only describe a Meta Graph Directive constraint, which is used to spec-
ify a subgraph of the class dictionary graph. A Meta Graph Directive has
the form (GDNarne, GD), where GDName is a variable name used to repre-
sent the graph directive GD. A propagation pat tern can define several graph
directives.
A Meta Graph Directive has a textual form:

dir GDName = GD

GD is a Graph Directive which specifies a subgraph of a class dictionary
graph. A GD has the form (F, I, X, V, T) where:

. F is a non-empty set of vertices in the class dictionary graph specifying
the starting or source vertices in the subgraph, or *from* classes.

�9 T is a set of vertices in the class dictionary graph specifying the ending
or target vertices in the subgraph, or *to* classes.

. V is a set of vertices in the class dictionary graph specifying vertices
which the subgraph must contain as intermediary vertices along the sub-
graph, these are the *via* classes.

�9 I is a set of edges in the class dictionary graph which the subgraph must
include. These are the *through* edges.

�9 X is a set of edges in the class dictionary graph which the subgraph must
exclude. These are the *bypassing* edges.

A graph directive GD has the textual form:

from class

[*through* edge-patterns]
[*bypassing* edge-patterns]
[*via* class-set]
[*to* class-set]

A class-set refers to a comma-separated list of class names, and an edge-
pattern has one of the following textual forms:

-> class, label, class

= > class, class

<= class, class

"> class, class

(a construct ion or behavioral edge)
(an a l t ernat ion edge)
(an inheritance ' edge)
(a repetition edge)

331

Given a class dictionary graph F and Graph Directive GD, the corresponding
subgraph is abstracted. A vertex v or edge e is included in the subgraph if it
is located alongthe path defined between the ~'from* vertices and the *to w
vertices. The path must contain all vertices in the ~'via ~" clause and edges
in the *through ~" clause, while excluding all edges given in the ~'bypassing*
clause.

- PD is a Propagation Directive which specifies a Propagation Graph, a sub-
graph of a class dictionary graph which collaborates in the implementation
of the behavior. A PD is defined using a graph directive.
The Propagation Directive PD can be described in a textual form as:

* t r a v e r s e * GDNarae

GDName must be a defined meta graph directive variable.
A propagation directive will define a subgraph of the class dictionary graph,
the Propagation Graph. Each class along the propagation graph will have a
C + + member function generated that will propagate the behavior to any
outgoing edges for that vertex that are in the propagation graph.

- TP is a Transportation Pattern which specifies how to transport objects
along portions of the propagation graph. A propagation pattern can define
several Transportation Patterns. Transportation allows classes along a sub-
graph of the propagation graph to transport information for use by other
classes. A TP has the form (TT, T N , TD, T A) where:

�9 T T is the type of the object being transported, T T E V.
�9 TN is the name of the object being transported.
�9 TD is the Transportation Directive which defines a Transportation Graph,

a subgraph of the propagation graph along which the object is trans-
ported. A transportation directive is defined using a graph directive.

�9 TA specifies the value assignment of the transported object at a partic-
ular class along the transportation graph. It is of the form (v, e) where v
specifies a vertex, and e specifies the expression that the object is being
assigned in the method generated for vertex v.

The Transportation Pattern TP can be described in a textual form as :

carry
var type varname,
along GDName

at class-set

varname = (~ expression @)

Transportation indicates an additional argument added to the signature of
the method for each class Mong the Transportation Graph, which has the
name and type of the transported object. This allows classes along the Trans-
portation Graph to access or modify the transported object.

- CF is a Code Fragment, which has the form (t, v, c f) . A propagation pattern
can define many code fragments. Code fragments define behavior for class
v in addition to the traversal behavior that is defined by the Propagation
Graph.

332

�9 t specifies the type of code fragment, which is either prefix or suffix.
Prefix code fragments contain behavior which should be executed before
traversal behavior for the class v. Suffix code fragments contain behavior
that should be executed after traversal behavior.

�9 v is a vertex in the propagation graph.
�9 cf is a code fragment describing the prefix or suffix behavior for vertex

V .

Code fragments are represented in a textual form as:

wrapper class
prefix
(�9 C++ statements @)
suffix
(@ C++ statements @)

Demeter implements the propagation pattern functionality by generating
code to perform the behavior defined by the propagation pattern. For each
vertex in the propagation graph, a C++ member function is created for the
corresponding class that the vertex represents. The member function will con-
tain traversal code to propagate the message along each outgoing edge contained
in the propagation graph. In addition to this traversal code, any prefix or suffix
code fragments that were defined for the vertex will be added into the C++
member function. The signature of the member function is extended for any
class along the transportation graph to include an argument for the transported
object.

A propagation pattern, as defined for a particular class dictionary graph,
must satisfy several constraints in order to be considered Legal [17]. A propaga-
tion pattern is legal for a particular class dictionary graph if the propagation and
transportation directives define valid paths in the class dictionary graph. There
must exist at least one path in the class dictionary graph between the source or
from vertices and the target or ,to* vertices, including all *through, edges
and , v ia , vertices, while avoiding any ,bypassing* edges. The propagation pat-
tern must also satisfy legality constraints involving code fragments. Each code
fragment specified must be for a vertex that is defined in the propagation graph.
The propagation pattern must satisfy legality constraints for the transporta-
tion pattern, which include specifying a legal transportation graph, as well as
ensuring that assignments occur only at vertices defined in the graph.

3 P r o p a g a t i o n P a t t e r n s F a c i l i t a t i n g C l a s s E v o l u t i o n

Behavior is often implemented based on the hope of a sturdy initial class design,
yet it is usually the case that the class design must continually adapt as the
application domain evolves. This can be difficult to do once there exists a large
body of methods which rely on a particular class structure.

333

,nl ity]

/ /
.... / J location ~ P hist~

/I Addr e~s s 'add

major

Fig. 4. A Different Class Dictionary Graph For The University Domain

Propagation patterns ease this maintenance issue by providing a more ab-
stract manner to implement behavior than reliance on hand written C + + cod-
ing. If the class dictionary graph in Figure 4 is used instead of the original,
the propagation pattern in Figure 3 does not need to be modified to maintain
behavior, whereas hand-written C + + code would have to be modified to use the
new class relations. Class transformations have been studied in [1, 7, 4, 6, 14],
most of which discuss structural transformations, but do not address the impact
of class evolution on existing behavioral implementations. In [2] the maintenance
of C + + and CLOS code during class evolution is compared. In [12] the effects
of class evolution on propagation patterns are introduced, however the model
for propagation patterns and class dictionary graphs did not include behavioral
edges or transportation directives. In this section, class transformations are pre-
sented, and the potential impact and maintenance requirements are detailed.

3.1 M a i n t a i n i n g or E x t e n d i n g O b j e c t B e h a v i o r

Given an existing class dictionary graph G and propagation pattern P, a trans-
formation is applied to G which will result in a new class dictionary graph G ~
and may potentially require adaptation of P to remain legal.

When adapting a class structure, there are primarily two approaches one can
take concerning the maintenance of existing behavior. One approach is to strictly
maintain the original behavior, such that any object that can be described by
both the original and the transformed class dictionary graph should behave in
essentially the same manner, while excluding behavior from new objects. This
approach may require the propagation pattern to be modified to define new
propagation and transportation directives in an at tempt to preserve the original
propagation and transportation graphs, as well as ensure that the propagation
pattern is still legal.

334

The other approach taken during class evolution is to allow the propagation
pattern to remain essentially the same, checking only that it is still legal and
evolving it minimally to ensure this. In this second approach, the propagation
pattern may now extend or decrease the behavior of objects from their original
behavior. For instance if a new relation is added to the class dictionary graph
which adds an additional path to the propagation graph, objects will now com-
municate using this new relation, as well as the other relations which existed
in the old propagation graph. Under the first approach,.the new relation would
automatically be added to a .bypassing* clause in order to strictly maintain the
original behavior.

3.2 Class T r a n s f o r m a t i o n s

In this section primitive and compound transformations are described, with the
resulting maintenance requirements for propagation patterns detailed. Modifica-
tions which occur along a portion of the class dictionary graph that fall within
the bounds defined by the propagation graph or transportat ion graph can auto-
matically be maintained when the propagation pattern is regenerated.

The maintenance requirements for Primitive Class Transformations are now
presented.

- Addition of a new vertex v to the existing set of vertices. This basic trans-
formation alone, without the addition of edges which include v, will have no
effect on existing propagation patterns, since there does not yet exist a path
which could include it.

- Deletion of a vertex v. It is assumed that all edges which include a vertex
v must first be deleted before v can be deleted. If v is used in a propaga-
tion pattern, then most issues which occur in deleting v will have already
been covered during deletion of edges which utilize v. The only remaining
requirement is that v not exist in a propagation or transportat ion directive,
signature return type, or code fragment. If v is found in the signature return
type, the propagation pattern is no longer legal, since the result of the prop-
agation pattern is no longer an existent class. If v has a prefix or suffix code
fragment attached to it, the propagation pattern is not legal since behavior
is being defined for a nonexistent class. If v is found in a directive, it must be
removed in order for the directive to be legal. Removal of v from the directive
may cause it to no longer define a legal path, in which case the propagation
pattern is no longer legal. This may imply that the behavior can no longer
be implemented.

- Rename a vertex v to vq Vertex v must be replaced with v ~ wherever v
is referred to in the propagation pattern signature, propagation directive,
t ransportat ion directive or code fragment. While this may require manual
intervention, there is no work required when other vertices contained within
the graph defined by a directive are renamed, since the code will be regen-
erated using the correct name.

335

- Addition of a new edge. To maintain the original behavior, automatically
add the edge to the ,bypassing. set (X) for any Graph Directive which
will otherwise include the edge in its' defined subgraph. To extend or refine
behavior, allow the new edge to potentially be used in the original directives
to define new propagation and transportation graphs. This second approach
may drastically change the behavior being defined by the propagation and
transportation directives.

- Deletion of an edge. If the edge is defined in the *bypassing* set (X), remove
the edge from the set to maintain a legal propagation pattern. If the edge is
included in the *through* set (I), the propagation pattern will no longer be
legal. The edge can be removed from (I) and another path will be used, if one
exists. If deletion of the edge causes the propagation or transportation graph
to become disconnected, the propagation pattern is no longer legal. If the
edge is used in a code fragment, or initialization expression, the propagation
pattern is no longer legal.

- Rename an edge e to e ~. If the edge e is referred to in the *bypassing. or
through sets (X, I), a code fragment or initialization expression, it must
be updated to e I. Renaming of an edge which is not explicitly defined in a
graph directive, but contained in a propagation or transportation graph, does
not require manual maintenance since the correct code will be regenerated.

Single primitive transformations by themselves are not typically the way a
class dictionary graph evolves. Experience based on transforming class dictio-
nary graphs during application development shows that compound class trans-
formations are often performed to a class dictionary graph and the maintenance
of propagation patterns should support these higher level transformations. The
maintenance requirements for compound class transformations are presented.

- Transform a construction edge to a behavioral edge. This transforms a rela-
tion from being stored (a construction edge) to being derived (a behavioral
edge), and is a common transformation. From a modeling viewpoint, these
two edge types should be interchangeable, since it is usually a design or
performance decision to either store or calculate an attribute. This transfor-
mation should require no maintenance of the Propagation or Transportation
Directives. It may be necessary to add code to handle storage issues in-
volving the allocation and deMlocation of objects, but this is dependent on
garbage collection tactics [16]. Code fragments which refer to the original
relation may need to be adapted to add argument parenthesis 0 after the
label, which could be automated.

- Transform a behavioral edge to a construction edge. Opposite requirement
of previous transformation.

- Abstract a relation I up the inheritance hierarchy to a superclass, indicating
the deletion of a construction edge (v, l, w) and the addition of a construction
edge (v', 1, w), where v' is a superclass of v. This transformation occurs when
a relation found in a subclass is deemed appropriate to be inherited from a
superclass. If there is a subclass u of v ~ which did not originally have the

336

relation l, to maintain original behavior an inheritance edge (w, v') and an
alternation edge (v ~, w) must be added to the *bypassing* set X. If the
original edge (v, l, w) was contained in a bypassing (X) or through (I) edge
directive, it must be replaced either with the new edge (v ~, l, w) to affect
all of the subclasses which now inherit the relation, or replaced with the
inheritance edge (v ~, v) or alternation edge (v, v ~) to maintain the directive.
Using meta-characters for edge specifications can avoid this problem, such
as specifying a *bypassing* edge as (*, l, *) instead of specifying the source
and target class names of the relation I.

- Distribute a construction edge down the inheritance hierarchy. Again if the
edge is specified in a graph directive, the new edge(s) will have to be speci-
fied. If the edge is not specified directly, the propagation and transportation
graphs will be correctly computed and the C + + code regenerated. If the
relation represented by the construction edge was used in a code fragment,
initialization or transportation assignment attached to the superclass, this
would have to be modified to attach the code fragment or assignment to
each subclass which now contains the relation.

- Replace a direct relation or edge between two vertices with a sequence of
edges. This transformation often occurs when additional partitioning of ob-
jects is needed. Two objects must go through a longer sequence of objects
to communicate a message. If the original edge was used in a directive, it
must be replaced with enough of the new path to distinguish the new path
from any other paths, potentially replacing it with the entire new path. If
the old edge was not directly contained in a directive, but was contained in
either the propagation or transportation graph, the new path should also be
contained in the graphs, and therefore the correct code will be regenerated
to utilize the new path.

- Replace a sequence of edges between two vertices with a direct edge. This
transformation occurs when it is decided to simplify the object structure.
The maintenance requirements are similar to the previous case.

- Generalize the domain of a relation. In this case a construction edge (v, l, w)
is replaced by a construction edge (v,1, u) where u is a superclass of w.
To maintain the original behavior, it is necessary to exclude any of the
new objects which might have behavior propagated to them, namely the
subclasses of u other than w. Therefore an alternation edge (w, w') and
an inheritance edge (w ~, w) are added to the ,bypassing. set (X) for each
subclass (minus w) of u.
If the original edge (v, l, w) was contained in a propagation or transportation
directive, it must be replaced with the new generalized edge (v, l, u) for the
directives to remain legal. Any code fragments which utilized the old edge
should still hold correct. This maintenance effort would not be necessary if
meta-characters are used in the edge specification.

- Specialize the domain of a relation. Here construction edge (v,l, w) is re-
placed by construction edge (v, l, u), where w is a superclass of u. The origi-
nal behavior can not be maintained, since objects which received a message

337

request given the original class dictionary graph will not be contained in the
new propagation graph.
The behavior can only be refined, with substitution of the old edge for the
new in any graph directives to ensure the propagation pattern is still legal.

4 C o n c l u s i o n

As many of the transformations show, there may be manual effort required to
maintain a propagation pattern when the class dictionary evolves. However there
are many transformations that require minimal effort in comparison to maintain-
ing hand-written C++ code. Using graph directives to specify traversal paths
can greatly facilitate the maintenance of object oriented programs, which are
highly reliant on class structures when implementing behavior. Defining a graph
directive in a meta declaration and reusing it in many propagation directives
and carry directives also facilitates maintenance since the communication paths
among objects in the form of a graph directive need only be specified and main-
tained in one place. The benefit of propagation patterns is the ability to minimize
hard-coding the class structures into C++ code, so that evolution is supported.

Propagation Patterns have been used in industry in situations where the class
structure was under continuous change. The effort required to maintain existing
propagation patterns was minimal as compared to maintenance of C++ code.
In many cases, the graph directives were consistent with the new class structure
and no change was required, the code was simply regenerated to fit the new
structure.

Utilizing high-level abstractions like class dictionary graphs and propaga-
tion patterns can further expand the benefits of object oriented technology by
minimizing the maintenance effort required when application domains change.
The ability to support and encourage change is a necessary part of any software
development model.

Acknowledgement s

I would like to thank Karl Lieberherr, Greg Sullivan and Cun Xiao for providing
many useful ideas about propagation patterns and modeling behavior. Cun Xiao
has produced a powerful propagation pattern tool and has patiently implemented
many enhancement requests.

R e f e r e n c e s

1. Paul Bergstein. Object-preserving class transformations. In Object-Oriented Pro-
gramming Systems, Languages and Applications Conference, in Special Issue o/
SIGPLAN Notices, pages 299-313, Phoenix, Arizona, 1991. ACM Press. SIG-
PLAN Notices, Vol. 26, 11 (November).

2. Paul L. Bergstein and Walter L. H/irsch. Maintaining behavioral consistency dur-
ing schema evolution, pages 176-193, Kanazawa, Japan, November 1993. JSSST.

338

3. Grady Booch. Object-Oriented Design With Applications. Benjamin/Cummings
Publishing Company, Inc., 1991.

4. Eduardo Cas~is. A.n incremental class reorganization approach. In European Con-
ference on Object-Oriented Programming. Springer Verlag, 1992.

5. Peter Coad. Object oriented patterns. Communications o/the ACM, 35(9):153-
159, September 1992.

6. Christine Delcourt and Roberto Zicari. The design of an integrity consistency
checker (icc) for an object oriented database system. In European Conference on
Object-Oriented Programming, pages 377-396, Geneva, Switzerland, 1991. Springer
Verlag.

7. Mohammed Erradi, Gregor Bochmann, and Rachida Dssouli. A framework for dy-
namic evolution of object-oriented specifications. In Proceedings of the Conference
on Software Maintenance. IEEE Computer Society, 1992.

8. Inn M. Holland. The design and representation of object-oriented components.
Technical report, Northeastern University, 1993. Ph.D. thesis.

9. Walter L. Hfirsch. Should Superclasses be Abstract? In European Conference on
Object-Oriented Programming, Bologna, Italy, July 1994. Springer Verlag, Lecture
Notes in Computer Science. To appear.

10. Walter L. Hiirsch, Linda M. Seiter, and Cun Xiao. In any case: Demeter. The
American Programmer, 4(10):46-56, October 1991.

11. Ralph E. Johnson. Documenting frameworks using patterns. In Object-Oriented
Programming Systems, Languages and Applications Conference, in Special Issue of
SIGPLAN Notices, Vancouver, Canada, 1992. ACM Press.

12. Linda Keszenheimer. Specifying and adapting object behavior during system evo-
lution. In Proceedings of the 8th International Conference on Software Mainte-
nance, pages 254-261. IEEE Computer Society, 1993.

13. Karl J. Lieberherr and Ian Holland. Assuring good style for object-oriented pro-
grams. IEEE Software, pages 38-48, September 1989.

14. Karl J. Lieberherr, Walter L. Hfirsch, and Cun Xiao. Object-extending class trans-
formations. Formal Aspects of Computing, the International Journal of Formal
Methods, 1993. Accepted for publication, also available as Technical Report NU-
CCS-91-8, Northeastern University.

15. Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao. Adaptive object-oriented
programming using graph-based customization. Communications of the A CM,
May 1994. Accepted for publication.

16. Karl J. Lieberherr and Greg T. Sullivan. Procedural extensions of class dictionary
graphs. Technical Report Demeter-9, Northeastern University, March 1992.

17. Karl J. Lieberherr and Cun Xiao. Object-oriented software evolution. IEEE Soft-
ware, pages 313-343, April 1993.

18. P. Poncelet and L. Lakh~d. Consistent structural updates for object database de-
sign. In Proceedings of the Conference on Advanced Information Systems Engi-
neering. Springer-Verlag, 1993.

19. Christiaan Thieme and Arno Siebes. Schema integration in object-oriented
databases. Proceedings of the Conference on Advanced Information Systems Engi-
neering, 1993.

