
A Hypertext -Based Tool for Large Scale
Software Reuse

Burkhard Freitag

Universit~t Passau
Fakults ffir Mathematik und Informatik

Innstr. 33, D-94032 Passau, Germany
freit ag@fmi, uni-passau, de

Abs t r ac t . A hypertext-based interactive tool supporting the manage-
ment of large software libraries is presented. We claim that a simple,
pragmatic approach to software reuse is best suited to aid the software
engineer in solving the practical problems of software configuration from
reusable components. When developing the system described in this pa-
per emphasis has been put on the semi-automatic classification and in-
teractive retrieval of components and their descriptions. The system has
been installed at the BMW automobile manufacturing facilities in Mu-
nich. First experiences show good usability and acceptance.

K e y w o r d s : software reuse, hypertext, software configuration, reusable com-
ponents, software re-engineering, taxonomic classification.

1 I n t r o d u c t i o n

Component reuse is a theme of growing importance as regards the product ivi ty
as well as the quality of software development. Reuse is of course not l imited to
program code but covers all levels of the software production process, such as
p rogram specifications both formal and informal, documentat ion, source code,
object code, individual notes, to name just a few.

The configuration of complex systems from reusable software components
requires the search for possible implementat ions in increasingly large component
libraries. The success of this approach strongly depends on efficient methods
for finding the appropriate reusable components, which is a very hard task in
practice [9]. Thus tools are needed to support this activity.

We present a simple, practice oriented tool for software synthesis that sup-
ports the configuration of complex systems from a library of reusable software
components. Our prototype system SEL 1 has been developed in a joint project
with the German automobile manufacturer BMW and is currently installed and
running at the BMW facilities in Munich.

1 SEL- Software Engineering Library

284

The basic assumption underlying the system is that software modules can be
described precisely enough by a set of attributes such as name, problem class,
atomic types, i.e. a formatted description that can be scanned for matching
keywords. In addition, a problem-specific taxonomy 2 of tasks can be defined,
according to which modules can be classified. Even if an exact description is not
known the user can roughly characterize the modules of interest by specifying
some classes of the taxonomy in order to restrict the search space. The system
also supports the user in defining relationships between any two modules. Using
relationships, the search for a module can optionally be extended to "neighbour-
ing" modules. This feature allows us also to relax the naming conventions that
would otherwise have to be obeyed in order to guide the search for a particular
"group" of modules.

Some novel approaches to the semi-automatic determination of relationships
between component descriptions are incorporated into the system that increase
both the precision and the efficiency of component retrieval. The determination
of hidden relationships may sometimes be the only feasible approach to software
re-engineering since formal descriptions are often missing in existing libraries.
Practical experience shows that our approach is powerful enough for most con-
figuration tasks.

The rest of the paper is organized as follows: In Sect. 2 we give a motiva-
tion and list some requirements that a system supporting software reuse and
re-engineering should satisfy. Sect. 3 contains a detailed description of the SEL
system. In Sect. 4 some facts concerning the implementation of the protoype sys-
tem are collected. In Sect. 5 a comparison of the SEL to other systems supporting
reuse is given. In Sect. 6 we summarize our experiences and briefly discuss future
research directions.

2 R e q u i r e m e n t s f o r S o f t w a r e R e u s e S u p p o r t S y s t e m s

The size of component libraries, in particular in object-oriented environments,
is continuously growing. While the amount of potentially reusable components
increases the problem of finding appropriate components gets more and more
complex. It is no longer possible to rely on simple naming conventions or a naive
scan through a library database in order to retrieve a (set of) component(s) that
satisfy certain constraints. Because the software industry and software depart-
ments in other industries are faced with a huge amount of existing components
that have been designed in an "ad-hoc" fashion software re-engineering has be-
come an essential problem, too. Thus it is not enough to have systems that sup-
port the development of new reusable software components. An automatic tool
must also address the generation of documentation and interface descriptions

2 Taxonomic classification should not be confused with classification in the.sense of
object-oriented programming languages. The latter can also be used to guide the
search for modules, but the former normally does not induce subtype relations or
code inheritance.

285

Software Configuration [
Support System

Entire
Configuration

Automatic Generation
of entire Configurations from
global Specification

Software Configuration
Support System ALREADY

CONFIGURED !

Next -
Fitting

[/i Components ~ / ~

i}
/

, USER SELECTS
[COMPONENTS I n t e r a c t i v e R e t r i e v a l

of Components from a
local Specification

Fig. 1. Different objectives of configuration support systems

for existing modules. These modules often differ drastically in their structure.
Consequently, the adaptability of the component descriptors that are handled
by the system is strongly required.

Generally, a system supporting the construction of software systems from
reusable components can have two different objectives (see Fig. 1):

- Automatic generation of entire configurations, i.e. sequences of components
that "fit together", from a global specification, or

- Interactive search for the set of components that fit to an already estab-
lished partial configuration. In this case only locM specifications governing
the selection of a single component are considered.

The SEL system described in this paper belongs to the second class.

The key idea of reuse support systems [1, 2, 4, 5, 10] is the separation of corn-

286

ponent descriptions from the components themselves. A reuse support system
has to address at least the following issues:

- Creation of component descriptions.
Description templates should be adaptable to the specific class of components
considered.

- Definition of expressive relationships between components.
The classification of components should not rely on a fixed scheme.

- Support for the discovery of hidden relationships.
For re-engineering purposes this may be the most important requirement.

- Query flexibility.
General ad-hoc queries should be supported in addition to pre-fabricated
special queries.

- Query precision.
It does not help if the system proposes hundreds of candidate components
as the answer to a query.

- Query efficiency.
Since the class of systems we consider here typically aids the user in the locM
search for a set of components the query answering process should not take
more than about 0.5 sec.

- Concurrent multiuser access.
- Component migration and access privileges.

During the development of a single software component the software engineer
should have exclusive access rights. After the component is released, however,
it should be visible by other project members or the entire company.

Theoretically, a formal specification completely characterizes the appropriate
set of modules for the given task. A weaker criterion might be type correctness
or, more general, interface correctness. In practice, however, it is necessary to
have selection conditions beyond type or interface correctness to guide the search
for modules that are suitable for the given task [3]. From the user's point of view
it may sometimes be most important to find the set of modules that offer the
intended functionality [9] according to an informal specification.

3 T h e S E L c o m p o n e n t l i b r a r y s y s t e m

3.1 O v e r v i e w

The SEL system presented in following sections addresses the problems described
in Sect. 2. Fig. 2 shows an overview of the various tasks performed by the system.

Ideally, a SEL user specifies his or her needs and lets the system search for
a component that exactly or nearly satisfies the specification. If none such com-
ponent can be found the user will certainly define a new software module that
should be brought into the SEL system for later reuse. It is the responsibility of
the designer of a new component to add an expressive component description to

287

Establishing and ~ . .
Maintaining the [\ / [Project and Library

IDocumentl / / \ ~ ~
I Retrieval ~/" / ~ " ~ M~lctciUsSser I

[Creation of I
I Document Classes I
I and Link Types I

Fig. 2. Overview of the SEL system

the SEL system. To this end, the SEL system offers tools with a graphical inter-
face that facilitate the definition of new component classes with the appropriate
descriptive framework, access privileges for the new component descriptions, and
links to existing component (descriptions). Initially, new component classes and
(descriptions of) new components reside in the private library of the designer.
Later, when a component has been tested and approved its description may
migrate to the next higher library where it can be read by other users.

3.2 T h e SEL data m o d e l

D o c u m e n t s a n d D o c u m e n t Classes Component descriptions are represen-
ted as documents which in turn are records with a set of attribute names and
attribute values. Recall that several different descriptions may be attached to a
software component, e.g. specification, informal description of the component's
semantics, documentation, manual entry. However, descriptions of the same sort
that are attached to components that are "similar" normally have a uniform rep-
resentation. Consequently, the SEL system allows to group documents having
the same structure into document classes which are organized in an inheritance
hierarchy ~. Document subclasses inherit the structure of the superclass (i.e. all

3 Only single inheritance is allowed.

288

SEL Document Network

Document

Formal is~...J informal~A Specification / Module-
~ 1 description ~--

,nte,ace / i ,~" \ , ,A D e s c ~

Comoonent Library C Module-
implemen-
tation /

C Module-
implemen-
tation

Description: Hyperlink Document Document
Instance Class

Possible Link to
implementation etc.

",,,

Fig. 3. A hierarchy of document descriptions

289

document at tr ibutes) so that documents of the subclass have a more detailed
structure than those of the superclass. Note that not the software components
themselves are organized in an inheritance hierarchy but rather the document
classes tha t define the form of component descriptions. For the rest of the paper
it is essential to understand that the hierarchy of document classes is to be dis-
tinguished from classes in the sense of object-oriented programming languages.
Fig. 3 shows sample document classes and documents, i.e. instances of docu-
ment classes. As for document classes, a document has a user-supplied name
tha t serves as an object identifier. A document can be an instance of only one
document class.

It should be mentioned that document classes can also serve as a simple
means for a taxonomic classification of component descriptions according to the
semantics of the components they describe. It is, for instance, possible to group
all documents related to C-programs into a document class C_DOCU M ENTS and
similarly for LISP_DOCUMENTS.

To give an example 4 of document creation let us assume that the user intends
to create a new document class MY_SIMPLE_DOCUMENTS. Let the class SIM-
PLE_DOCUMENTS be among the already defined document classes and let the
structure of SIMPLE_DOCUMENTS be closest to the needs of the new document
class. In our example SIMPLE_DOCUMENTS has the following structureS:

CLASSIFICATION :

N a m e :

Informal Description :
Progranuning Language :
SW-Engineer :

The user defines MY_SIMPLE_DOCUMENTS as a subclass of the document class
SIMPLE_DOCUMENTS with the following additional at tr ibutes that represent
relationships to other documents:

RELATIONS :

uses :

is used by:

The class MY_SIMPLE_DOCUM ENTS is now available, and document instances
may be created. Of course, a t t r ibute values have to be defined for each instance.

R e l a t i o n s h i p s b e t w e e n d o c u m e n t s As the example above indicates, rela-
tionships between documents can be represented by at tr ibutes that have object
identifiers, i.e. document names, as their values. Documents can be retrieved by
specifying some at t r ibute values. Consequently, in the example all documents

4 For the sake of clarity we choose a very simple example. Real-life examples, for in-
stance t h o s e investigated in cooperation with BMW, are beyond the space limitations
of this paper.

5 Note, that SIMPLE_DOCUMENTS has a two-level attribute structure.

290

describing the components used by a given component can be retrieved via the
uses attribute.

Using virtual document classes views can be defined on the set of documents.
Because scanning a large library may be prohibitively expensive tools have

been developed that support an efficient search (see Sect. 3.4).

L i b r a r i e s The SEL supports different user classes, i.e. users, experts, project
leaders, and a system administrator, each having different access privileges for
the documents stored in the system. Documents, i.e. component descriptions,
are organized in libraries at the following three levels:

1. User libraries belong to single users who have exclusive read and write access
to the documents stored. New documents or document classes are initially
stored in user libraries.

2. Project libraries contain project specific documents and are attached to sin-
gle projects. Only the project members have reading access to this infor-
mation. The project library is administered by the leader of the respective
project who has read and write access.

3. Documents in the global library can be read by all SEL users. Documents
of this library contain project overlapping information so that components
developed for one specific project can be used in a number of different other
projects. The system administrator has read and write access to the global
library.

Documents and components can migrate from one library into another, e.g. to
release and distribute a component or to submit a component for testing to a
different software engineer. The quality of components and their descriptions
that migrate to a "higher" library has to be assessed prior to migration. Quality
assessment, however, is currently not directly covered by the SEL system.

3.3 T h e SEL as a H y p e r t e x t - s y s t e m

The SEL System has been designed and implemented as a hypertext system.
Component descriptions, i.e. documents, form the nodes of the hypertext net-
work. Hyperlinks can be defined between any two documents that are related
in some way. It should be emphasized that we do not restrict the type of the
relationships in any respect and that the user is entirely free to decide what
documents shall be linked. In general, links are defined at the instance level,
i.e. between two individual documents. However, as will be seen later (Sect. 3.4)
some relationships can be established independently from the particular doc-
ument regarding only the document structure as defined in the corresponding
document class, e.g. the " u s e s - u s e d " relationship.

Links are typed, e.g. " u s e s - u s e d " or " i m p o r t s - i m p o r t e d " etc. In addition to
conventional hypertext systems the SEL system also supports dynamic features
(see Sect. 3.2 above). A sample hypertext document network is shown in Fig. 4.

291

SortedTable in C Table in C HashTable in C

~lassi f ication.'~ ~Classi fication: k ~lassi fication:~
~ N_ame : .asbTable / ~Name: Sor tedTab le~Name: Table . . .

I Relati~ /II l Relation: ~ l~ iOn: I
L uses Table " J Luses: ATay J V s e ~ " ~ a b ' e ~

String in C]

41assification:~ array in C I ~ Stack in C
Name : String I I / / - - . / ' -

" '" / /Classifi~ation: ~ (Classification: &
m I Name Arra II I Name : Stack II

Relation: ~ : Y ~] -'' I
uses: Array f II J " ~ ~'Q-.~ _ .

k,~ ~ I Rel~tion: II l~e~ zon:

Queue in c

I
lassification:~

Na~e.: Queue I
elation: I
uses : - j

Fig. 4. Sample Hypertext Network taken from the BMW Application

3.4 L i n k G e n e r a t i o n

The system supports the user in defining typed links between any two docu-
ments. Links that represent the same relationship R on the set of documents
can be grouped. Thus links of type R materialize application specific and even
user specific search heuristics that define a "R-ne ighbourhood" of a document.
Normally, a document, and thus the component it describes, is selected whenever
some user supplied selection condition is exactly matched by the component's
properties. However, scanning a large library may be very costly. Links can be
used to create an efficient search structure according to the specified condition.

Typed links can also be used to define views on a library, e.g. a view con-
taining the documents related to a particular subproject.

Using links, the search for a document can optionally be extended to neigh-

292

bouring documents r In particular, this feature allows us also to relax the naming
conventions that would otherwise have to obeyed in order to guide the search
for a particular group of documents.

Let us first have a closer look at hyperlinks: A link consists of a link anchor,
a link destination, and a link type. The link anchor structure can be formally
described by a triple

(< document >, < attribute >, < text string within attribute value >).

The link destination corresponds to a tupel

(< document >, < attribute >).

The link type of a SEL-link can be decribed as a label defining the kind of the
relation expressed by the hyperlink.

S e m i - a u t o m a t i c l ink g e n e r a t i o n One of the features of the SEL system is the
semi-automatic link generator. By defining a set of (pre-)conditions concerning
the documents to be connected, the SEL link generator scans the document
library and automatically creates hyperlinks between matching documents.

The following example explains the automatic link generation. Assume that
a SEL user has created several documents, i.e. component descriptions, as in-
stances of the document class M Y _ S I M P L E _ D O C U M E N T S . Let the documents
be descriptions of implemented (procedures and) functions manipulating the
data structures SORTED_TABLE, ARRAY, HASHTABLE, STACK etc. some
of which are related via the "uses" attr ibute (see Fig. 4). The corresponding
hyperlinks can be established semi-automatically as shown below.

1. Specification of the link anchor, i.e. the document c l a s s and a t t r i b u t e
fields:

document c l a s s := "MY_SIMPLE_DOCUMENTS"
attribute := "uses"

2. Specification of the link destination:
document c l a s s : : " M Y _ S I M P L E _ D O C U M E N T S "

attribute : - : "Name"
3. Specification of the link type, e.g.

Link-Type : : "uses-used"

The link generator is now able to create uses-used-hyper l inks between suitable
documents belonging to the document class MY_SIMPLE_DOCUMENTS. Notice
that it is not necessary to specify < text string within attribute value > when
automatic link generation is performed. Instead, the tool automatically deter-
mines pairs of documents one (the origin) having an at tr ibute I~ELATION. c a l l s

~ Practical experience has shown that the search should not go beyond the nearest
neighbors because otherwise the search would result in a large set of only loosely
connected documents.

293

the other (the destination) having an at tr ibute CLASSIFICATION. Name and both
containing the same text string in their at tr ibute values.

The automatic link generator is an effective tool supporting the creation of
the document network. However, there may exist other relationships between
documents which cannot be generated by a pure inspection of the description.
Therefore the system provides additional search tools, i.e. general queries, link
lists, neighbourhood search, and link pattern search.

Q u e r i e s The user can define a set of search keywords which describe the desired
documents. Of course, keywords can be connected by the usual connectives and,
o r , and not . The search can be extended to synonyms by a thesaurus. The
retrieved documents are sorted according to the hit rate corresponding to the
keywords. As usual in the area of information retrieval it is assumed that there
is a correlation between the hit rate and the relevance of a document. Though
flexible general queries suffer from some drawbacks as regards efficiency and
precision.

L i n k l ist This search tool exploits results of quotation analysis. It is based on
the idea that the degree of importance of a document is proportional to the
number of quotations. The hyperlinks correspond to the quotations with the
consequence that a document which is often defined as a link destination is of
great importance with respect to the relation represented by the hyperlink type.

Assume, for example, that a SEL user intends to find descriptions of the
most frequently used components. Applying the SEL link list generator to the
link type u s e s - u s e d will return a list of these descriptions.

Practical experience has shown that the link list generator complements the
other search tools in a useful way.

N e i g h b o u r h o o d s e a r c h The documents that are connected to a given doc-
ument d by links of type R originating from d define the R-neighbourhood of
d. By the neighbourhood search tool the set D of documents that form the R-
neighbourhood of d can be retrieved. The search for R-related documents is easy
to understand. In field tests the neighbourhood search tool turned out to be the
most effective tool of the SEL system.

L ink p a t t e r n s e a r c h This tool supports the search for "similar" documents
according to the similarity measure described in the following. Quotat ion anal-
ysis has shown that the similarity of two documents is strongly related to the
similarity of their quotation pattern [8]. A quotation of a document d corre-
sponds to a link that points to d. The link pattern search tool determines for
a given link type and a given document a list of similar documents that is or-
dered according to increasing similarity values. The latter are determined by a
method developed by G. Salton [8] that is known to be effective in information
retrieval. A drawback of this tool is its computational complexity. It is therefore

294

best suited for static networks because in this case the similarity values can be
pre-computed and stored.

4 I m p l e m e n t a t i o n

The data management component of the SEL system is based on the object-
oriented database system GemStone. A full fledged graphical interface has been
implemented using the Smalltalk-80 language features. Currently, the system is
installed on SUN IPX-Workstations with 32 MBytes main memory and runs
with very reasonable performance.

5 O t h e r W o r k

While various systems have been developed that support the retrieval and con-
figuration of software components from a library the idea to utilize hypertext
links to guide the navigation through a network of software components seems
to be entirely new. In particular, we did not find a system that exploits tech-
niques borrowed from information retrieval to semi-automatically generate links
between documents.

Garg and Scacchi [4, 5] present a hypertext-based system that models the
entire software production process. In contrast, our system concentrates on the
management of existing components. Consequently, we had to put an emphasis on
the adaptabil i ty of document descriptions and on a sophisticated semi-automatic
link generation. The Museion system [2] which is also hypertext-based provides
features to manage and integrate all documents produced and used throughout
the software life cycle. Documents can be classified using a thesaurus and facets 7.
However, the document structure is static and there is no link generation facility.

Batory and O'Malley report on the construction of hierarchical software sys-
tems from reusable components [1]. Their approach relies on some basic assump-
tions such as open architecture software and interface standardization which are
frequently not met by existing component libraries. Hall [6] describes a gener-
alization of executing each component of a library with test-inputs. This tech-
nique can be viewed as complementary to automated link generation. In very
large libraries, however, the user may put emphasis on the efficiency of answer
generation when he or she lets the system propose a set of suitable modules.
Our system is able to support him or her in this respect. The SPADE system
presented in [10] is a full fledged CASE tool that manages libraries of reusable
software components and their descriptors. Different from the SPADE system,
the navigation support offered by our system emphasizes semi-automatic link
generation based on information retrieval techniques.

7 The facet scheme was first proposed by Prieto-Diaz et al.. See e.g. [7].

295

6 Summary

A hypertext-based tool that supports the management of large libraries of re-
usable software components has been presented. A flexible classification of com-
ponent descriptions as well as various means to interactively retrieve compo-
nents that match a given specification are provided. Some novel approaches to
the semi-automatic determination of relationships between component descrip-
tions have been described and incorporated into the system that increase both
the precision and the efficiency of component retrieval. This approach can also
be applied when searching for hidden relationships in existing software libraries
and thus qualifies our system for re-engineering tasks. In addition, concurrent
multiuser access and several levels of access privileges are supported.

The SEL system described in this paper has been developed in cooperation
with software engineers of BMW, Munich, Germany, and is currently installed
at the BMW facilities in Munich. First field studies indicate that it has a good
acceptance and is well-suited to the every-day reusability problems that have
to be solved by software engineers. One direction of future work will be the
integration of code modules and testing facilities.

Of course our simple, pragmatic approach also has its limitations. For in-
stance, type correctness and interface correctness issues have not been addressed
in this paper. We are therefore looking at generalizations, like e.g. adding ex-
pressive type disciplines, and allowing various means for semantic specifications
(see [3, 11]). In addition we are planning to incorporate a faceted classification
scheme [7] into the SEL system as a further improvement of its search facilities.

Acknowledgement

The author is indebted to K. Raith who was the project leader at BMW of the
joint project. Thanks go also to K. Avini who implemented the SEL system.

References

1. D. Batory and S. O'Malley. The design and implementation of hierachical software
systems with reusable components. A CM Transactions on Software Engineering
and Methodology, Oct. 1992.

2. M. Brorsson and I. Kruzela. Museion - a reuse support system for design of service
features. In Proc. lOth Annual International Phoenix Conference on Computers
and Communications, 1991 Scottsdale, Arizona. IEEE Computer Society Press,
1991.

3. B. Freitag, T. Margaria, and B. Steffen. A pragmatic approach to software synthe-
sis. In Proc. ACM SIGPLAN POPL'9$ Post-Conference Workshop on Interface
Definition Languages, Portland, Oregon, Jan. 1994. (To Appear in ACM SIGPLAN
Notices).

4. P. K. Garg and W. Scacchi. ISHYS - designing an intelligent software hypertext
system. IEEE Expert, Fall 1989.

296

5. P. K. Garg and W. Scacchi. A hypertext system to manage software life-cycle
documents. IEEE Software, May 1990.

6. R. J. Hall. Generalized behaviour-based retrieval. In Proc. International Confer-
ence on Software Engineering. IEEE Computer Society Press, 1993.

7. R. Prieto-Diaz and P. Freeman. Classifying software for reusability. 1EEE Soft-
ware, 18(1), Jan. 1987.

8. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. Mc-
Graw Hill, 1983.

9. J. Sametinger and A. Stritzinger. Exploratory software development with class
libraries. In Proc. 7th Joint Conference of the Austrian Computer Society, Kla-
genfurt, Austria, 1992.

10. V. Sepps M. Heikkinen, and R. Lintulamp. SPADE - towards case tools that
can guide design. In Proc. Conference on Advanced Information Systems Engi-
neering (CAISE '91), Trondheim, Norway, 1991.

11. B. Steffen, T. Margaria, and B. Freitag. Module configuration by minimal model
construction. Technical Report MIP-9313, Universits Passau, Passau, Germany,
1993.

