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Abst rac t  
The perfect nonlinear mappings and their implementations studied in 

[4] where based on the Maiorana-McFarland construction of bent func- 
tions. Recently Carlet [1] presented two modifications of the Maiorana- 
McFarland construction and obtained two new classes of bent functions. 
The purpose of the present work is to give nontrivial examples of Carlet's 
bent functions and construct new perfect nonlinear mappings admitting 
fast implementation. 

1 I n t r o d u c t i o n  

Bent functions have a great importance in cryptology and in coding techniques 
for spread spectrum applications. Bent functions are optimal with respect to au- 
tocorrelation and correlation with linear functions [5]. Bent mappings have bent  
coordinate functions and for every fixed input difference uniformly distributed 
output  differences [4] which offers optimal resistance against differential crypt- 
analysis. 

It is proved in [4] that  bent mappings exist only if the input is at least twice 
as long as the output.  Hence permutations or substitution transformations with 
input size only slightly larger than the output  size cannot have uniformly dis- 
tr ibuted output  differences. Recently several examples and construction methods 
for near bent or equivalently, almost perfect nonlinear permutations have been 
given principally aimed for use in DES-like block ciphers to provide resistance 
against differential cryptanalysis. 

Much less attention have been focused on the use of bent structures in the 
design of stream cipher. Self-synchronizing stream cipers can be attacked using 
chosen ciphertext and therefore eventually a differential cryptanalysis attack can 
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be launched. Since the bent mappings have the minimum correlation with the 
affine mappings they would be most useful when designing synchronous stream 
ciphers resistant against correlation attacks. 

In w we recall the basic facts of binary bent functions their construction 
by the Maiorana-McFarland method. Based on this method and using a lin- 
ear feedback shift register to generate a suitable set of permutations an efficient 
implementation of bent mappings is given in [4]. In w we modify this basic 
machinery to obtain fast implementations of new bent mappings whose coordi- 
nate functions belong to the new classes of bent functions introduced in [1]. At 
the same time new nontrivial concrete examples of Carlet 's bent  functions are 
obtained. 

2 A P r e v i o u s  C o n s t r u c t i o n  o f  B e n t  M a p p i n g s  

Throughout  the paper let F be the Galois field of order 2, and n and p positive 
integers with n = 2p. 

For a definition of bent boolean function see [5] or Definition 1 (with m = 1) 
below. The following theorem is due to Maiorana (unpublished, see [2]). An 
equivalent method is given by McFarland in [3]. 

T h e o r e m  1 Let g : F p --+ F be a boolean funct ion and Tr : F p ~ F p a permuta-  

tion. Then ~he funct ion 

f :  F ~ = F p • F p --~ F, f ( z , y )  = z .  7r(y) + g ( y )  

is bent. 

The following generalization of bentness is given in [4]. 

D e f i n i t i o n  1 A mapping f : [:n ---. [=,,~ is perfect nonlinear (bent) i f  f o r  every 
fixed non-zero w E F n the difference f ( u  + w) + f ( u )  takes each value v C F "~ 
fo r q'~-"~ values of  u C In .  

We have the following useful characterization of bent mappings. 

T h e o r e m  2 A mapping f : F n ~ F m is bent i f  and only i f  every nontrivial  
linear combination of  its coordinate funct ions is bent, that is, f o r  every nonzero 
c C F m the funct ion u ~ c �9 f ( u )  is bent. 

We now recall the construction of bent mapping given in [4]. Let f : F ~ --+ F "~ 
be a mapping and f l ,  f 2 , . . . ,  fm the coordinate functions of f .  Assume that  
every f i ,  i = 1, 2 , . . . ,  m, is a Maiorana function, i.e., has the form 

s = x. 

where ~ri is a permutation of the space F v and g~ is a boolean function in F v. Then 
it follows from Theorem 2 that f = ( f l ,  f 2 , . . . ,  fro) is bent if every nontrivial 
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linear combination of the permutat ions lri, i = 1 , 2 , . . . ,  m is a permuta t ion  of 
F p. Note tha t  m < p. 

One way of constructing a suitable family of permutat ions of F p, is to use a 
binary linear feedback shift register (LFSR) of length p with a primitive feedback 
polynomial.  Let A be the state transition mapping of the LFSR. Then A as well 
as the powers A i of A are permutat ions of F p. Moreover, by the well known 
proper ty  of LFSR generating maximal length sequences every non-trivial linear 
combination of the permutat ions I ,  A, A 2, . . . ,  A p-1 is a power of A and hence a 
permutat ion.  

Now an elementary implementat ion of a bent mapping with n binary inputs 
and m binary outputs,  n > 2m, is obtained in the following way. Take a binary 
LFSR of length p with a primitive feedback polynomial.  Devide the input of n 
bits into two halves x and y. Load the LFSR with y, or optionally, with 7r(y) 
where a- is a (nonlinear) perumtat ion of F p. The first bit of the output  block of 
length rn is obtained by calculating the dot product of x and the initial contents. 
To obtain the second digit the shift register is shifted once and the dot product  
of its new contents with x is calculated. In this manner every shift of the register 
produces a new output  digit. 

This basic arrangement  is very fast. If  nonlinear permutat ion ~" is used 
or nonlinear boolean functions gi arc added to the coordinate functions, the 
computa t ional  complexity may increase. 

Let us still consider the properties of the basic arrangement,  

f = ( f l , f 2 , . . . , f m ) ,  f i ( x , y )  = x . A i - l ( y ) .  

The output  of this bent mapping f : F '~ ---+ F '~ is not uniformly distributed. The  
zero output  is obtained for 

2 n - m _ 2 p - m + 2  p 

different inputs. The other outputs  are obtained for equally many, i.e., for 

2 n - m  _ 2 p -m  

different inputs. If it can be arranged that  the the half y of the input tha t  goes 
to the LFSR is never the all zero block, then the restriction the function f has 
uniformly distributed output.  It turns out that  this restriction causes only slight 
deviation from strict bcntness. To sec this let a nonzero increment w have two 
halves wl and w2 corresponding to the division of the input. Then 

f i ( ( x , y )  4- w) q- f i ( x , y )  = wl  . A i - l ( y )  + x . A i - l ( w 2 )  + w 1 �9 A i - l ( w 2 ) ,  

for every i = 1, 2 , . . . ,  m. Now we have two cases. 
1 ~ = 0. In this case f ( ( x , y ) + w ) )  + f ( x , y )  is a linear mapping  of V 

and takes each nonzero value for 2 " - m  different inputs and the zero value for 
2 "- rn  - 2 p different inputs with V # 0. 

2 0 w2 # 0. Then the restrictions of the differences f i ( ( x ,  V)+ w) + f i ( x ,  y) to 
inputs  (x, V) with y # 0 are balanced. 
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The Maiorana-McFarland construction of bent functions and consequently, 
Maiorana-McFarland based construction of bent mappings has the weakness 
that  if the second input half is kept constant, then the resulting functions and 
mappings are linear in the first input half. The bent functions and mappings 
constructed in the next section do not have this weakness. 

3 N e w  C o n s t r u c t i o n s  o f  B e n t  M a p p i n g s  

3 . 1  B e n t  M a p p i n g s  D e r i v e d  f r o m  7:) 

The first new class of bent functions defined in [1], Definition 1, is class 7)' of all 
boolean functions of the form 

(x, y) ~ r y) + x.  ~(y), (x, ~) ~ Fp x Fp, 

where eE is the characteristic function of subspace E = E1 x E2 of F p x F p of 
dimension p and fr is a permutation of F e such that x.~r(y) = 0 for all (x, y) G E. 

Assume that  n = 2p = 4s where s is a positive integer. We construct now 
a class of bent mappings from F n ---* F ~ whose coordinate functions belong to 
class 7). For that purpose we choose A to be the state transition mapping of 
a binary LFSR of length p such that  the Connection polynomial C is a prod- 
uct of two primitive polynomials of degree s which are denoted by C1 and C~. 
Then every nonzero sequence generated by the LFSR has linear complexity at 
least s which means that every nontrivial linear combination of the permutations 
I,  A, A 2, . . . ,  A s-1 is a permutation of F p. We choose E2 to be the subspace of 
F p consisting of blocks of length p of the maximum length sequence generated 
by the LFSR with connection polynomial C1. Then E2 is an invariant sub- 
space of permutat ion A and, moreover, of all permutations ~r which are linear 
combinations of I = A ~ A, A S, . . . ,  A ~-1. We set 

E1 = =(E2) z = E&. 

Then E1 is the subspace of I=p spanned by the s vectors 

e I ---~ 

e 2 

e 8 

(co , . . . , c~ ,O, . . . ,O)  

(0, Co,...,  c~, O,... ,0) 

(0 , . . . ,  O, co , . . . ,  c~) 

where we have denoted by co, cl, . . . ,  c~ the coefficients of the connection poly- 
nomial C1. 

Let G be the subspace of F p spanned by the s vectors starting from 

( 1 , 0 , . . . , 0 ) ,  (0, 1 , 0 , . . . , 0 ) , . . .  

Then the characteristic function r  defined in F p has the following expression 

eG(X)  ~--- e G(Xl ,  . . . , X p )  --~ (Xs+ 1 -~- 1)(x~+2 + 1 ) - . . ( x  v + 1) 
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Given a basis of E1 we get its characteristic function r as a composed functions 
of a linear t ransformation and eG- By the definition of E2 we have 

eEl (y1 ,  - ,  yp) = 1-I(e  �9 y + 1) 
j = l  

Then eE is easily computed as 

for all (x, y) C F '~. 
For i = 1 , 2 , . . . , s  and (x,y)  E F p x I =p we set 

f i ( x ,  y) - 51r y) -~ x . Ai- l (y ) ,  

where 5i = 0 or 1, and f = ( f l , f 2 , . . . , f ~ ) .  Then f i s a  bent mapping  f rom I :'~ 
to I :~ whose coordinate functions and their linear combinations are in class 7:). 

3.2 Bent Mappings Derived from C 

Class C as specified in [1], Corollary 4, consists of all boolean functions on F ~ of 
the form 

where L is a linear subspace of [P and 7r is a permutat ion of F v such tha t  for 
all A E F p the set ~r-l(A + L) is a flat. 

Assume first that  r is an affine permutat ion of F p. Then the the condition in 
the definition of class C is satisfied for any linear subspace L and any permuta t ion  
~r of the form B o or, where B is a non-zero linear combination of I ,  A,  . . . ,  A p-  1 
and A is the state transition mapping of a LFSR with primitive feedback poly- 
nomial  as in Section 2. For i = 1 , 2 , . . . , m ,  m_~ p, and ( x , y )  E F p x F p we 
set 

f (x, y) = x .  A i - l ( a ( y ) )  + 5ieL• 

where 5i = 0 or 1. Then f = (f l ,  f 2 , . . . ,  f,~) : F '~ --~ F "~ is a bent mapping  with 
coordinate functions in C. A fast implementation of f can be obtained in the 
manner  described in Section 2. However, this construction has the disadvantage, 
tha t  if x is fixed then f is a linear mapping of y. 

A second construction of bent mapping derived from C is obtained as follows. 
Let r be any integer between 1 and s and A the state transit ion mapping  of an 
LFSR whose connection polynomial is a product of two primitive polynomials  
of degrees 7" and p - r, r _~ ~. Let C be the polynomial of degree r and L the 
invariant subspace of A of dimension r which consists of blocks of length p of 
the sequence generated by the LFSR with polynomial C. We choose ~ to be any 
permuta t ion  of F p such that  for all A C F p the set (r-l(A + L) is a flat. Then 
this condition is satisfied for all permutat ions 7r of the form B o ~r, where B is 
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a non-zero linear combination of 1, A , . . . ,  A r-1.  For i - 1, 2 , . . . ,  m, m < r and 
(x ,y)  E F p • F p w e s e t  

f i ( x ,  y) = x . Ai- l (c~(y))  + 6iCL• 

where ~i = 0 or 1. Then f = ( f l , f 2 , . . .  ,fro) : F n --+ F m is a bent mapping  with 
coordinate functions in C. 
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