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1 I n t r o d u c t i o n  

Maximal  sequences generated by linear feedback shift registers (FSRs), known as 
m-sequences, have been well-studied in the literature [1]. These sequences have 
long period, good statistical properties and two-valued autocorrelation func- 
tions. They have been used as pseudorandom sequences in simulations, in spread 
spectrum communications, and as test sequences. However, due to the linearity 
properties exhibited in these sequences, m-sequences are extremely vulnerable to 
Known Plaintext Attack by cryptanalysts.  Specifically, a binary m-sequence of 
span n can be completely determined by the Berlekamp-Massey algorithm after 
2n bits of the sequence are observed. 

In order to overcome the weakness found in m-sequences, nonlinearities have 
been introduced. Such nonlinearities include the use of a nonlinear feedforward 
function on a linear FSR [2, 3] and the use of a nonlinear combining function on 
several linear FSRs [4, 5]. However, not much has been studied with respect to 
the use of nonlinear feedback functions. This is part ly due to the fact that  the 
s tudy of nonlinear functions proves to be a formidable task. 

In this paper, we study nonlinear feedback functions by first investigating 
quadratic functions. The quadratic span of a periodic binary sequence is the 
length of the shortest quadratic FSR that  generates the sequence. Previously, 
bounds on the quadratic spans of full cycle DeBruijn sequences of span n were 
obtained in [6], which also partially generalized the Berlekamp-Massey algorithm 
to the quadratic case. The lower bound on the quadratic span of a DeBruijn 
sequence of span n was improved to n + 2 in [7]. By eliminating the all zero 
state from the DeBruijn sequence, the period is reduced from 2 ~ to 2 ~ - l. 
This paper  considers the question as to whether the resulting sequence can now 
have quadratic span n. Such sequences are the quadratic analog of the linear m- 
sequences and present an at tractive extremal case to explore further the structure 
of nonlinear FSRs. 

D e f i n i t i o n l .  A binary sequence s = so, 81 , . . .  satisfies a quadratic recurrence 
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of span n if for all k >_ 0, 

Sn+k = E aijsi+kSj+k, (1) 
o<i_<j_<,~- 1 

where aij ~- 0 or 1. 

D e f i n i t i o n 2 .  A binary sequence s is said to be a quadratic m-sequence of span 
n if it satisfies a quadratic recurrence of span n and has period 2 ~ - 1. 

For every sequence s with recurrence relation as shown in (1), there associates 
a quadratic feedback function f on n variables, given by 

f(x0,..., Xn-1) = E aijxixj (2) 
O<i<j<_n-1 

2 We note that xi = xi for all i _> 0 over GF(2), thus the coefficients aii corre- 
spond to the linear terms in f .  In section 2, we study quadratic m-sequences 
by considering the algebraic structures of the feedback functions given in (2). 
In section 3, we consider algorithmic generation of quadratic m-sequences from 
linear m-sequences. 

2 Q u a d r a t i c  F e e d b a c k  F u n c t i o n s  

For any initial loading (state) of a feedback shift register, the state updates as 
each sequence bit is produced. Since there are only finitely many states, the 
states have to repeat eventually. If the initial state is never repeated, the cycle 
of states generated is said to have a branch point. For quadratic m-sequences, 
there are exactly two cycles without branch points, namely the all zero state 
cycle and the cycle consisting of all other 2 ~ - 1 nonzero states. In [1], it is 
proved for general feedback functions that  

T h e o r e m 3 .  The cycles generated by a feedback shift register have no branch 
points if and only if its feedback function can be decomposed as 

f (x0 , . . . , xn - l ) - - - -  xoq-g(xl,...,xn-1). 

C o r o l l a r y 4 .  Let f be a feedback function that generates a quadratic m-sequence. 
Then 

f ( x o , . . . ,  x _l) = + (3) 

where g is a quadratic function. 

Thus, to study f ( x 0 , . . . ,  xn-1) we consider g(x l , . . . ,  x,~-l) instead. Let nL(g) 
and nQ(g) denote respectively the number of linear and quadratic terms in g. 
We show that  

T h e o r e m  5. I f  xo + g (x l , . . . ,  xn-1) generates a quadratic m-sequence, then 

nL(g) + nQ(g) =- 1 mod 2. 
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Proof. Consider the all-ones state corresponding to each xi having the value 1. 
I f  the next element of the sequence determined by the feedback function in 
equation (3) were a 1, then the state of the register would not change and we 
we would have a cycle consisting of n ls. Since this clearly cannot happen, we 
must  have the next state equal a zero, that  is, 

1 + g ( 1 , . . . ,  1) - 0 mod 2. 

The value of g ( 1 , . . . ,  1) is the same modulo 2 as the the sum of the number  of 
linear terms and the number  of quadratic terms, nL(g)  + nQ (g), which completes 
the result. | 

I f  we consider the special te rm x0 as a linear term, then theorem 5 says that  
for a feedback function generating a quadratic m-sequence, the number  of linear 
terms and the number  of quadratic terms have equal parity. The next result 
shows tha t  there must  be a linear term besides x0. 

T h e o r e m 6 .  I f  xo + g ( x l , . . . , x , ~ - l )  generates a quadratic m-sequence, then 
nL(g)  • O, equivalently, g ( x l , . . . ,  Xn-1) must  contain some linear term.  

Proof. Suppose that  g has no linear terms and consider the state with x0 = 1 
and the other xi = 0. The next state, regardless of g, has x,~-i = 1 and the rest 
of the xi = 0. Since g has no linear terms, the next state has all zeros except for 
xn_~ = 1. Continuing, we see tha t  after n steps, we are back to the initial state, 

which is a contradiction. | 

I f  a sequence s has m a x i m u m  period, then its reverse, R(s) ,  also has maxi-  
m u m  period. Thus, we have the following, 

T h e o r e m T .  I f  xo + g( x l , . . . , x ~ -  l ) generates a quadratic m-sequence, then xo + 
g ( x n - 1 , . . . ,  x l )  generates a quadratic m-sequence. 

Proof. If 

then 

x~ = xo + g ( x l , . . . , x ~ - l )  

x0 = x~ + g ( x l , . . . ,  x ~ - l ) .  

I f  we let yl = x~_~, then the latter equation becomes 

Yn = Yo + g ( Y n - 1 , . . . , Y l ) ,  

which is the recurrence relation for the reversal sequence. | 

We remark that  although we stated theorems 5, 6, and 7 for quadratic feed- 
back functions, their generalizations to arbi trary nonlinear functions are straight- 
forward. 
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3 Generation of Quadratic m-Sequences 

In this section, we consider the generation of quadratic m-sequences by intro- 
ducing quadratic terms to the feedback function of an m-sequence. Because the 
number of linear terms in a primitive polynomial is odd (and so the number of 
linear terms in the feedback function is even), theorem 5 implies that  the intro- 
duction of a quadratic term requires the "addition" of a linear term. However, 
the extra linear term that  is added may cancel with an existing linear term in 
the feedback function; thus it effectively could reduce the number of linear terms 
in the feedback function. 

To study the generation of quadratic m-sequence, we start by considering the 
simplest device that  can be added to the feedback function of an m-sequence. 
Such a device corresponds to the addition of terms xl + x/xj to the feedback 
function for i r j and i • 0 r j .  This device affects the state changes in 
the FSR if and only if xl = 1 and xj = 0. Let vl = (vl ,0, . . . ,vl , ,~-1) be the 
first state where vl,i = 1 and vl,j -- 0. Due to the addition of the device, 
the state change differs from that of the m-sequence at vl and v~, where v~ = 
(1 + vl,0, v1,1, . . . ,  vl,n-1). This results in the cycle of states being broken into 
two separate cycles, as shown in figure 1. Here the cycle on the left represents 
the m-sequence with dots showing successive states; the resulting two cycles are 
shown on the right. As states vt = (v t ,o , . . . ,  V~,n-1), where v~,i = 0, v~,j = 1, are 
encountered, the cycles may be further broken up or joined together, depending 
on whether vl and v~ are on the same cycle or not. 

I I 

I I 

I I 
I I 

I I 
I J 

Vl v 1 

Figure 1. Decomposition of an m-Sequence into Two Cycles 
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For fixed i r j ,  there are exactly 2 ~-3 state pairs (ve, v~), where ve,i = 1 and 
I I ! vt,j = 0. The sequence of appearances of vl, v2, �9  v~-3 ,  vl, v~ , . . . ,  v2~_a in the 

m-sequence cycle is defined to be the pattern of state changes for the device 
xi n t- x ix j .  The appearances of vi's have to be in ascending order; however, the 
v~ need not be in ascending order. 

Let m be the length of a pattern of state changes, so necessarily m is even. 

D e f i n i t i o n S .  A pattern of state changes P = (P l , . . .  ,P,~) is said to be a legal 
pattern if 

1. i fpi  = v~,pj = v~, then i < j ,  
2. i fpi  = v~,pj = vk and 1 < k, then i < j .  

P r o p o s i t i o n  9. The number of legal patterns of length m is exactly 1.3.5. . .  ( m -  
1). 

Proof. Let r = m/2 .  We count how many ways there are to place v~ for i = 
! 1 , . . . ,  r in the ascending sequence v l , . . . ,  yr. There is only one place to put  vr, 

namely to the right of yr. There are then three places to place vr_l,~ namely 
i Once I is and to the right of v~. v~_ 1 between v~-i and v~, between Vr and v~, 

placed, there are now five possible positions for v~_ 2. Continuing in this manner 
yields m - 1 positions to place v~. This completes the result. | 

Obviously not every legal pattern of state changes produces a single cycle. 
A legal pat tern of state changes is said to be maximum if it results in a single 
cycle. Necessarily, if the length of a maximum pattern is m = 2r, then r itself 
must be even; this is because every vi, v~ pair either splits a cycle into two or 
joins two cycles. Our goal is to characterize maximum legal patterns; below are 
some partial results. If adding a device to an m-sequence yields a maximum legal 
pattern,  then we have obtained a quadratic m-sequence. In such a case we have 
m =  2 n-2. 

P r o p o s i t i o n l O .  I f  P is a maximum pattern of length m = 2r, then for all 
i, 1 < i < r, pi = v~ implies pi+l 7 s v~. 

Pro@ If v~ and v) are consecutive in the pattern, then they parti t ion the cycle 
into two pieces, one of which can never be joined to the other. | 

P r o p o s i t i o n l l .  [8] Suppose that P is a maximal legal pattern. I f  for some i, v~ 
and vi+l occur consecutively in P,  then v~+ 1 and v~ cannot occur consecutively. 

Pro@ Suppose that  both pairs (vi,vi+l) and (v~+ 1,v~) occur in P.  Then there is 
the following cycle, which violates P being maximum; 

succ(vi) --~ v~+l --~ succ(v~+l) --+ v~ --+ succ(v/), 

where succ(vi) denotes the successor to vi in the original cycle and an arrow 
denotes a path through all intervening states (which cannot contain any of the 
vk). | 
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P r o p o s i t i o n  12. The pattern 

! ! ! 
Vl  Y2 . . .  Vr ~)1 V2 ' ' "  Vr 

is m a x i m u m  i f  r is even. 

Proof. We illustrate the complete cycle, using the notation given in the proof  of 
proposition 11. The cycle begins as 

Vl - ~  succ (v~ )  - ~  v~ - ~  s u e c ( v ~ )  

- ~  v3 - ~  s u c c ( v ~ )  - ~  4 - ~  s u c c ( v 4 )  

' S U C C ( V r )  - ~  v r _ l  - ~  s u c c ( v ; _ l )  - ~  vr - ~  

(4)  

Notice tha t  we need r to be even. Now the next state change after vr is v ~ 1, SO 

the cycle continues as 

- ~  v l  - ~  s n c c ( v l )  - ~  v ~  - ~  s n c c ( v ~ )  

- ~  v~ - ~  s u c c ( v 3 )  - ~  v4 - ~  s u c c ( ~ )  

' - ~  s u c c ( v r _ l )  - ~  vr ---4- s u c c ( v ' )  --+ V r _  1 

--+ V 1 

(5) 

i is vl. To finish the proof, it is easy We used that  the next state change after v r 
to see tha t  every possible sequence of states occurs in the above cycle. | 

We hope to establish the existence of quadratic m-sequences for all spans by 
showing that  the addition of a device of the form xi + x i x j  to some primit ive 
feedback polynomial  will generate a quadratic m-sequence for all n > 4. We 
discuss some experimental  results of this technique in the next section. 

4 Enumeration of Quadratic m-Sequences 

Our first table enumerates all quadratic m-sequences of span n, n ~ 7. These 
numbers include the linear m-sequences; in particular, there are no non-linear 
quadratic m-sequence for n < 4. 

[ Qu dr tin m Soq 195 0405 1 
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We enumerated quadratic m-sequences of a special form, namely those with 
as few taps as possible: one quadratic term and two linear terms (besides x0). 
The table below shows the number of quadratic m-sequences of the indicated 
form (the x0 is not included). The first form includes the second form. We 
extended the enumeration of the second form up to n = 18, but there were not 
any more such quadratic m-sequences. The fact that the number of quadratic 
m-sequences of these forms decreases (to zero, in the case of the second form) 
leaves us to believe that  these forms are not a promising avenue to pursue in 
order to generate infinite families of quadratic m-sequences. 

n 4 5 6 7 8 9 10 11 12 
x i + x j + x k x l  6 8 16 14 30 8 14 6 6 
x i + x j + x i x j  2 2 6 2 4 0 0 0 2 

Finally, we show the results of adding a device of the form xi + xixj  to an 
m-sequence (where i r j and i ~ 0 r j) .  In the following table, we give the 
number of linear m-sequences and the number of linear m-sequences that can be 
extended by some device. The last row shows the total number of quadratic m- 
sequences that  result from a device added to an linear m-sequence; note that  the 
same m-sequence can sometimes be extended by several different devices. Thus, 
adding a device to a linear m-sequence is a promising approach to generate 
quadratic m-sequences. 

n 4 5 6 7 8 9 10 11 
Linear m-Seq. 2 6 6 18 16 48 60 176 

Extendable 2 6 6 14 16 20 28 50 
Quadratic m-Seq. 4 10 12 24 20 24 34 56 

5 F u t u r e  W o r k  

This paper presents a first step in the investigation of nonlinear feedback shift 
register sequences. We have concentrated on the construction of quadratic m- 
sequences by adding a simple device of the form xi + xixj  to a linear m-sequence 
(where i r j and i r 0 • j ) .  We conjecture from our study that  

C o n j e c t u r e  1 For each n ~ 4, there exists a linear feedback function f that 
generates an m-sequence and integers i, j with i ~s j and i ~s 0 ~ j such that 

f (x0 ,  x l , . . . ,  + + x xj (6) 

generates a quadratic m-sequence. 
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One of the major  problems to be considered is the characterization of maxi-  
m u m  legal patterns.  We have established some necessary conditions and are con- 
tinuing in our search for sufficient conditions. We plan to extend the procedure 
of adding a device to a linear m-sequence to adding it to a quadratic m-sequence. 
In this way, we hope to recursively generate all quadratic m-sequences. 
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