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Abstract

This paper reviews some works on finite automaton one-key cryptosystems and
related topics such as autonomous finite automata and Latin arrays.

It is well known that shift registers are important sequence generators in stream
ciphers. But shift registers are merely a special kind of autonomous finite automata.
Finite automata were considered as suitable mathematical models of cryptosystems
from structural viewpoint long ago [1,2,3,4,5]. And invertibility theory of finite au-
tomata had been used to design one-key, two-key and identity-based cryptosysatems
[6,7,8,9,10,11,12,13,14,15]. In this paper we give a survey of some works of ours on
finite automaton one-key cryptosystems and related topics such as autonomous finite
automata and Latin arrays. In §1 we recite some basic definitions and results in in-
vertibility theory of finite automata. We then in §2 mention two important results on
bounded error propagation and feedforward invertibility. In §3 we explain a canonical
form for one-key cryptosystems implemented by finite automata without expansion of
the plaintext and with bounded propagation of decoding errors. §4 is devoted to Latin
arrays. And §5 deals with antonomous finite anutomata.

1 Basic definitions and results

Recall some definitions. A fintte automaton, say M, is a quintuple < X,Y, S,4,1 >,
where X is a nonempty finite set (the snput alphabet of M), Y a nonempty finite set ( the
output alphabet of M), § a nonempty finite set ( the state alphabetof M), §: SxX — Sa
single-valued mapping (the nezt state function of M), and A : §x X — Y a single-valued
mapping (the output function of M).

For any set A, by A* denote the set of all words (finite sequences) over A including
the empty word e, and by A¥ the set of all infinite-length words ( infinite sequences) over
A. Expand the domains of § and X to S x X* and § X (X*UX¥), respectively, as follows.

6(s,e) =3, &(s,az) =6(6(s,0),z),
As,e) =¢,  A(s,zc’) = A(s,2)A(5(s, 2), &),
s€S, z€X, aeX, d e X UXY,

In other words, on an initial state s(0) of M an input sequence z{0), z(1),... of M causes
a state sequence s(0), s(1),... of M and an output sequence y(0),y(1), ... of M according
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to

s(i+1) 8(s(2), 2(2)),
y(i) A(s(3), z(3)),

i = 0,1,...
Let M =< X,Y,5,6,A > and M' =< Y, X,§',6', X! > be two finite automata, and r

a nonnegative integer.

In his seminal paper [1] D.Huffman introduced the concept of r-order information-
lossless that we call weakly invertible with delay r. M is said to be weakly invertible with
delay 7 (or r-order information-lossless) if for any s in § and z; in X, 7 =0,1,...,7,
Zo can be uniquely determined by s and A(s,zo... z,).

M is said to be weakly invertible if for any s in S and « in X¥“, & can be uniquely
determined by s and A(s,a).

Proposition 1 (a). If M is weakly inverttble with delay 7, then M is weakly snvertsble.
(8). If M s weakly invertible , then there ezists a nonnegative integer v 'such that M
15 weakly invertible with delay . '

For any states s € S and ' € S, if
(V) x« (3ag)x+[A' (', A(s, @) = apade|ao] = 7],

then (s, s) is said to be a match pair with delay 7 or say that s’ r-matches s.
M’ is said to be a weak tnverse with delay 7 of M if for any s in S there exists s’ in
S' such that (&', s) is a match pair with delay 7.

Proposition 2 M 1s weakly invertible with delay 7 if and only if there exists a finite
automaton M’ such that M' is a weak inverse with delay 7 of M.

In an unpublished paper [16] we introduced the concept of invertible with delay 7
which occurs in public literature [17]. M is said to be invertible with delay 7 if for any
sin S and z; in X, 1=0,1,...,7, zo can be uniquely determined by A(s, zp...z,).

M is said to be tnvertible if for any s in § and a in X%, a can be uniquely determined
by A(s, o).

Proposition 8 (a). If M is invertible with delay 7, then M 13 invertible.
(8). If M is invertible , then there ezists a nonnegative integer r such that M s
invertible with delay 7.

M’ is said to be an inverse with delay 7 of M if for any s in S and any s’ in §',
(¢', s) is a match pair with delay 7.

If ¢ is a mapping from Y* x X**! to Y, and a finite automaton M =< X,Y,Y* x
X", 6,1 > can be defined by

y(&) = p(y(i - 1),...,9( — k), 2(3),...,2(i — h)), i=0,1,...,

ie.,

< Y0541 Y—k+1,%0y- -y T-htl >,
Yo,
‘p(y—l) oy YKy TO3Tm1yeeey I—h),

(< Yo1yerey YukyTo1yene s Tp >, Zo)
’\(< Yelyeo s Y=ksyT—1y.0 23 T—h >, ZO)
Yo
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then M is said to be an (k, k}-order memory finite automaton, denoted by M. In case
of k =0, M,, is said to be an h-order input-memory finite automaton .

Proposition 4 M 1s invertible with delay v if and only if there ezists a T-order input-
memory finite automaton M' such that M' is an inverse with delay r of M, if and only
if there ezists a finite automaton M' such that M’ 1s an inverse with delay 7 of M.

2 Bounded error propagation and feedforward in-
vertibility

In 18], J.L. Massey and M.K. Sain introduced the concept of feedforward invertible
for linear finite automata . For the general case, we introduced the concept of feedfor-
ward invertible with delay 7 in [7] to pursue the structural character on bounded error
propagation .

A finite automaton M =< X,Y,S,6,X > is said autonomous, if for any s € S and
any z,7' € X, 6(s,z) = §(s,2') and A(s,z) = A(s, ') hold. We use < ¥,5,6,1 > to
denocte an autonomous finite automaton, where domains of § and X are S.

Let M* =<Y, X, 8% 6* A* > be a finite automaton. M* is said to be a ¢c-order semi-
input-memory finite automaton if there exists an autonomous finite automaton M, =<
Ya,Sa,6a, Aq > and a single-valued mapping f : Yo X A,(S,;) — X such that

§* = Y°x S,
6*(< Yo,- - 3 ¥Ye—1,8 >, yc) = <y11~-'syc’6a(s) >,
A‘(< Y0y 9Ye—1,8 >, yc) = f(yOv"'iyc’)\a(s))-

Denote M* by C(M,, f).

A finite automaton M is said to be feedforward invertible with delay r if there exists
a finite order semi-input-memory finite automaton M’ such that M’ is a weak inverse
with delay 7 of M.

Let M' =< Y, X, 5,6, ' > be a weak inverse with delay r of M =< X,Y, S,6,) >.
If there exists a nonnegative integer ¢ such that

(Vs)s(3s')s+[( (s',8) is a match pair with delay )&
(VO‘)X“ (VB)ye (Vk)>0(ﬁ =k }‘(3: 0‘) - )‘,("’rﬂ) =(k+c) )‘t('g,x Als, a)))],

then we say that propagation of weakly decoding errors of M’ for M is bounded, where
ag@1 ... =p bob1... means Gnlnt1 ... = bpbpt1 ...

The following Theorem gives a characterization in structure for bounded. error prop-
agation (7,

Theorem 1 A finite automaton M is feedforward snvertible with delay 7 if and only if
there ezists a finite automaton M’ such that M’ is a weak inverse with delay r of M and
the propagation of decoding errors of M’ for M is bounded.

- A finite automaton M’ is said to be a feedforward inverse with delay r if there exists
a finite automaton M such that M’ is a feedforward inverse with delay 7 of M.
We obtained a characterization for structure of feedforward inverses with small delay
[8,19,38]. In case of delay free, we have the following [8].
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Theorem 2 Let M* =< Y, X, 5%,6*, A* > be a c-order semi-input-memory finite au-
tomaton C(M,, f), where My =< Y, 5,,84,Ac > i3 an autonomous finite automaton,
F Y x X4(8s) — X a single-valued mapping. Let r < c. If the cardinal number of
X is the same as of Y, then M* is a feedforward inverse with delay free if and only of
there ezist py,...,px € Sq such that &,(p;) = piy1, 1 = 1,...,k— 1, 84(px) = p1, and
the cardinal number of f(yo,...,%~1,Y, Aa(p:)) s the same as of X for anyt=1,...,k
and any Yo,...; Ye—1 €Y.

3 Canonical form for finite automaton one-key cryp-
tosystems

Using Theorem 2, for one-key cryptosystems implemented by finite automata without
expansion of the plaintext and with bounded propagation of decoding errors, we give a

kind of canonical form as follows (101,

The decoder M’ =< ¥, X, 5’,6’, )’ > is a c-order semi-input-memory finite automa-
ton C(M,, f), where X =Y, M, =< ¥;,5;,64,A; > is an autonomous finite automaton,
f 1 Yot x 34(Ss) — X a single-valued mapping such that the cardinal number of
flyo,--.r¥—1,Y; Xa(sa)) is the same as of X for any s, € S, and any yo,...,y.—1 €Y.
For any y, € Ao(S«) and any yo,...,¥%—1 €Y, define fy,, . yo1p. : ¥ = X

fy()y-"r!/c—l‘yya (yc) = f(yo, vaey Yoy ya)-

Clearly, fy,,....yo~1,y. 13 & permutation on ¥ (or X). Then there exists a single-valued
mapping h : Y X A,(S,;) — W such that .

fYose s Ye—1, Yes ya) = 9}:(1yo,...,yc_1,y¢)(yc):

Ya E A«1.(Sa):y0:'“ryc €Y

for some finite set W and some permutation family {g;' : ¥ — X,w € W}. Fig.1 (b)
gives a pictorial form of the decoder M’. For any initial state

s'(0) =< y(-1),...,y(—c),34(0) >

and any input sequence (ciphertext)

y(O),. --ry(l— 1)
of M', the output sequence (plaintext) z(0),...,z(l — 1) of M' can be computed by
sali+1) = da(sals)),
va() = Aa(salt)),
w(t) = h{yli—c),...,y(t—1},v(3)),
2(i) = gofy(v(d)),

:i=0,1,...,0—1.
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Corresponding encoder may be chosen as a finite automaton M =< X,Y,Y° x
S,,6, ) > of which a pictorial form is given by Fig.1 (a), where

6(< Ylyerr1Y=cs3a >' 20) = < Yo, ¥Y—-1y.-. ,y-—c+1,6a(3a) >l
M Yo1y-eyY—cs8a >, To) = Yo,
Yo = gum(zo)’

Wy = h(y-cv":y—liAa(sa))s
<Yolyerr Y=y 8a PEY X S,, o € X,

That is to say, for any initial state s(0) =< y(~1),...,y{~¢), Sa(O) > and any input se-
quence {plaintext} z(0),..., 5(I—1) of M, the output sequence {ciphertext) y(0),...,y(I-
1) of M can be computed by

sa(i + 1) = 5&("4(‘))1
ya(i) = ’\a(sa(i)))
w(t) = h{y(i—c),...,y(t - 1),%.(5)),
y()) = guw)(=(3),
i=0,1,...,0—1.
As a special case ( ¢ = 0 ), for one-key cryptosystems implemented by finite automata

without expansion of the plaintext and without propagation of decoding errors, the

canonical form is as follows [21],
The decoder M’ =< Y, X, S,,8', )" > is a 0-order semi-input-memory finite automa-
ton C(Mg,g~1), where X =Y,

5'(341.1/) = ba(sa),
)‘,(sa: y) = 9.;1(1/),
w = Ag(sq),

84 €8s, YyEY,

M, =< W,8,,6,,As > is an autonomous finite automaton, gz : ¥ — X is a per-
mutation on Y, w € W, and g;'(y) = g7 (w,y). For any initial state s,{(0) and any
input sequence (ciphertext) y(0),...,y(l — 1) of M’, the output sequence (plaintext)
z(0),...,z({ — 1) of M’ can be computed by

sa(i+ 1) = 5a(3a(i))s
w(‘L) = )\a(sa(i))s
z(d) = gui(¥(),

i=0,1,...,1-1

Corresponding encoder may be chosen as a finite automaton M =< X,Y,5,,6,A >,
where X =Y,
6{(3a,7) = ba(sa),
A(8a,2) = gul(z),
w = Au(sq),
8a €ES,, z€ X.
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That is to say, M =< X, Y, 84,6, > is also a O-order semi-input-memory finite automa-
ton C(M,, g), where g{w, z) = gy (z). For any initial state s,(0} and any input sequence
(plaintext) z(0),...,z(l — 1) of M, the output sequence (ciphertext) y(0),...,y(l~ 1) of
M can be computed by

sa(i +1) ba{sal1)),
w(i) Aa(sa(5)),
y(i) = Gu(i) (z("))1
1=0,1,...,l—-1

yi—clj . Yi-2 yHD Y%

wy z;

QWi(zl') Aam

h(yi—m ey Yi-1, tt')

t;

M,

Fig.1 (a). Encoder M

y.--cD yg-zD yi—1D Yi

Wy Zi

o (9s)

h(yi—C: ceey Yi—1, tl')

t;

M,

Fig.1 (b). Decoder M’
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el gu, (3) — g} () —"
W JIN
M, M,

Fig.2 (a). Encoder M Fig.2 (b). Decoder M’

Block ciphers, rotor ciphers and stream ciphers (in a narrow sense) are special cases
of above canonical form. For block ciphers, 4, is the identity function. For binary stream
ciphers , gy(z) = w & z, where ® stands for addition modulo two, i.e., exclusive OR.

Example. Let X and Y be 256 bytes. Take ¢ = 6. M, consists of a binary
shift register with characteristic polynomial z!%® @ z® @ z and an autonomous finite
automaton with identity next stat function. w; ranges over 16 bits words. gy,w,(z) =
(w1 — (w2 ® (w1 — (z)))), where © is a permutation on X, and — stands for subtraction
modulo 256. The key consists of the initial state of M, and .

4 Latin array

The problem of designing one-key cryptosystems which can be implemented by finite
automata without expansion of the plaintext and with bounded propagation of decoding
errors lies on choosing suitable parameters such as the size of alphabets and the length
¢ of ciphertext history and designing three components in above canonical form (Fig.1)
— an autonomous finite automaton M, a transformation h and a permutation family g,,
— such that the systems are both efficient and also secure.

For studying the family of permutations used in previous canonical form, we intro-
duced the concept of Latin arrays and investigated their enumeration and generation
problems |22, 23].

Let gy, w in W, be a family of permutations on X. For resisting the known plaintext
attack, a natural requirement is to possess the property 1.

Property 1. For any z,y in X , |[{w|w in W, g,,(z) = y}| = constant,.

From the viewpoint of uniformity of permutations , it is desirable to have the property
2 additionally.

Property 2. For any «' in W, [{w|w in W, g, = gy }| = constant.

Specify an order for elements of X and of W, say z,, -+ ,z,, and wy, - -,w,,, respec-
tively. Let A = (ai;) be an n X m matrix, where a;; = gy, (z;). Then each column of A
is a permutation of elements of X. Clearly, fixing orders of elements for X and W, the
family of permutations g,,w in W, is one-one correspondent with A. Corresponding to
property 1 and to properties 1-2, we introduced the following concepts.
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Let A be an n x nk matrix on N = {1,--+,n} . If each element of N occurs exactly
once in each column of A and k times in each row of A, then A is said to be an {n, k}-Latin
array. )

Let A be an (n, k)-Latin array. If each column of A occurs exactly r times in columns
of A repeatedly, then A is said to be an (n, k, r)-Latin array.

Latin arrays is a kind of generalization of Latin squares.

Let A and B be n X m matrices on N. If B can be obtained from A by rearranging
rows, rearranging columns and renaming elements, then A and B is said to be isotopic.

Clearly, if A is an {n, k)-Latin array and isotopic with B, then B is an {n, k)-Latin
array; and if A is an (n, k, r)-Latin array and isotopic with B, then B is an (n, &, r)-Latin
array.

For {n,k)-Latin arrays or (n,k,r)-Latin arrays, the equivalence class partitioned by
isotopy relation is called tsotopy class.

By U(n, k) denote the number of all (n, k)-Latin arrays, U(n, k,r) the number of all
(n, k,r)-Latin arrays, I(n, k) the number of all isotopy classes of (n,k)-Latin arrays, and
I(n,k,r) the number of all isotopy classes of (n, k, r}-Latin arrays. We have (22.23]
Proposition 5 (a). I(n,k,7) = I{n,k/r,1);

(6). U(n, k,r) = U(n, k/r, 1){nk)!/ (nk/r)}(rt)" /" .

Proposition 6 Let 1 < k < (n — 1)!. We then have :

(a}). I(n,k,1) = I(n,(n— 1) -k, 1);

{8). U(n, (n— 1)1 = k,1) = U(n, k, 1)(n! — nk)}/(nk}}

(c). I(n,(n— 14, 1) =1,U(n,(n—- 1)}, 1) = (n!)L.

Theorem 3
I(2,k) = 1, U(2,k) = (2k)}/(k)?, I(2,1,1) =1, U(2,1,1) = 2;
1(3,1,1) = 1, U(3,1,1) = 12, :

fopy={ Gr /P BERS s = SR/ e - R’
I(4,1) =2, U(4,1) = (413, I(4,1,1) =2, U(4,1,1) = (4!)?,

I{4,2) = 11, U(4,2) = 12640320,  I(4,2,1) = 6, U(4,2,1) = 10281600,
I(4,3) = 46, U(4,3) = 805929062400, I(4,3,1) = 11, U(4,3,1) = 306561024000,
I(4,4) = 201, U(4,4) = 87285061904040000,
I(4,4,1) = 6, U(4,4,1) = 10281600 x 16!/8L.

Among others, some of useful permutation family corresponding to (27,2")-Latin

arrays are gu,w, (z) = (w1~ (w2® (w1 ~9(2)))), guiw, (z) = p(w1 @ (w2 — (w1 @ p(2)))),
Gy, (2) = w1 © p(wz ~ (w1 © 7)), Gu,w, (2) = w1 — (wy & p(wy — z)), etc.. In case
of involution ¢, such g, are involutions and corresponds to so-called involutional Latin
arraysi?4,

Example. An m-sequence plus (4,4)-Latin array cipher 125],

In Fig.2, let X and Y be {0, 1}*>. M, is an m-sequence generator. g,, corresponds to
(4,4)-Latin array (w € {0,1}*). The key consists of g, M, and its initial state. Contrary
to the case of g, (z) = w @ z, this cipher seems secure.

For larger alphabets, we can choose so-called linear independent Latin ¢1rray[26'27l
and the initial state of M, as key.
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5 Autonomous finite automata

Autonomous finite automata are considered as sequence generators. For the general
case, the set of output sequences of an autonomous finite automaton are consisted of ul-
timately periodic sequences and closed under translation operation. From mathematical
viewpoint, such sets have clearly characterized, although such a characterization is not
very useful to cryptology. On the other hand, nonlinear autonomous finite automata can
be linearized. So we confine ourself to linear case in this section. Notice that each lin-
ear autonomous finite automaton with output dimension 1 is equivalent to a linear shift
register. And linear shift registers as a special case of inear autonomous finite automata
have been so intensively and extensively studied. Hereafter, we focus our attention on
the case of arbitrary output dimension.

Let M =< Y,5,5,A > be a linear autonomous finite automaton, where ¥ and S
are column vector space of dimension m and n over GF(g) respectively, §(s) = As, and
A(s) = Cs. A and C are referred as the state transition matrix and the output matrix of
M respectively, and m, n the structure parameters of M. If the state transition matrix
of M is a companion matrix of some monic polynomial over GF(q), then M is said to
be a shift register.

For any s € §, the infinite output sequence yoyy ... ¥..---. , where y; = A(6%(s))
for ¢ > 0, is denoted by ®(s), and its z-transformation ) .2, y:2* by ®(s,z). Denote
&) = {®(s),s € S} and Bp(2) = {B(s,2),s € §}. Clearly, @pr and ®pr(2) are linear
spaces over GF(q) and isomorphic. It is known that for any linear autonomous finite
automaton M over GF(q), there exist some linear autonomous shift registers M; over
GF(g),1=1,...,h such that ®pr = Ops,® - -+ & Dy,

We turn on autonomous shift register. Let M =< Y, 5,6, A > be a linear shift register
over GF(g), where A and C = [¢;r}mxn are the state transition matrix and the output
matrix of M respectively, and m, n the structure parameters of M.

Consider (generalized) polynomial over GF(g). Let $(2) = Y1 a;2°, where h > k
are integers, and a; € GF(g), + = h,h+ 1,...,k. maxi|a; 7 0] is referred as the kigh
degree of ¢, and min<[a; # 0] is referred as the low degree of . In case of zero
polynomial, its high degree is co and low degree is —co. For any polynomial ¢ and
nonzero polynomial ¢, there exist uniquely polynomials g(z) and r(z) such that

¥(2) = ql2)p(2) + r(2),
r(z) = 0 or the low degree of r(z) > the low degree of ©(z), and g(z) = 0 or the high

degree of g(z) < 0. Denote the unique r(z) by Res'(1(2), ©(2)).
Let f(z) be the characteristic polynomial of M, i.e., |zE — A|. Let

n .
= 1-k .
ci(z) = E k2t F i=1,...,m.
k=1

¢i(2),{=1,...,m is said to be the output polynomials of M. And
f'(2) = £(2)/ ged(f(2),c1(z7%); . em(271))

is said to be the second characteristic polynomial of M.
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Theorem 4 Let M be a shift register over GF(q) with structure parameters m,n. Let

f(z) be the characteristic polynomial and cx(z),k = 1,...,m the output polynomials of
M, and g{z) = 2" f(21). Denote the degree of the second characteriatic polynomial of
M by n'. Then the dimension of ®pr(2) s n', and

Res'(c1(2)z"™'+*, g(2))/9(2)
pe() = : , k=0,1,...,n' —1
Res'(cm (2)2"~"'**, g(2)) /9(2)
15 a basis of ®p(2).
This basis is said to be a polynomial basis of ®x((2). For any s € S, if Bar(s,2) =

E:I—E,l k% px(2) for some hf, ..., k\i_; € GF(q), then [hf,..., k|7 is said to be
the polynomial coordinate of ®ps(s,z). It can be computed as follows Denote f(z) =

2"+ ay-12"" 1 +... +a1z+ag. Then E?_._ol iz =17 = S0 bzl (mod f(2)),
where

1
ho
. apn-1 s
hn—l
a; rer Qpe1 1

Assume that GF(g*) is a splitting field of the second characteristic polynomial f'(z)
of M. Let M* be an extension of M over GF(g"), i.e., A and C are the state transition
matrix and the output matrix of M*, respectively. Let

f'(z) —zl“Hf )l'—'zl"l:_[H z-—qu 1 ), (1)
i=1 =1

where f!(2) is a monic irreducible polynomial over GF(g) with nonzero constant term,
n; is its degree, &; € GF(g*) is its root, f{(2),..., f!(2) are coprime, and I > 0, I; > 0,
vey b > 0. Let

1
r@=| . |
zlo.-—l
1/(1—ef 2) (2)
Lij(z) = : ,
1/(1-ef  2)k
1=1,...,1
J=1...,ni

Then there exist uniquely n' column vectors of dimension m over GF(g*), Rok, k =
ooy Rige,t=1, ..., =1,...,n, k=1,...,1; such that

¢1(2)2""1/g(z) o

S Rt N S Ral— T ()

cm(z)zn—l/g(z) k=1 i=1 j=1k=1
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Theorem 5 Assume that the second characteristic polynomial f'(2) of the autonomous
shift register M has the decomposition as (1). Assume that (3) holds. Let

Ro(k) = [R0(10+1_k) ... Ry 0. -olmxlm k=1,...0,

Ri;(k) = [R.'J'(l'.+1_k) e Bt 00 0lxts =1, =1,...,n0,k=1,..., L.
Then Ro(K)To(k),k = 1,...,10, Rij(k)Ts;(2), i =1,..,my 5 = 1,imiy k= 1,..., L is
a basis of ®pr+(2), where To(z) and Ty;(z) are defined by (2).

This basis is said to be a (£y,...,&,) root basis of Bpse(z). For any state s of M*,
if there exist B € GF(g*), k=0, ..., lo, fijr EGF(g*),i=1,...,7,7=1,...,n
k=1, ..., l; sach that

(DM'(is z) Zﬂk IRO k)ro(z) +Zr:izl:ﬂuqu k)ru(z)’

i=1J5=1k=1
then
= B0, Blo—1,P111s -+ oy Pingty e oy Pitlys oo oy Pinalys

T
------ sﬂrlly"')ﬂrn,ls---yﬁrll,‘;- --xﬁrn,l,]

is said to be the (e1,...,&,} root coordinate of Ppr+{s,z).
Notice that if the (e1,...,&,) root coordinate of @+ (s, 2) is B, then the rth coefficient
of ®pr«(s) is

Z Protr- kRO'c*’EZ‘Z.(i:ﬁu(t +h—k) Bijk) ( Thhe ) g

k=741 : . t=1g=1h=1 k=h
forr=0,1,....
Theorem 6 Let Q(z) € @u+(2). Then Q(2) € Bar(2) if and only if in the (e1,...,5,)

j=1

root coordinate f§ of Q(z), B € GF(q), k=0, ..., b, Bijx € GF(q™) and fiji = ﬂ:.’J.l s
i=1...,n5=1...,n,k=1,...,1.

For any nonnegative integer ¢, the c-translaiton of a infinite sequence (a0, 01,...)
means the infinite sequence (ac,ac.“, .). Correspondingly, E i—o Gi+c2" is said to be
the c-translation of 3.2 ) a;2*

Theorem 7 Let S and
= [ﬁ(l)!"-sﬁllo——hﬂill"'-:ﬂin;la“‘!ﬂiltl’-'-:ﬁinllu

4 ' T
""" »Mriisve rn,l' NBrll, (] rn,l,]
be the (e1,...,&,) root coordinate of Q(z) and V'(z) in Bpre(z), respectively. Then
(V'(2) 13 the c-translation of (U(2) if and only if

Bt =PBesk, k=0,1,...,00 —c— 1,
ﬂ’k:'oy k=lo—c,...,lo—1,
'.
- k—h+c—1 -
i = Z ( k—~h )ﬂ'Jkech s
k=h
1:=1,-..,T,J'=1,...,n,~,h=1’“,,l‘-_
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For the (e1,...,&:) root coordinate 8, let li; = minh [A >0, Bijx =0 if h<k<
Ll,i=1,...,r, 7=1,...,n;. max{l;;,1=1,...,n, 7=1,...,n; } is said to be the
efficient multiplicity of f. Let the different elements in {¢| 3f1<jcn;{liy > 0), 1 <t <7}
are 21,.:.,%r,. Denote the order of g; by ¢;, 1 =1,...,r, lcm(e,-l,...,e;,l) is said to be
the basic period of f.

Theorem 8 Assume that the state transition matriz of M is nonsingular. Then any
0(z) € ®are(2) is periodic and its period is ep®, where p is the characteristic of GF(g), e
is the basic period of the (e1,...,€,) root coordinate f of 0}(2), a = [log, !] and I is the
efficient multiplicity of B.

Notice that if the (g3,...,€,) root coordinate of a periodic (2} in ®pr(2) is B, then
the linear complexity of {1 equals to ) 7_, n;l;1, where the linear complexity of {1 means
the minimal state space dimension of linear shift registers over GF(q) which generate (1.

The detail proofs of above results are in [6, chapter 3|. Topics on linearization of linear
feedback autonomous finite automata and decimation of linear shift register sequences,
reader is referred to [6,28].
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