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Abstract .  Are higher-order extensions to logic programming needed? 
We suggest a negative answer by showing that higher-order features are 
already available in pure logic programming. It is demonstrated that 
higher-order lambda ca]cttlus-based languages can be compositionally 
embedded in logic programming languages preserving their semantics 
and abstraction facilities. Further, we show that such higher-order tech- 
niques correspond to programming techniques often practiced in logic 
programming. 
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1 I n t r o d u c t i o n  

In an early paper [War82], Warren raised the question whether higher-order 
extensions to Prolog were necessary. He suggested that they were not necessary 
by modelling higher-order concepts in logic programs. His proposal modelled 
functions and relations intensionaily by their names. As is well-known in Lisp 
community, such an encoding does not obtain the full power of higher-order 
programming. In particular, lambda abstraction and "upward" function values 
are absent. 

An entirely different approach to the issue was pursued by Miller et. al. 
in Lambda Prolog [MN86]. The objective here seems to be not higher-order 
logic programming, but logic programming over higher-order terms. While this 
approach has many interesting applications, particularly in meta-logical frame- 
works, it still leaves open the question of whether higher-order programming is 
possible in a standard logic programming setting. A similar comment applies to 
other higher-order languages like HiLog [CKW89]. 

In this paper, we return to Warren's question and suggest another negative 
answer. Using new insights obtained from the connection between linear logic 
and logic programming [Laf87, Abr91, Abr93, Red93b], we contend that ideal- 
ized logic programming is "already higher-order" in its concept, even though 
one might wish to add some syntactic sugar to obtain convenience. A similar 
answer is also suggested by Saraswat's work [Sar92] showing that  concurrent 
logic programming is higher-order in a categorical sense. 

We argue that  idealized logic programming is higher-order by presenting two 
forms of evidence: 
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- We exhibit a compositional,  semantics-preserving translation from higher- 
order l ambda  calculus-based languages to logic programs.  

- We show tha t  higher-order programming techniques are already in use in 
logic p rogramming  (albeit in a limited form) and that  these can be general- 
ized. 

Two features of logic p rogramming  play impor tan t  role in this modelling: logic 
variables and concurrency. Using logic variables, one often constructs da ta  struc- 
tures with multiple occurrences of variables, e.g., difference lists [CT77]. Typi-  
cally, one of the occurrences of the variable is designated for input, i.e., a binding 
is given to the variable via this occurrence, and other occurrences are used as 
output .  If we form a pair (z, S~) consisting of a variable x and a structure S~ with 
embedded occurrences of x (see Fig. 1), we have essentially formed a "function" 
value. The function is "applied" to an argument  by binding the variable x and 
the result of application is obtained via S~. Whereas this scheme allows S~ to 
be a da ta  structure, using concurrency, one can similarly build computational 
structures with shared variables. S~ is then thought  of as a "process" and a pair 
of variables involved in the process is viewed as a function value. All this provides 
"functions" that  are good for only one function application. General functions 
that  can be used multiple times are modelled by generating entire s t reams of 
such pairs, again using a process-oriented view. The s t reams are generated in a 
demand-driven fashion so tha t  the user of the s t ream can terminate  the s t ream 
at will. Mathematical ly,  such s t reams are best viewed as finite sets. 

Fig. 1. Difference structures 
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Concurrency is often thought of as an extraneous feature of logic program- 
ming. However, idealized logic programs executed with fair SLD-resolution [LM84] 
are necessarily concurrent. Under a fair resolution scheme, no goal can be delayed 
forever. So, each goal of a query must be thought of as a separate process 
which cooperates with other processes to solve the problem. Our modelling 
of higher-order concepts is in this framework. This cannot be duplicated in 
sequential logic programming languages like Prolog due to the crucial role of 
concurrency already mentioned. However, our scheme is applicable to almost 
all concurrent logic programming languages such as Concurrent Prolog [Sha83], 
Parlog [Gre87] and Guarded Horn clauses [Ued86] as well as languages with 
coroutine facilities like Mu-Prolog [Nai86]. 

1.1 R e l a t e d  work  

From a theoretical point of view, the fact that  higher-order functions can be 
simulated by relations seems to have been folklore in category theory for some 
time. See [Bar91] for an explicit presentation. Within the programming language 
theory, it is implicit in the work of [Laf87, Abr91, Red93b] which shows that  
linear logic proofs can be modelled as logic programs. Another piece of re- 
lated work is Milner's embedding of lambda calculus in pi-calculus [Mil90]. His 
embedding only uses a subset that  has a direct correspondence to concurrent 
logic programming languages. Thus, our presentation documents what has been 
implicitly known in various programming language circles. 

Many of our ideas are also implicit in Shapiro's work on modelling objects in 
concurrent logic programming [Sha83, ST86]. Since objects provide collections of 
operations to their clients, modelling objects involves modelling function values 
as well. In fact, as shown in [Red93a], our translations easily extend to higher- 
order imperative programs (object-based programs) using the same ideas as 
Shapiro's. Somewhat more explicit is the work of Saraswat [Sar92] where it is 
shown in that  the semantic model of concurrent constraint programs forms a 
cartesian closed category. In contrast to this work, we show here that standard 
logic programming has the same kind of properties. 

2 T h e  f r a m e w o r k  

We find it convenient to treat logic programs as defining binary relations. So, a 
predicate definition looks like: 

R:A~--~B 
R(=, y) ¢ 

where A and B are types, and ¢ is a formula built from predicate applications, 
equality, conjunction, disjunction and existential quantification. (We often sup- 
press the existential quantifiers and disjunctions by using Horn clause notation 
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R(z, y) ,-- ¢). Typically, the type A is a finite product type, in which case we 
write: 

R : A l  x . . . x A k  ~-*B 
R(=I,.. . ,  =k, y) ~ ¢ 

Note that  we suppress the parentheses around the tuple ( x l , . . .  ,xk), to avoid 
clutter. The special case of k = 0 appears as: 

R : unit ~ B 
R(y) ¢,  ¢ 

Types include 

- primitive types such as int and booi, 
- finite products, including the nullary product called unit, and 
- finite disjoint unions, including the nullary version 0. 

We often write disjoint unions with constructor symbols for injections, e.g., 

t y p e  result = fMl(unit) + suet(Jut)  

which is syntactic sugar for unit + int. All symbols other than constructors 
of this kind are variables (usually z, y, z and X, Y, Z). We do not use a case 
convention for variables. We also allow polymorphic type constructions with 
recursive definitions, e.g., 

t y p e  l is t (s)  = nil(unit)  + a . l i s t (a)  

which denotes the least set L such t h a t / ;  = unit + a  × L. All these constructions 
have well-defined semantics. See, for example, [LR.91]. 

3 E m b e d d i n g  P C F  

PCF (Programming Language for Computable Functions), due to Scott [Sco69], 
is a higher-order functional programming language. (See [F1o77] and [Gun92, 
4.1] for published descriptions.) PCF is a typed lambda calculus with a single 
primitive type for integers. (The boolean type can be omit ted without loss 
of expressiveness.) In this section, we show how PCF can be embedded in a 
logic programming language. The modelling of functions being the crux of the 
problem, extension to other kinds of data  structures is more or less immediate. 

Ezamples  We start  by showing some examples. First, consider "linear" func- 
tions, i.e., functions that  use their arguments exactly once. This restriction allows 
us to introduce a simpler model first. Here is an example: 

inc : int t> int inc : int ~ int 
inc(x) = x + 1 inc(x, y) ¢~ add(x, 1, y) 
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On the left, we have a term z + 1 treated as a function of x. We always use 
the symbol !> to denote this kind of implicit function that  occurs at the top 
level. This function is modelled as a relation between integers. Such modelling 
of functions by relations is elementary for any one with some knowledge of set 
theory. 

In lambda calculus, one can abstract over x to form a function term: 

succ : 1> i n t  ~ i n t  s u c c  : u n i t  ~ ( i n t  x i n t )  

succ ---- ax. x -I- 1 succ((x, y)) r add(x, 1, y) 

The function space int --* int is modelled by the product  int • int. If this seems 
surprising, consider the fact that  a relation A ~ B is really like a function 
A ---* IPB. Due to the implicit power set construction, smaller cardinalities suffice 
in the second argument position of the relation. The point of this example is 
to illustrate tha t  lambda-abstraction is modelled by pair formation in a logic 
program. This is the same kind of pair formation as that  shown in Fig. 1 except 
tha t  the "difference" between the input and output  is a computat ion rather than 
a data  structure. 

A generic function composition term is modelled as follows: 

compose: (A --+ B)  x (B -+ C) I> (A ---* C) 
compose(f, g) = ax. g (f x) 

compose: (A • B) • (B • C) ++ (A • C) 
compose(f, g, (x, z)) +--- f = (x, y), g = (y, z) 

Notice that  a function application, such as f z ,  is modelled by pair decomposition: 
f -- (z, y). We can use compose to make a twice composition of the succ function 
as follows: 

succ(f), succ(g), compose(f, g, h) 

Note that  h denotes the required composition: h = (x, z) if and only if z = x + 2. 
This would correspond to the PCF term compose(succ, succ) = Az. (Az'. z '  + 1) 
((Az'.z '  + 1)z).  Abstraction over f and g yields a composition "function" as a 
term: 

comp : I > ( A ~  B ) ~ ( ( B - - *  C ) ~ ( A - - +  C))  
comp = Af. )~g. Ax. g (f x) 

comp : unit +~ (A x B) x ((B x C) x (A x C)) 
comp((f, (g, (x, z)))) +- f = (x, y), g = (y, z) 

Consider the PCF term comp succ. This denotes a higher-order function which, 
when applied to any function g : int -+ int, yields the function Ax. g(z + 1). Its 
effect is obtained by the logic programming query: 

succ(f), comp(f, h) 

Note that  h = (g, (z, z)) if and only if g = (z + 1, z). Thus, the above scheme of 
translation works for functions of any order as long as the arguments of functions 
are used linearly. 
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Control Let us pause to examine the control issues. A query involving higher- 
order values, e.g., succ(f),  succ(g), compose(f, g, h), h = (1, z), must not be 
evaluated sequentially. Notice that  succ(f) reduces to add(x, 1, y) which has an 
infinite number of solutions. The best order of evaluation would be the following: 

,--- succ(f), succ(g), compose(f, g, h), h = (1, z) 
succ(f), succ(g), compose(f, g, (1, z)) 

*-- succ(f), suet(g), f = (1, y), g = (y, z) 
~-- suet((1, y)), succ((y, z)) 
*--- add(l ,  1, y), add(y, 1, z) 

add(2, 1, z) 

This order of evaluation is achieved if 

- every goal literal is suspended until it matches (becomes an instance of) the 
head of a clause, and 

- literals of primitive predicates, like add, are suspended until their input 
arguments are instantiated. 

In essence, we wish to treat our clauses as Guarded Horn clauses [Ued86]. While 
most of our clauses have empty guards, the translation of conditional expressions 
will involve guards as well. It is interesting that  the translation of functional 
programs should automatically give rise to GHC programs. 

General functions To model general functions, we must handle multiple uses of 
arguments. Keeping in mind that  arguments are often themselves functions, we 
model such multiple-use arguments as finite sets of values. For example, here is 
the twice function that  composes its argument with itself: 

twice: (A ~ A) I> (A --* A) 
twice(f) = )tx. f (f x) 

twice: IF(A x A) ~ (a  x A) 
twice(F, (x, z)) ~-- F = {fl, f2}, f l  = (x, y), t"2 = (y, z) 

Here, the input to the twice relation is a finite set of pairs, i.e., a finite piece of a 
function graph. The twice function extracts two (not necessarily distinct) pairs 
from such a piece. 

How do we make such pieces of function graphs? We first illustrate it for the 
succ function: 

mksucc : unit ~ lF(int x int) 
mksucc({}) ,--- 
mksucc({(x, y)}) ,--- add(x, 1, y) 
mksucc(F1 U F2) *-- mksucc(F1), mksucc(F2) 

Note that  mksucc makes as many pairs of the succ function as needed. In 
particular, the query mksucc(F),  F = { f l  } U {f2} is equivalent to: 



307 

fl ---- (xl, yl), add(x1, 1, yl), f2 -- (x2, y2), add(x2, 1, y2) 

Now, we can create the twice composition of the succ function by the following 
simpler goal: 

mksucc(F), twice(F, h) 

which corresponds to the PCF term twice(succ). If we would like to use one 
portion of the succ function graph for use with twice and keep the rest for other 
purposes, that  is easy enough to do too: 

mksucc(r  U F'), twice(F, h), . . .  F ' . . .  

We now generalize the idea involved in mksucc to make finite portions of any 
graph. Notice that  the relations of interest to us are, in general, of the form: 

R : A l  x . . . x A ,  *--~C 

The terms t decompose the inputs ~, the goal 15 performs some computation 
using the inputs and u is the output term. We assume that  existential quantifi- 
cation is used in 15 such that  FV(15) C FY(t-) U FY(u) .  We can denote such 
relations compactly as input-computation-output triples written as { I 15 ] u. 

Suppose R = ( t  I 15 I u) is a relation of type IFA1 • . . .  x ]FA, ~ C. Then, 
define a generic definition scheme (or "macro") for making graphs of the outputs 
as follows: 

m k g r a p h [ t  ] 15 I u] : IFA1 x . . .  x IFAn +-~ IFC 
m k g r a p h [ t  [ 15 ] u] = P where 

{u})  = i, 15 
u y2) = u P( l, P(e , 

Here, ~ = {} as well as ~ -- Xl U x2 mean their component-wise expansions. 
Using the m k g r a p h  scheme, we can represent the translations of PCF terms 

compactly. For example: 

s u c c - - A x . x +  1 
m k g r a p h [  I add(x , 1, y) I (x, y)] 

comp = Af. Ag. Ax. g (f x) 
m k g r a p h [  I 3y. F -- {(x, y)}, G = {(y, z)} I (F, (G, (x, z)))] 

twice -- Af. comp f f 
m k g r a p h [ C o m p  [ Comp = {(F1, (F2, h))} I(F1 U F2, h)] 

One is often tempted to ask the somewhat meaningless question, "how many 
elements are there in a finite set produced by an instance of m k g r a p h " ?  Well, 
the answer is "as many as needed". A m k g r a p h  predicate is able to produce 
all possible subsets of a graph. Treating its clauses as guarded Horn clauses 
allows the predicate to be suspended until a client process determines the surface 
structure of the finite set. The m k g r a p h  predicate then fills in the elements of 
the finite set. 
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Finite sets Our translation makes use of a finite set type which is not usually in 
the standard repertoire of logic programming. However, the unification problem 
for finite set-terms is decidable and it is certainly possible to add finite sets to a 
logic programming language. (See, for example, [DOPR91].) 

On the other hand, a more modest method suffices for the purposes of this 
paper. Our use of finite sets is only via the m k g r a p h  scheme and, within the 
scheme, a set constructor always appears with variable arguments. Therefore, 
the general set-unification algorithm is not needed. We can treat finite sets as a 
constructor data type of the following form: 

t y p e  IF(a) = null + single(a) + union(IF(a), IF(a)) 

The symbols null, single and union are constructors for finite sets. For readability, 
we continue to write null as {}, single(t)  as {t}, and u n i o n ( X ,  Y )  as X U Y .  We 
also use the short hand { t l , . . .  , t , }  for {tl} U . . .  U {t,}.  

This simplification would be valid only if our use of the above constructor 
terms is consistent with the properties of finite sets. We verify such consistency 
as follows. Let _-- be the least congruence relation generated by the following 
theory of finite sets: 

union(X, null) = X 
union(null, X )  - X 

union(X1, union(X9., )(3)) ------ union(union(X1, X2), )(3) 
union(X1, X2) -- union(X2, X~) 

union(X, X) = X 

Then: 

P r o p o s i t i o n l .  Let P : IFAI • �9 .•  ~ IFC be an instance of  the m k g r a p h  
scheme, and Yl, Y2 E ]FC such that Yl =- Y2. Then, f o r  all z l  E IFA1 • . . .  • IFAk 
such that P(Zl ,ya) ,  there exists z2 E IFA1 x . . .  x IFAk such that x,1 =- ~22 and 

Proof. By induction on the derivation of Yi - Y2- We show two of the base cases. 
The remaining cases are similar. 

- If Yl = Y U {} and Y2 = Y then $1 = -~ O {}, for some )( ,  and P()( ,  Y). Let 

- If yl = Y O Y~ and Y2 = Y~ O Y then 5:1 = )( U )(~, for some )(, )(~, and 
P()( ,  Y) and P() ( ' ,  Y'). Let ~2 = )~' O X.  

For the induction step of monotonic extension, let ~ -= ~ and y~' = y~'. If 
, , ,  U I - ~1 E IFA1 x x IFAk such that  P(~I,  ~ Y~) then ~1 = z~ U ~ ' ,  P ( ~ ,  ~ )  and 

P ( ~ ' ,  ~ ' )  for some ~ and ~ ' .  Then, by induction hypothesis, there exist 5,~ and 
~ '  such that  ~ = ~ ,  ~ '  = ~ ' ,  P ( ~ ,  ~ )  and P ( ~ ,  ~ ' ) .  Let ~2 = ~ U ~ ' .  [] 
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Another method,  available in a committed-choice language, is to represent 
finite sets by streams. Union is then obtained by merge. Here is the definition of 
the m k g r a p h  scheme using this representation: 

m k g r a p h f f [  r [u ] :  l i s t ( A 1 )  x . . .  l i s t ( A n )  ~ l i s t ( C )  

m k g r a p h [ [  [ r [u] = P where  
P(~,  []) ~-- $ = [] 
P(~, u.ys) ~- m~rge(~l, ~,  ~), ~1 = L r P ( ~ ,  ~s) 

This makes no essential change to the m k g r a p h  scheme except for linearizing 
the recursion. We can profitably use Shapiro 's  metaphor  [Sha83] and think of a 
m k g r a p h  predicate as an "object" and the finite set argument  as a s t ream of 
"messages" sent to the object. 

3.1 T r a n s l a t i o n  

Table 1 gives a description of PCF types, terms and the type rules for terms. 
The type rules are expressed in terms of judgements  of the form 

x l  : A 1 , . . . , x n  : A ,  [> M : C 

where X l , . . . , x  n are the free variables of M.  We use F , A , . . .  to range over 
sequences of variable typings Xl : A 1 , . . . ,  xn : An (called "type contexts").  All 
the variables in a type context must  be distinct. The first type rule (called 
Exchange rule) allows the typings in a type context to be freely rearranged. So, 
the order of typings is essentially insignificant. The  type rules of Table 1 look 
different from the usual formulations, but  they are equivalent to them. They are 
designed to give the cleanest possible translation. 

The translation of PCF programs to logic programs is as follows. The types 
are translated by the mapping  ( )0: 

i n t  o = i n t  

( A  --~ B )  ~ = ]FA*  x B ~ 

The translation represents the intuitions explained earlier in this section. 
A term with a typing of the form xl : A1,.  �9 x ,  : An I> M : C is t ranslated 

to a relation R of type IFA~ x . . .  x IFA~ ~ C ~ We denote such relations using 
the notat ion { I r [ u where t is a tuple of terms of type IFA~  x . . .  • IFA~ u a 

t e rm of type C o and r a formula. This is meant  to denote a relation R defined 
by 

R(zl,..., Zn, U) ~ Zl  = t X , . . . ,  Zn = tn ,  r 

The translation will be defined by induction on type derivations. For each 
type rule, we give a translation rule in terms of relation triples. Using these 
one can construct a derivation tree of relations, each relation corresponding to a 
PCF  term in the type derivation. Each use of the m k g r a p h  primit ive generates 
a recursive predicate definition. The collection of such predicate definitions forms 
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Types  : A, B, C 
A ::= int [ A t  ---, A2 

Variables : x, y, z 
Number s  : n ::= 0 ] 1 [ . . .  
Terms : M, N, V 

M : : = x l  n [ M + N I M - N I i f M N t N 2  [Ax. M I M N I r e c M  
T y p e  r u l e s  : 
F , x  : A , y  : B , F '  t> M : C 

F , y  : B , x  : A , F  ~ I> M : C 

x : A t > x : A  

F I > M : i n t  A l > N : i n t  

t> n : int F, A l> M + N : int  

F , z  : A I> M : B F I> M : A--* B 

F I> Ax. M : A --* B F, z : A I> M x  : B 

F, yt : A,  v2 : A t> M : C F t> M : C 

F , x  : A I> M [ x / y t , x / y 2 ]  : C F , x  : A I> M : C 

F t - M : A  A , x : A b N : C  

F, A t- N [ M / z ]  : C 

F t> N t  : A F t> Nu : A 

F , z  : int l> i fz  Nt N2 :A 

x : A - - - ~ A  t>rec x : A 

a logic program and the relation triple corresponding to the overall term becomes 
the query. 

The translations for the first three rules (called the structural rules of Ex- 
change, Contraction and Weakening) are straightforward: 

F , x  : A , y  : B , F  ~ I> M : C 

F , y : B , x : A , F  ~ t> M : C  

/ ' , Y l : A ,  y 2 : A  I > M : C  

F, x : A t> M [ X / y l ,  x / y 2 ] :  C 

F I > M : C  

F , z : A  t > M : C  

The next two rules (called 

{,ul, u2,~' Ir Iv 
s ]r  
~,ul,u2 Ir Iv 

~,ul uu2 If Iv 
~lr  

~,{}lr 
Identity and Cut) are translated as follows: 

z : A  t > x : A  { z I [ t r u e [ z  

F b M : A  A , x : A ~ - N : C  t l [ r  t 2 , u ' [ r  

F,  L I F  N [ M / x ]  : C  ~ l , t 2  [ m k g r a p h [ { l l r 1 6 2  I v  

The complexity of the Cut rule is due to the fact that  the term u in the first 
premise is of type A ~ whereas u I in the second premise is of type IFA ~ Therefore, 
we must generate a graph of u's and match it to u ~. 
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The primitives are translated as follows: 

t> n : int [ true I n  

F l> M : int  Zl l> N : int  Et lr  E2lr 
F, Zl t> M + N : int  tl, t2 I r r add(ut, u2, z) I z 

tx ]r  t2 I r Iv2 
F I> NI  : A F f> N2 : A 

r ,x: int~ . i fxN~N2: .4  e,{x} (x 0,e h, r y =-,,2) Y 

Notice that  the translation of the conditional gives rise to a disjunction. In a 
concurrent logic programming language, one must treat x = 0 and x ~ 0 as 
guards of the two branches. 

Finally, the higher-order terms are translated by: 

F , x : A  t > M : B  

F I > A x . M : A - - . B  

F t > M : A - - - * B  

F , z : A  E> M x : B  

~ ,u lr  
[ I r  I (u, ')  

~ l r  
E, X l r  lz 

x :  A --~ A L> r e c  x :  A F [ recurse(F, z) ] z 

Notice that  abstraction is pair formation and application is pair decomposition. 
The recurse predicate used in the last rule is defined as follows: 

recurse : IF(IFA • A) ~-* A 
recurse(F, x) *- F = {(X, x)) U F', m k g r a p h [ F  i recurse(F, x) ] x](F', X) 

As an example of the translation, consider the succ function: 

x : i n t  I > x : i n t  l > l : i n t  { x } [ t r u e l x  I t r u e l l  

x :  int t> x + 1: int (x} I add(x,  1 ,y)  I Y 

I> A x . x +  1: int I add(x,  1, y) [ ({x) ,y)  

The translation triple of this term denotes a relation succ : IFint ~-* int defined 
by: 

succ(({x}, y)) ~-- add(x, 1, y) 

This differs from the translation given at the beginning of Sec. 3 in that  there 
we did not model the input of succ as of type IFint. The translation given here 
treats all types uniformly. But, int being a pure data type with no higher-order 
values, the use of IF can be dropped. This and other optimizations are discussed 
in Sec. 3.3 below. 

We show the correctness of the translation as follows: 
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L e m m a  2 ( t y p e  soundness) .  The translation of  a P C F  term x l  : A 1 , . . . ,  xn : 
An  I> M : C is a relation of  type lFA~ • . . .  • ]FA~ ,-, C ~ 

T h e o r e m 3 .  The following equivalences of  lambda terms  are preserved by the 
translation: 

(Ax. M )  g -- M [ N / x ]  
Ax. M x  =_ M 

rec M _-- M (rec M) 

Proof. For (Az. M) N we have a translation of the following form: 

F t > N : A  

Zi, x : A r> M : B 

A I > A x . M : A - - + B  

A , y  : A I> ( A x . M ) y  : B 

F, Zl !> (Az. M ) N  : B 

t ' l r  

 ,ulr 
t l  r I (u,v) 

g,x I r = ( X , z )  l z  

~' , i l  mkgraph[t ' lr  s X), r (u, v) = (X, z) I z 

By unifying (u, v) with (X, z) and substituting for X and z, we o b t a i n  the 
translation of M [ N / x ] :  

F } - N : A  A , z : A b M : C  P l r  t , u [ r  

F, A F- M [ N / x ] :  C ~', i l mkgraph[f ' lr  u), r I v 

The preservation of the eta equivalence follows similarly from the properties 
of unification and the recursion equivalence follows from the definition of the 
recurse predicate. [:3 

3.2  D a t a  s t r u c t u r e s  

The translation can be readily extended to deal with data structures. Product 
and sum types of a functional language are translated as follows: 

unit ~ = fl 

(A x B) ~ = fst(A ~ + snd(B ~ 
(c(A)  + d (B) )  ~ = c(IFA ~ + d(IFB ~ 

(1) 

In the case of product types, f s t  and snd are assumed to be constructor 
symbols not used elsewhere. Notice that the translation of product types exhibits 
the same kind of reduction in the cardinality as encountered with function types 
previously. Think of a pair-typed value as a process that responds to f s t  and snd 
messages. 
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The translations of terms can be easily derived using the translation of types 
as a heuristic. For binary products: 

t l l t X  l u l  t2 I r ]u2 
F I > M : A  F I > N : B  

r ~ , ( M , N ) : A •  ~ - y 

x :  A x B !> fst x :  A {fst(z)) I true ] z 

The relation for the pair has two clauses. One of them will get exercised when a 
component is selected. Similarly, the translation of terms of sum types is: 

F I> M :A  t l r  

F i> c ( M ) :  e(A) + d ( B )  ~1 r I c(u) 

F, x t : A I > M : C  F, z 2 : B t > N : C  

F, z :  e(A) + d(B) t> casexofc (x l )  =r M I d(x2) =~ N :  C 

~1,tl I r l ul ~ , t~  1r l u~ {(x=c(tl),~=~l,z=~l)v I 
~, {x} (x d( t~) ,~  = ~ , z  = us) z 

Many data  structures occurring in practice take the form of sum-of-products. 
For example, lists are given by a type definition of the form: 

t y p e  list = nil(unit) + cons(int • list) 

In translating such a type to the logic programming context, we can make use 
of the isomorphisms: 

IF(A + B) ~ IFA x IFB IFO ~ unit 

So, the translation of the list type can be given as: 

list ~ = nil(unit) + cons(IF int • IF list ~ 

3.3 O p t i m i z a t i o n s  

The type IFint denotes finite sets of integers. Since functional programs give 
determinate results, such a set contains at most one integer. The empty set, {}, 
appears when a program ignores its integer input. A singleton set appears when 
the program uses the input. The use of finite sets for data values thus provides 
"lazy" data. Similarly, the above type lisff makes available lazy lists within a 
concurrent logic program. 

If we are not interested in lazy data  structures, we can eliminate all uses of 
IF in data structures. To model this, we use the following translation: 

int* = int 
unit* = unit 

(A x B)* = A* • B* (2) 
(c(A) -t- d(B))* = c(A*) + d(B*) 

For example, 
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list* = nil(unit) + cons(int • list*) 

The function type A ---, B is then translated to A* • B ~ instead of ]FA ~ • B ~ 
We will see applications of this translation in the next section. 

Another opportuni ty for optimization occurs when the argument of a function 
is used linearly, i.e., if the function uses its argument precisely once. In this case, 
we can simplify the translation of functions to 

(A- -*B)  ~ = A ~  ~ (3) 

This optimization is already illustrated in the examples at the beginning of 
Sec. 3. 

3 . 4  L i n e a r  l o g i c  

The reader familiar with linear logic would notice that  our translation closely 
parallels Girard's embedding of intuitionistic logic in linear logic [Gir87]. Indeed, 
our debt to linear logic is considerable. Logic programming (more precisely, 
the category of sets and relations) forms a model of linear logic: & and @ are 
interpreted as disjoint union, | and --o are interpreted as product, and ! is 
interpreted as finite sets. The translation given above is essentially a restatement 
of Girard's translation in this new light. 

4 E x a m p l e  a p p l i c a t i o n s  

The results of See. 3 establish a close correspondence between the higher-order 
programming techniques of functionM programming and those of logic program- 
ming. Two features of logic programming play a role in this correspondence: 

- logic variables, and 
- concurrency. 

The higher-order programming techniques are available only to a limited extent 
in sequential logic programming due to the crucial role of concurrency in this cor- 
respondence. However, they are still available and logic programmers frequently 
make use of them. In this section, we draw a correspondence between some of 
the common programming techniques used in functional and logic programming 
paradigms in the light of our translation. We hope that  this will lead to a 
reexamination of the logic programming techniques in the light of "higher-order 
programming" and pave the way for further exchange of ideas and techniques 
between the two paradigms. 

Difference lists form a familiar logic programming technique which allow for 
constant time concatenation [CT77]. A very similar technique was developed 
in functional programming using function values [Hug86]. Our correspondence 
identifies the two techniques, i.e., if we translate the functional programming 
representation of difference lists using the translation of Sec. 3, we obtain the 
logic programming representation. 
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T h e  funct ional  p r o g r a m m i n g  technique is shown in Tab le  2. A difference 
list is represented as a funct ion f r o m  lists to  lists. T h e  represen ta t ion  of an 
o rd inary  list [ Z l , . . . ,  xn] is the  funct ion Al. z l .x~  . . . . .  xn.l.  (See the  funct ion  r e p . )  

Conca tena t ion  is then  jus t  funct ion composi t ion ,  which works in cons tan t  t ime.  

T a b l e  2. Difference lists in functional programming 

t y p e  diff llst = list --* list 
r ep  : l i s t  --* d i f f _ l i s t  
rep [] = ,,~1. l 
rep x.xs = )d. x.((rep xs) l) 
c o n c a t  : d i f f _ l i s t  ~ d i f f - l i s t  ~ d i f f_ l i s t  
concat x y = M. x (y 1) 

T h e  logic p r o g r a m m i n g  technique is shown in Table  3. Here,  a difference list 
is a pair  of  lists, bu t  one of  the  lists is typical ly  a logic var iable  which is shared in 
the  other  list. T h e  representa t ion  of  a list [Zl, �9 �9 zn] is a pa i r  (x l . z2  . . . . .  zn.1, l) 
where ! is a variable.  

T a b l e  3. Difference lists in logic programming 

t y p e  diff_list = list • list 
r ep  : l i s t  ,--* d i f f_ l i s t  

rep([ ], (1',1)) ~-- 1 = 1' 
rep(x.xs, (1',1)) *-- rep(xs, (m, 1)), 1' = x.m 
c o n c a t  : d i f f_ l i s t  • d i f f_ l i s t  ~ d i f f_ l i s t  
concat(x, y, (1', 1)) ~ y = (m, 1), x = (1', m) 

To see the  correspondence between the  two versions, not ice t h a t  the func- 
t ional  difference list uses its list a rgumen t  linearly. Thus ,  as no ted  in Sec. 3.3, 
l i s t  --* l i s t  can be t rans la ted  to l i s t  • l i s t  in the  logic p r o g r a m m i n g  context .  (The  
second componen t  corresponds to the input  list and the  first c o m p o n e n t  to  the  
ou t pu t  list.) A close examina t ion  of  the two p r o g r a m s  is qui te  s tr iking.  T h e y  
correspond ope ra to r  by opera to r  according to  the  t r ans la t ion  (3). 

A difference s t ructure ,  in general,  involves some da t a  or c o m p u t a t i o n a l  s t ruc-  
ture  wi th  a place holder inside the s t ruc ture  cap tu red  by  a logic variable.  T h a t  
is essential ly wha t  a funct ion is. I t  is a c o m p u t a t i o n  with  a place holder for the  
a rgument .  Thus ,  the example  we found here is an ins tance  of  a general  concept .  

Difference lists of  Table  3 can only be  used linearly. Our  technique also allows 
us to build difference lists t h a t  can be used mul t ip le  t imes.  For example ,  
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mkrep : list ~ IF diff_list 
mkrep(l, []) 
mkrep(1, d.D) ~ rep(1, d), mkrep(l, D) 

allows a copy of a difference list to be produced on demand. To check if a 
difference list is empty, we can then use a goal of the form: 

D = d.D', d = (1, []), 1 = [] 

This kind of a goal has the problem that  it makes an entire copy of a difference 
list to check if it is empty. We can optimize it by using lazy lists instead of 
standard lists. (Cf. Sec. 3.3). 

Another important application for function values is in abstract syntax. 
Consider a language that  has variable-binding operators, e.g., lambda calculus or 
predicate calculus. In writing a processor for such a language (evaluator, theorem 
prover etc.), there arise delicate issues of variable renaming, substitution etc. 
Pfenning and Elliott [PE88] proposed that  such issues can be treated in modular 
fashion by using higher-order abstract syntax, i.e., syntactic representations that  
involve function values. To see how this works, consider the first-order and 
higher-order representations for lambda terms: 

term = vat(symbol) + lam(symbol x term) + ap(term x term) 
hoterm = lam(hoterm --* hoterm) + ap(hoterm • hoterm) 

The higher-order representation (hoterm) is symbol-free. The variable binding 
operator, lain, takes a function mapping terms (the arguments) to terms (the 
result of embedding the argument in the body of the abstraction). For example, 
the Church numeral 2 = )~s. )~x. s(sx) ,  has the following representations: 

first-order: lam( "s", lam( "x", ap(var("s"), ap(var("s"), var("x"))))) 
higher-order: lam(At, lam(Au, ap(t, ap(t, u)))) 

Table 4 shows a parser that  converts a first-order representation to the higher- 
order one and a normalizer that  operates on higher-order representations. Notice 
that  substitution is handled cleanly in the definition of apply lain(f) n. The 
result of substituting n for the formal parameter is simply f n .  In effect, all 
substitution is performed at parse-time with the result that  processing of the 
language is considerably simplified. 

Precisely the same effect can be achieved in logic programming. One can 
replace all the occurrences of symbols by logic variables so that  substitution is 
achieved by simply binding the logic variables. This technique has been used, for 
instance, in the polymorphic type inference algorithm of Typed Prolog [LR91, 
Lakgl]. We would like to argue that  this is not merely achieving the same effect as 
higher-order abstract syntax, but it is in fact the same technique. It is an instance 
of our translation. However, the standard technique used in logic programming 
is not as general as the higher-order technique. In particular, it does not work 
if the terms substituted for variables have bound variables. In that  case, one 
has to rename bound variables with fresh logical variables and the cleanliness of 



317 

T a b l e  4 .  Higher-order  abstract  syntax in functional programming 

t y p e  term = vax(symbol) + lain(symbol x term) + ap( term x term) 
t y p e  hoterm = lam(hoterm ---, hoterm) + ap(hoterm x hoterm) + fvar(hoterm) 
t y p e  s u b s t  = symbol --* hoterm 
lookup : symbol  --* subst  -*  hoterm 

l o o k u p  s e = e s 
update : symbol  ~ hoterm ~ subst ~ subst  

update  s x e = As'. if s '  = s then x else e s '  

parse : term ~ subst  ~ hoterm 
parse  vax(s) e = lookup s e 
parse lain(s,  m)  e = lam(Ax,  parse m (update  s x e))  
parse  a p ( m ,  n)  e = a p (pa ~s e  m e, parse  n e) 

norm : hoterm ~ hoterm 
reduce : hoterm ~ hoterm 

norm m = reduce (wkreduce m) 
reduce lain(f) = lam(Ax, norm (f fvar(x))) 
reduce m = m for  other cases of m 

wkreduce : hoterm ~ hoterm 
apply : hoterm x hoterm ~ hoterm 
wkreduce lain(f) = lam(f) 
wkreduce ap(m, n) = apply (wkreduce m) n 
wkreduce fvar(t) = fvar(t) 
apply lain(f) n = wkreduce (f n) 
apply m n = ap(m, n) for  other cases of  m 

the  technique  is compromised .  On the  o the r  hand ,  our  t r a n s l a t i o n  hand les  the  
genera l  case as well.  T h e  na ive  logic p r o g r a m m i n g  techn ique  is t he  spec ia l  case 
where  inpu t s  of  func t ions  are  a s sumed  to be  d a t a  ob jec t s  wi th  no e m b e d d e d  

funct ions .  

In  Table  5, we show the  naive  logic p r o g r a m m i n g  technique  for a no rma l i z e r  
of  l a m b d a  te rms .  Not ice  t h a t  l a m b d a  a b s t r a c t i o n s  are represen ted  by  t e r m s  
of  t y p e  l a m ( h o t e r m  • h o t e r m ) .  W h e n  an a b s t r a c t i o n  As. m ,  is conver t ed  to  
th is  r epresen ta t ion ,  a fresh logical  va r i ab le  x is c rea ted  and  all  occur rences  
of  the  s y m b o l  s are  rep laced  wi th  x. See the  clause for parse ( l a in ( s ,  m ) ,  e, t ) .  

T h e  resu l t ing  r ep resen ta t ion  is la in(x ,  m~) .  To reduce an a p p l i c a t i o n  of  such an  
a b s t r a c t i o n  t e rm,  in the  clause a p p l y ( l a i n ( f ) ,  n,  t ) ,  we b ind  x to  the  a r g u m e n t  

t e r m  n and  reduce m n .  

T h e  p o i n t  is t h a t  t he  logic p r o g r a m m i n g  r ep re sen t a t i on  l a m ( h o t e r m  • h o t e r m )  

is a na ive  encoding  of  the  func t iona l  r epresen ta t ion .  I t  works  in the  fo l lowing 

cases: 

- every m= conta ins  precisely  one occurrence  of  x, i .e.,  l a m b d a  t e r m s  are  l inear ,  

or  
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Table 5. A naive logic program for higher-order abstract syntax 

type  term = var(symbol) q- lain(symbol • term) q- ap(term • term) 
type  hoterm = lam(hoterm • hoterm) + ap(hoterm x hoterm) -b fvar(symbol) 

parse  : t e rm • subs t  ~ ho te rm 
parse(var(s), e, t) ~- lookup(s, e, t) 
parse(lain(s, m), e, t) *-- update(s, x, e, e'), parse(m, e', t'), t = lam((x, t')) 
parse(ap(m, n), e, t) *-- parse(m, e, tl),  parse(n, e, t2), t = ap(tl, t2) 

n o r m  : ho te rm ~ ho te rm 
reduce : ho t e rm ~ ho te rm 

norm(m, t) ~-- wkreduce(m, t'), reduce(t', t) 
reduce(lain(f), t) , -  f = (fvas(x), m), norm(m, t'), t = lam((x, t')) 
reduce(m, t) 4-- t = m f o r  o ther  cases o f  m 

wkreduce : h o t e r m  ~ ho te rm 
apply  : h o t e r m  • h o t e r m  ~ h o t e r m  
wkreduce(lam(f), t) *-- t = lam(f) 
wkreduce(ap(m, n), t) ,--- wkreduce(m, t'), apply(t', n, t) 
wkreduce(fvar(x), t) *-- t = fvar(x) 
apply(lam(f), n, t) 4-- f = (n, m), w~educe(m, t) 
apply(m, n, t) #-- t ----- ap(m, n) f o r  o ther  cases o f  m 

- the argument term has no bound variables, i .e . ,  argument terms are pure 
data. 

These two cases correspond to the translation schemes (3) and (2). To handle 
the general case, we must use the general translation scheme (1). The result is 
shown in Table 6. We have used the optimization of treating t e r m  and s y m b o l  

as pure data. Moreover, the arguments of n o r m ,  reduce  and w k r e d u c e  and the 
first argument of app ly  are treated as linear inputs. These optimizations give 
considerable simplifications, but  the reader might still find the resulting program 
hard to comprehend. One would want to devise usable syntactic mechanisms to 
cut down this complexity. (The focus of this paper being the expressive power 
of pure logic programming, we have refrained from doing so.) 

In this program, m k p a r s e  is used to generate multiple h o t e r m ' s  for any given 
first-order t e r m .  Each h o t e r m  receives a fresh set of logic variables to represent 
its bound variables. (See p a r s e l a m . )  No extra mechanism for variable renaming 
is necessary. 

Many other programming techniques of higher-order functional programming 
can be similarly adapted to the logic programming context. See [BW88, Pau91, 
Wad92]. The reader is invited to t ry  some of these using the translation scheme 
of Section 3. 
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T a b l e  6. A general logic program for hlgher-order abstract syntax 

t ype  term = va~(symbol) + lain(symbol x term) + ap(term x term) 
t yp e  hoterm = lam(iF(IF hoterm • hoterm)) + ap(iF hoterm x IF hoterm) 

+ fvar(IF hoterm) 
t yp e  subst = symbol • hoterm 
lookup : symbol  x IF subs t  *--. ho t e rm  

lookup(s, E, t) *-- E = {(s, t)} 
update  : symbol  x IF h o t e r m  x IF s u b s t  *-+ subs t  

update(s ,  X, E, (s', x'))  ,-- s' = s, X = {x'} ,  E = {} 
update(s ,  X, E, (s', x'))  *-- s' # s, X = {} ,  E = {(s',  x ' ) }  

p a r s e  : t e r m  x IF su bs t  *-+ h o t e r m  

par se la m  : symbol  x t e rm x IF s u b s t  ~ h o t e r m  

parse(vax(s),  E, t) *-- lookup(s ,  E, t) 
parse(lain(s,  m),  E, t) ~- mkparselam(s, m, E, F), t = lam(F)  
parse(ap(m, n), E, t) *--- E = E1 U E2, 

mkparse(m, El, T1), mkparse(n, E2, T2), t = ap(T1, T2) 
parselam(s, m, E, f) ~-- mkupdate(s, X, E, E'), paxse(m, E', t'), f = (X, t') 

n o r m  : h o t e r m  ~ h o t e r m  

reduce : h o t e r m  *-+ h o t e r m  

norm(m, t) *- wkreduce(m, t'), reduce(t', t) 
reduce(lam(F), t) ~ mkfvar(X, TX), F = {(TX, m)}, norm(m, t'), t = lam((X, t')) 
reduce(m, t) *-- t = m f o r  o ther  cases o f  m 

wkreduce : h o t e rm  +-+ h o t e r m  

apply : h o t e rm  x IF h o t e r m  ~ ho t e rm  

wkreduce(lam(F), t) *-- t = lam(f) 
wkreduce(ap(M, N), t) *--- M = {m}, wkreduce(m, t'), apply(C, N, t) 
wkreduce(fvar(X), t) ~ t = fvar(X) 
apply(lam(F), N, t) ~ F = {(N, m)}, wkreduce(m, t) 
apply(m, N, t) ~-- t = ap({m}, N) f o r  o ther  cases o f  m 

[mkfvar,  mkupdate ,  mkparse ,  and  mkparse lam are ins tances  o] mkgraph.]  

5 C o n c l u s i o n  

We have demonstrated the expressive power of logic programming by modelling 
higher-order programming features in pure logic programs. Further, these pro- 
gramming techniques, in a limited context, correspond to well-known techniques 
of logic programs. 

However, the significant abstraction facilities made possible by higher-order 
techniques are not available in sequential logic programming. Thus, we believe 
that  sequential logic programming is a poor approximation to logic programming 
and that  efforts must be made to incorporate concurrency and fairness. Concur- 
rent logic programming languages as well as coroutining facilities [Nai86] are 
an impor tant  step in this direction. These systems need to be extended to deal 
with backtracking nondeterminism. Formal semantics and type systems must be 
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developed to place them on a firm foundation. 
The  correspondences drawn in this work are only a first step in exploiting the 

richness of the logic programming paradigm. These techniques must  be further 
explored and applied to practical contexts. 
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