
Higher-order Aspects of Logic Programming

Uday S. Reddy

Department of Computer Science
University of Illinois at Urbana-Chaznpalgn

Urbana, IL 61801
Net: reddy~cs.uiuc.edu

Abstract . Are higher-order extensions to logic programming needed?
We suggest a negative answer by showing that higher-order features are
already available in pure logic programming. It is demonstrated that
higher-order lambda ca]cttlus-based languages can be compositionally
embedded in logic programming languages preserving their semantics
and abstraction facilities. Further, we show that such higher-order tech-
niques correspond to programming techniques often practiced in logic
programming.
Keywords: Higher-order features, functional programming, lambda cal-
culus, logic variables, concurrent logic programming, types, semantics.

1 I n t r o d u c t i o n

In an early paper [War82], Warren raised the question whether higher-order
extensions to Prolog were necessary. He suggested that they were not necessary
by modelling higher-order concepts in logic programs. His proposal modelled
functions and relations intensionaily by their names. As is well-known in Lisp
community, such an encoding does not obtain the full power of higher-order
programming. In particular, lambda abstraction and "upward" function values
are absent.

An entirely different approach to the issue was pursued by Miller et. al.
in Lambda Prolog [MN86]. The objective here seems to be not higher-order
logic programming, but logic programming over higher-order terms. While this
approach has many interesting applications, particularly in meta-logical frame-
works, it still leaves open the question of whether higher-order programming is
possible in a standard logic programming setting. A similar comment applies to
other higher-order languages like HiLog [CKW89].

In this paper, we return to Warren's question and suggest another negative
answer. Using new insights obtained from the connection between linear logic
and logic programming [Laf87, Abr91, Abr93, Red93b], we contend that ideal-
ized logic programming is "already higher-order" in its concept, even though
one might wish to add some syntactic sugar to obtain convenience. A similar
answer is also suggested by Saraswat's work [Sar92] showing that concurrent
logic programming is higher-order in a categorical sense.

We argue that idealized logic programming is higher-order by presenting two
forms of evidence:

302

- We exhibit a compositional, semantics-preserving translation from higher-
order l ambda calculus-based languages to logic programs.

- We show tha t higher-order programming techniques are already in use in
logic p rogramming (albeit in a limited form) and that these can be general-
ized.

Two features of logic p rogramming play impor tan t role in this modelling: logic
variables and concurrency. Using logic variables, one often constructs da ta struc-
tures with multiple occurrences of variables, e.g., difference lists [CT77]. Typi-
cally, one of the occurrences of the variable is designated for input, i.e., a binding
is given to the variable via this occurrence, and other occurrences are used as
output . If we form a pair (z, S~) consisting of a variable x and a structure S~ with
embedded occurrences of x (see Fig. 1), we have essentially formed a "function"
value. The function is "applied" to an argument by binding the variable x and
the result of application is obtained via S~. Whereas this scheme allows S~ to
be a da ta structure, using concurrency, one can similarly build computational
structures with shared variables. S~ is then thought of as a "process" and a pair
of variables involved in the process is viewed as a function value. All this provides
"functions" that are good for only one function application. General functions
that can be used multiple times are modelled by generating entire s t reams of
such pairs, again using a process-oriented view. The s t reams are generated in a
demand-driven fashion so tha t the user of the s t ream can terminate the s t ream
at will. Mathematical ly, such s t reams are best viewed as finite sets.

Fig. 1. Difference structures

303

Concurrency is often thought of as an extraneous feature of logic program-
ming. However, idealized logic programs executed with fair SLD-resolution [LM84]
are necessarily concurrent. Under a fair resolution scheme, no goal can be delayed
forever. So, each goal of a query must be thought of as a separate process
which cooperates with other processes to solve the problem. Our modelling
of higher-order concepts is in this framework. This cannot be duplicated in
sequential logic programming languages like Prolog due to the crucial role of
concurrency already mentioned. However, our scheme is applicable to almost
all concurrent logic programming languages such as Concurrent Prolog [Sha83],
Parlog [Gre87] and Guarded Horn clauses [Ued86] as well as languages with
coroutine facilities like Mu-Prolog [Nai86].

1.1 R e l a t e d work

From a theoretical point of view, the fact that higher-order functions can be
simulated by relations seems to have been folklore in category theory for some
time. See [Bar91] for an explicit presentation. Within the programming language
theory, it is implicit in the work of [Laf87, Abr91, Red93b] which shows that
linear logic proofs can be modelled as logic programs. Another piece of re-
lated work is Milner's embedding of lambda calculus in pi-calculus [Mil90]. His
embedding only uses a subset that has a direct correspondence to concurrent
logic programming languages. Thus, our presentation documents what has been
implicitly known in various programming language circles.

Many of our ideas are also implicit in Shapiro's work on modelling objects in
concurrent logic programming [Sha83, ST86]. Since objects provide collections of
operations to their clients, modelling objects involves modelling function values
as well. In fact, as shown in [Red93a], our translations easily extend to higher-
order imperative programs (object-based programs) using the same ideas as
Shapiro's. Somewhat more explicit is the work of Saraswat [Sar92] where it is
shown in that the semantic model of concurrent constraint programs forms a
cartesian closed category. In contrast to this work, we show here that standard
logic programming has the same kind of properties.

2 T h e f r a m e w o r k

We find it convenient to treat logic programs as defining binary relations. So, a
predicate definition looks like:

R:A~--~B
R(=, y) ¢

where A and B are types, and ¢ is a formula built from predicate applications,
equality, conjunction, disjunction and existential quantification. (We often sup-
press the existential quantifiers and disjunctions by using Horn clause notation

304

R(z, y) ,-- ¢). Typically, the type A is a finite product type, in which case we
write:

R : A l x . . . x A k ~-*B
R(=I,.. . , =k, y) ~ ¢

Note that we suppress the parentheses around the tuple (x l , . . . ,xk), to avoid
clutter. The special case of k = 0 appears as:

R : unit ~ B
R(y) ¢, ¢

Types include

- primitive types such as int and booi,
- finite products, including the nullary product called unit, and
- finite disjoint unions, including the nullary version 0.

We often write disjoint unions with constructor symbols for injections, e.g.,

t y p e result = fMl(unit) + suet(Jut)

which is syntactic sugar for unit + int. All symbols other than constructors
of this kind are variables (usually z, y, z and X, Y, Z). We do not use a case
convention for variables. We also allow polymorphic type constructions with
recursive definitions, e.g.,

t y p e l is t (s) = nil(unit) + a . l i s t (a)

which denotes the least set L such t h a t / ; = unit + a × L. All these constructions
have well-defined semantics. See, for example, [LR.91].

3 E m b e d d i n g P C F

PCF (Programming Language for Computable Functions), due to Scott [Sco69],
is a higher-order functional programming language. (See [F1o77] and [Gun92,
4.1] for published descriptions.) PCF is a typed lambda calculus with a single
primitive type for integers. (The boolean type can be omit ted without loss
of expressiveness.) In this section, we show how PCF can be embedded in a
logic programming language. The modelling of functions being the crux of the
problem, extension to other kinds of data structures is more or less immediate.

Ezamples We start by showing some examples. First, consider "linear" func-
tions, i.e., functions that use their arguments exactly once. This restriction allows
us to introduce a simpler model first. Here is an example:

inc : int t> int inc : int ~ int
inc(x) = x + 1 inc(x, y) ¢~ add(x, 1, y)

305

On the left, we have a term z + 1 treated as a function of x. We always use
the symbol !> to denote this kind of implicit function that occurs at the top
level. This function is modelled as a relation between integers. Such modelling
of functions by relations is elementary for any one with some knowledge of set
theory.

In lambda calculus, one can abstract over x to form a function term:

succ : 1> i n t ~ i n t s u c c : u n i t ~ (i n t x i n t)

succ ---- ax. x -I- 1 succ((x, y)) r add(x, 1, y)

The function space int --* int is modelled by the product int • int. If this seems
surprising, consider the fact that a relation A ~ B is really like a function
A ---* IPB. Due to the implicit power set construction, smaller cardinalities suffice
in the second argument position of the relation. The point of this example is
to illustrate tha t lambda-abstraction is modelled by pair formation in a logic
program. This is the same kind of pair formation as that shown in Fig. 1 except
tha t the "difference" between the input and output is a computat ion rather than
a data structure.

A generic function composition term is modelled as follows:

compose: (A --+ B) x (B -+ C) I> (A ---* C)
compose(f, g) = ax. g (f x)

compose: (A • B) • (B • C) ++ (A • C)
compose(f, g, (x, z)) +--- f = (x, y), g = (y, z)

Notice that a function application, such as f z , is modelled by pair decomposition:
f -- (z, y). We can use compose to make a twice composition of the succ function
as follows:

succ(f), succ(g), compose(f, g, h)

Note that h denotes the required composition: h = (x, z) if and only if z = x + 2.
This would correspond to the PCF term compose(succ, succ) = Az. (Az'. z ' + 1)
((Az'.z ' + 1)z). Abstraction over f and g yields a composition "function" as a
term:

comp : I > (A ~ B) ~ ((B - - * C) ~ (A - - + C))
comp = Af.)~g. Ax. g (f x)

comp : unit +~ (A x B) x ((B x C) x (A x C))
comp((f, (g, (x, z)))) +- f = (x, y), g = (y, z)

Consider the PCF term comp succ. This denotes a higher-order function which,
when applied to any function g : int -+ int, yields the function Ax. g(z + 1). Its
effect is obtained by the logic programming query:

succ(f), comp(f, h)

Note that h = (g, (z, z)) if and only if g = (z + 1, z). Thus, the above scheme of
translation works for functions of any order as long as the arguments of functions
are used linearly.

306

Control Let us pause to examine the control issues. A query involving higher-
order values, e.g., succ(f), succ(g), compose(f, g, h), h = (1, z), must not be
evaluated sequentially. Notice that succ(f) reduces to add(x, 1, y) which has an
infinite number of solutions. The best order of evaluation would be the following:

,--- succ(f), succ(g), compose(f, g, h), h = (1, z)
succ(f), succ(g), compose(f, g, (1, z))

*-- succ(f), suet(g), f = (1, y), g = (y, z)
~-- suet((1, y)), succ((y, z))
*--- add(l , 1, y), add(y, 1, z)

add(2, 1, z)

This order of evaluation is achieved if

- every goal literal is suspended until it matches (becomes an instance of) the
head of a clause, and

- literals of primitive predicates, like add, are suspended until their input
arguments are instantiated.

In essence, we wish to treat our clauses as Guarded Horn clauses [Ued86]. While
most of our clauses have empty guards, the translation of conditional expressions
will involve guards as well. It is interesting that the translation of functional
programs should automatically give rise to GHC programs.

General functions To model general functions, we must handle multiple uses of
arguments. Keeping in mind that arguments are often themselves functions, we
model such multiple-use arguments as finite sets of values. For example, here is
the twice function that composes its argument with itself:

twice: (A ~ A) I> (A --* A)
twice(f) =)tx. f (f x)

twice: IF(A x A) ~ (a x A)
twice(F, (x, z)) ~-- F = {fl, f2}, f l = (x, y), t"2 = (y, z)

Here, the input to the twice relation is a finite set of pairs, i.e., a finite piece of a
function graph. The twice function extracts two (not necessarily distinct) pairs
from such a piece.

How do we make such pieces of function graphs? We first illustrate it for the
succ function:

mksucc : unit ~ lF(int x int)
mksucc({}) ,---
mksucc({(x, y)}) ,--- add(x, 1, y)
mksucc(F1 U F2) *-- mksucc(F1), mksucc(F2)

Note that mksucc makes as many pairs of the succ function as needed. In
particular, the query mksucc(F), F = { f l } U {f2} is equivalent to:

307

fl ---- (xl, yl), add(x1, 1, yl), f2 -- (x2, y2), add(x2, 1, y2)

Now, we can create the twice composition of the succ function by the following
simpler goal:

mksucc(F), twice(F, h)

which corresponds to the PCF term twice(succ). If we would like to use one
portion of the succ function graph for use with twice and keep the rest for other
purposes, that is easy enough to do too:

mksucc(r U F'), twice(F, h), . . . F ' . . .

We now generalize the idea involved in mksucc to make finite portions of any
graph. Notice that the relations of interest to us are, in general, of the form:

R : A l x . . . x A , *--~C

The terms t decompose the inputs ~, the goal 15 performs some computation
using the inputs and u is the output term. We assume that existential quantifi-
cation is used in 15 such that FV(15) C FY(t-) U FY(u) . We can denote such
relations compactly as input-computation-output triples written as { I 15] u.

Suppose R = (t I 15 I u) is a relation of type IFA1 • . . . x]FA, ~ C. Then,
define a generic definition scheme (or "macro") for making graphs of the outputs
as follows:

m k g r a p h [t] 15 I u] : IFA1 x . . . x IFAn +-~ IFC
m k g r a p h [t [15] u] = P where

{u}) = i, 15
u y2) = u P(l, P(e ,

Here, ~ = {} as well as ~ -- Xl U x2 mean their component-wise expansions.
Using the m k g r a p h scheme, we can represent the translations of PCF terms

compactly. For example:

s u c c - - A x . x + 1
m k g r a p h [I add(x , 1, y) I (x, y)]

comp = Af. Ag. Ax. g (f x)
m k g r a p h [I 3y. F -- {(x, y)}, G = {(y, z)} I (F, (G, (x, z)))]

twice -- Af. comp f f
m k g r a p h [C o m p [Comp = {(F1, (F2, h))} I(F1 U F2, h)]

One is often tempted to ask the somewhat meaningless question, "how many
elements are there in a finite set produced by an instance of m k g r a p h " ? Well,
the answer is "as many as needed". A m k g r a p h predicate is able to produce
all possible subsets of a graph. Treating its clauses as guarded Horn clauses
allows the predicate to be suspended until a client process determines the surface
structure of the finite set. The m k g r a p h predicate then fills in the elements of
the finite set.

308

Finite sets Our translation makes use of a finite set type which is not usually in
the standard repertoire of logic programming. However, the unification problem
for finite set-terms is decidable and it is certainly possible to add finite sets to a
logic programming language. (See, for example, [DOPR91].)

On the other hand, a more modest method suffices for the purposes of this
paper. Our use of finite sets is only via the m k g r a p h scheme and, within the
scheme, a set constructor always appears with variable arguments. Therefore,
the general set-unification algorithm is not needed. We can treat finite sets as a
constructor data type of the following form:

t y p e IF(a) = null + single(a) + union(IF(a), IF(a))

The symbols null, single and union are constructors for finite sets. For readability,
we continue to write null as {}, single(t) as {t}, and u n i o n (X , Y) as X U Y . We
also use the short hand { t l , . . . , t , } for {tl} U . . . U {t,}.

This simplification would be valid only if our use of the above constructor
terms is consistent with the properties of finite sets. We verify such consistency
as follows. Let _-- be the least congruence relation generated by the following
theory of finite sets:

union(X, null) = X
union(null, X) - X

union(X1, union(X9.,)(3)) ------ union(union(X1, X2),)(3)
union(X1, X2) -- union(X2, X~)

union(X, X) = X

Then:

P r o p o s i t i o n l . Let P : IFAI • �9 .• ~ IFC be an instance of the m k g r a p h
scheme, and Yl, Y2 E]FC such that Yl =- Y2. Then, f o r all z l E IFA1 • . . . • IFAk
such that P(Zl ,ya) , there exists z2 E IFA1 x . . . x IFAk such that x,1 =- ~22 and

Proof. By induction on the derivation of Yi - Y2- We show two of the base cases.
The remaining cases are similar.

- If Yl = Y U {} and Y2 = Y then $1 = -~ O {}, for some)(, and P()(, Y). Let

- If yl = Y O Y~ and Y2 = Y~ O Y then 5:1 =)(U)(~, for some)(,)(~, and
P()(, Y) and P() (' , Y'). Let ~2 =)~' O X.

For the induction step of monotonic extension, let ~ -= ~ and y~' = y~'. If
, , , U I - ~1 E IFA1 x x IFAk such that P(~I, ~ Y~) then ~1 = z~ U ~ ' , P (~ , ~) and

P (~ ' , ~ ') for some ~ and ~ ' . Then, by induction hypothesis, there exist 5,~ and
~ ' such that ~ = ~ , ~ ' = ~ ' , P (~ , ~) and P (~ , ~ ') . Let ~2 = ~ U ~ ' . []

309

Another method, available in a committed-choice language, is to represent
finite sets by streams. Union is then obtained by merge. Here is the definition of
the m k g r a p h scheme using this representation:

m k g r a p h f f [r [u] : l i s t (A 1) x . . . l i s t (A n) ~ l i s t (C)

m k g r a p h [[[r [u] = P where
P(~, []) ~-- $ = []
P(~, u.ys) ~- m~rge(~l, ~, ~), ~1 = L r P (~ , ~s)

This makes no essential change to the m k g r a p h scheme except for linearizing
the recursion. We can profitably use Shapiro 's metaphor [Sha83] and think of a
m k g r a p h predicate as an "object" and the finite set argument as a s t ream of
"messages" sent to the object.

3.1 T r a n s l a t i o n

Table 1 gives a description of PCF types, terms and the type rules for terms.
The type rules are expressed in terms of judgements of the form

x l : A 1 , . . . , x n : A , [> M : C

where X l , . . . , x n are the free variables of M. We use F , A , . . . to range over
sequences of variable typings Xl : A 1 , . . . , xn : An (called "type contexts"). All
the variables in a type context must be distinct. The first type rule (called
Exchange rule) allows the typings in a type context to be freely rearranged. So,
the order of typings is essentially insignificant. The type rules of Table 1 look
different from the usual formulations, but they are equivalent to them. They are
designed to give the cleanest possible translation.

The translation of PCF programs to logic programs is as follows. The types
are translated by the mapping ()0:

i n t o = i n t

(A --~ B) ~ =]FA* x B ~

The translation represents the intuitions explained earlier in this section.
A term with a typing of the form xl : A1,. �9 x , : An I> M : C is t ranslated

to a relation R of type IFA~ x . . . x IFA~ ~ C ~ We denote such relations using
the notat ion { I r [u where t is a tuple of terms of type IFA~ x . . . • IFA~ u a

t e rm of type C o and r a formula. This is meant to denote a relation R defined
by

R(zl,..., Zn, U) ~ Zl = t X , . . . , Zn = tn , r

The translation will be defined by induction on type derivations. For each
type rule, we give a translation rule in terms of relation triples. Using these
one can construct a derivation tree of relations, each relation corresponding to a
PCF term in the type derivation. Each use of the m k g r a p h primit ive generates
a recursive predicate definition. The collection of such predicate definitions forms

Table 1. Definition of PCF

310

Types : A, B, C
A ::= int [A t ---, A2

Variables : x, y, z
Number s : n ::= 0] 1 [. . .
Terms : M, N, V

M : : = x l n [M + N I M - N I i f M N t N 2 [Ax. M I M N I r e c M
T y p e r u l e s :
F , x : A , y : B , F ' t> M : C

F , y : B , x : A , F ~ I> M : C

x : A t > x : A

F I > M : i n t A l > N : i n t

t> n : int F, A l> M + N : int

F , z : A I> M : B F I> M : A--* B

F I> Ax. M : A --* B F, z : A I> M x : B

F, yt : A, v2 : A t> M : C F t> M : C

F , x : A I> M [x / y t , x / y 2] : C F , x : A I> M : C

F t - M : A A , x : A b N : C

F, A t- N [M / z] : C

F t> N t : A F t> Nu : A

F , z : int l> i fz Nt N2 :A

x : A - - - ~ A t>rec x : A

a logic program and the relation triple corresponding to the overall term becomes
the query.

The translations for the first three rules (called the structural rules of Ex-
change, Contraction and Weakening) are straightforward:

F , x : A , y : B , F ~ I> M : C

F , y : B , x : A , F ~ t> M : C

/ ' , Y l : A , y 2 : A I > M : C

F, x : A t> M [X / y l , x / y 2] : C

F I > M : C

F , z : A t > M : C

The next two rules (called

{,ul, u2,~' Ir Iv
s]r
~,ul,u2 Ir Iv

~,ul uu2 If Iv
~lr

~,{}lr
Identity and Cut) are translated as follows:

z : A t > x : A { z I [t r u e [z

F b M : A A , x : A ~ - N : C t l [r t 2 , u ' [r

F, L I F N [M / x] : C ~ l , t 2 [m k g r a p h [{ l l r 1 6 2 I v

The complexity of the Cut rule is due to the fact that the term u in the first
premise is of type A ~ whereas u I in the second premise is of type IFA ~ Therefore,
we must generate a graph of u's and match it to u ~.

311

The primitives are translated as follows:

t> n : int [true I n

F l> M : int Zl l> N : int Et lr E2lr
F, Zl t> M + N : int tl, t2 I r r add(ut, u2, z) I z

tx]r t2 I r Iv2
F I> NI : A F f> N2 : A

r ,x: int~ . i fxN~N2: .4 e,{x} (x 0,e h, r y =-,,2) Y

Notice that the translation of the conditional gives rise to a disjunction. In a
concurrent logic programming language, one must treat x = 0 and x ~ 0 as
guards of the two branches.

Finally, the higher-order terms are translated by:

F , x : A t > M : B

F I > A x . M : A - - . B

F t > M : A - - - * B

F , z : A E> M x : B

~ ,u lr
[I r I (u, ')

~ l r
E, X l r lz

x : A --~ A L> r e c x : A F [recurse(F, z)] z

Notice that abstraction is pair formation and application is pair decomposition.
The recurse predicate used in the last rule is defined as follows:

recurse : IF(IFA • A) ~-* A
recurse(F, x) *- F = {(X, x)) U F', m k g r a p h [F i recurse(F, x)] x](F', X)

As an example of the translation, consider the succ function:

x : i n t I > x : i n t l > l : i n t { x } [t r u e l x I t r u e l l

x : int t> x + 1: int (x} I add(x, 1 ,y) I Y

I> A x . x + 1: int I add(x, 1, y) [({x) ,y)

The translation triple of this term denotes a relation succ : IFint ~-* int defined
by:

succ(({x}, y)) ~-- add(x, 1, y)

This differs from the translation given at the beginning of Sec. 3 in that there
we did not model the input of succ as of type IFint. The translation given here
treats all types uniformly. But, int being a pure data type with no higher-order
values, the use of IF can be dropped. This and other optimizations are discussed
in Sec. 3.3 below.

We show the correctness of the translation as follows:

312

L e m m a 2 (t y p e soundness) . The translation of a P C F term x l : A 1 , . . . , xn :
An I> M : C is a relation of type lFA~ • . . . •]FA~ ,-, C ~

T h e o r e m 3 . The following equivalences of lambda terms are preserved by the
translation:

(Ax. M) g -- M [N / x]
Ax. M x =_ M

rec M _-- M (rec M)

Proof. For (Az. M) N we have a translation of the following form:

F t > N : A

Zi, x : A r> M : B

A I > A x . M : A - - + B

A , y : A I> (A x . M) y : B

F, Zl !> (Az. M) N : B

t ' l r

 ,ulr
t l r I (u,v)

g,x I r = (X , z) l z

~' , i l mkgraph[t ' lr s X), r (u, v) = (X, z) I z

By unifying (u, v) with (X, z) and substituting for X and z, we o b t a i n the
translation of M [N / x] :

F } - N : A A , z : A b M : C P l r t , u [r

F, A F- M [N / x] : C ~', i l mkgraph[f ' lr u), r I v

The preservation of the eta equivalence follows similarly from the properties
of unification and the recursion equivalence follows from the definition of the
recurse predicate. [:3

3.2 D a t a s t r u c t u r e s

The translation can be readily extended to deal with data structures. Product
and sum types of a functional language are translated as follows:

unit ~ = fl

(A x B) ~ = fst(A ~ + snd(B ~
(c(A) + d (B)) ~ = c(IFA ~ + d(IFB ~

(1)

In the case of product types, f s t and snd are assumed to be constructor
symbols not used elsewhere. Notice that the translation of product types exhibits
the same kind of reduction in the cardinality as encountered with function types
previously. Think of a pair-typed value as a process that responds to f s t and snd
messages.

313

The translations of terms can be easily derived using the translation of types
as a heuristic. For binary products:

t l l t X l u l t2 I r]u2
F I > M : A F I > N : B

r ~ , (M , N) : A • ~ - y

x : A x B !> fst x : A {fst(z)) I true] z

The relation for the pair has two clauses. One of them will get exercised when a
component is selected. Similarly, the translation of terms of sum types is:

F I> M :A t l r

F i> c (M) : e(A) + d (B) ~1 r I c(u)

F, x t : A I > M : C F, z 2 : B t > N : C

F, z : e(A) + d(B) t> casexofc (x l) =r M I d(x2) =~ N : C

~1,tl I r l ul ~ , t~ 1r l u~ {(x=c(tl),~=~l,z=~l)v I
~, {x} (x d(t~) ,~ = ~ , z = us) z

Many data structures occurring in practice take the form of sum-of-products.
For example, lists are given by a type definition of the form:

t y p e list = nil(unit) + cons(int • list)

In translating such a type to the logic programming context, we can make use
of the isomorphisms:

IF(A + B) ~ IFA x IFB IFO ~ unit

So, the translation of the list type can be given as:

list ~ = nil(unit) + cons(IF int • IF list ~

3.3 O p t i m i z a t i o n s

The type IFint denotes finite sets of integers. Since functional programs give
determinate results, such a set contains at most one integer. The empty set, {},
appears when a program ignores its integer input. A singleton set appears when
the program uses the input. The use of finite sets for data values thus provides
"lazy" data. Similarly, the above type lisff makes available lazy lists within a
concurrent logic program.

If we are not interested in lazy data structures, we can eliminate all uses of
IF in data structures. To model this, we use the following translation:

int* = int
unit* = unit

(A x B)* = A* • B* (2)
(c(A) -t- d(B))* = c(A*) + d(B*)

For example,

314

list* = nil(unit) + cons(int • list*)

The function type A ---, B is then translated to A* • B ~ instead of]FA ~ • B ~
We will see applications of this translation in the next section.

Another opportuni ty for optimization occurs when the argument of a function
is used linearly, i.e., if the function uses its argument precisely once. In this case,
we can simplify the translation of functions to

(A- -*B) ~ = A ~ ~ (3)

This optimization is already illustrated in the examples at the beginning of
Sec. 3.

3 . 4 L i n e a r l o g i c

The reader familiar with linear logic would notice that our translation closely
parallels Girard's embedding of intuitionistic logic in linear logic [Gir87]. Indeed,
our debt to linear logic is considerable. Logic programming (more precisely,
the category of sets and relations) forms a model of linear logic: & and @ are
interpreted as disjoint union, | and --o are interpreted as product, and ! is
interpreted as finite sets. The translation given above is essentially a restatement
of Girard's translation in this new light.

4 E x a m p l e a p p l i c a t i o n s

The results of See. 3 establish a close correspondence between the higher-order
programming techniques of functionM programming and those of logic program-
ming. Two features of logic programming play a role in this correspondence:

- logic variables, and
- concurrency.

The higher-order programming techniques are available only to a limited extent
in sequential logic programming due to the crucial role of concurrency in this cor-
respondence. However, they are still available and logic programmers frequently
make use of them. In this section, we draw a correspondence between some of
the common programming techniques used in functional and logic programming
paradigms in the light of our translation. We hope that this will lead to a
reexamination of the logic programming techniques in the light of "higher-order
programming" and pave the way for further exchange of ideas and techniques
between the two paradigms.

Difference lists form a familiar logic programming technique which allow for
constant time concatenation [CT77]. A very similar technique was developed
in functional programming using function values [Hug86]. Our correspondence
identifies the two techniques, i.e., if we translate the functional programming
representation of difference lists using the translation of Sec. 3, we obtain the
logic programming representation.

315

T h e funct ional p r o g r a m m i n g technique is shown in Tab le 2. A difference
list is represented as a funct ion f r o m lists to lists. T h e represen ta t ion of an
o rd inary list [Z l , . . . , xn] is the funct ion Al. z l .x~ xn.l. (See the funct ion r e p .)

Conca tena t ion is then jus t funct ion composi t ion , which works in cons tan t t ime.

T a b l e 2. Difference lists in functional programming

t y p e diff llst = list --* list
r ep : l i s t --* d i f f _ l i s t
rep [] = ,,~1. l
rep x.xs =)d. x.((rep xs) l)
c o n c a t : d i f f _ l i s t ~ d i f f - l i s t ~ d i f f_ l i s t
concat x y = M. x (y 1)

T h e logic p r o g r a m m i n g technique is shown in Table 3. Here, a difference list
is a pair of lists, bu t one of the lists is typical ly a logic var iable which is shared in
the other list. T h e representa t ion of a list [Zl, �9 �9 zn] is a pa i r (x l . z2 zn.1, l)
where ! is a variable.

T a b l e 3. Difference lists in logic programming

t y p e diff_list = list • list
r ep : l i s t ,--* d i f f_ l i s t

rep([], (1',1)) ~-- 1 = 1'
rep(x.xs, (1',1)) *-- rep(xs, (m, 1)), 1' = x.m
c o n c a t : d i f f_ l i s t • d i f f_ l i s t ~ d i f f_ l i s t
concat(x, y, (1', 1)) ~ y = (m, 1), x = (1', m)

To see the correspondence between the two versions, not ice t h a t the func-
t ional difference list uses its list a rgumen t linearly. Thus , as no ted in Sec. 3.3,
l i s t --* l i s t can be t rans la ted to l i s t • l i s t in the logic p r o g r a m m i n g context . (The
second componen t corresponds to the input list and the first c o m p o n e n t to the
ou t pu t list.) A close examina t ion of the two p r o g r a m s is qui te s tr iking. T h e y
correspond ope ra to r by opera to r according to the t r ans la t ion (3).

A difference s t ructure , in general, involves some da t a or c o m p u t a t i o n a l s t ruc-
ture wi th a place holder inside the s t ruc ture cap tu red by a logic variable. T h a t
is essential ly wha t a funct ion is. I t is a c o m p u t a t i o n with a place holder for the
a rgument . Thus , the example we found here is an ins tance of a general concept .

Difference lists of Table 3 can only be used linearly. Our technique also allows
us to build difference lists t h a t can be used mul t ip le t imes. For example ,

316

mkrep : list ~ IF diff_list
mkrep(l, [])
mkrep(1, d.D) ~ rep(1, d), mkrep(l, D)

allows a copy of a difference list to be produced on demand. To check if a
difference list is empty, we can then use a goal of the form:

D = d.D', d = (1, []), 1 = []

This kind of a goal has the problem that it makes an entire copy of a difference
list to check if it is empty. We can optimize it by using lazy lists instead of
standard lists. (Cf. Sec. 3.3).

Another important application for function values is in abstract syntax.
Consider a language that has variable-binding operators, e.g., lambda calculus or
predicate calculus. In writing a processor for such a language (evaluator, theorem
prover etc.), there arise delicate issues of variable renaming, substitution etc.
Pfenning and Elliott [PE88] proposed that such issues can be treated in modular
fashion by using higher-order abstract syntax, i.e., syntactic representations that
involve function values. To see how this works, consider the first-order and
higher-order representations for lambda terms:

term = vat(symbol) + lam(symbol x term) + ap(term x term)
hoterm = lam(hoterm --* hoterm) + ap(hoterm • hoterm)

The higher-order representation (hoterm) is symbol-free. The variable binding
operator, lain, takes a function mapping terms (the arguments) to terms (the
result of embedding the argument in the body of the abstraction). For example,
the Church numeral 2 =)~s.)~x. s(sx) , has the following representations:

first-order: lam("s", lam("x", ap(var("s"), ap(var("s"), var("x")))))
higher-order: lam(At, lam(Au, ap(t, ap(t, u))))

Table 4 shows a parser that converts a first-order representation to the higher-
order one and a normalizer that operates on higher-order representations. Notice
that substitution is handled cleanly in the definition of apply lain(f) n. The
result of substituting n for the formal parameter is simply f n . In effect, all
substitution is performed at parse-time with the result that processing of the
language is considerably simplified.

Precisely the same effect can be achieved in logic programming. One can
replace all the occurrences of symbols by logic variables so that substitution is
achieved by simply binding the logic variables. This technique has been used, for
instance, in the polymorphic type inference algorithm of Typed Prolog [LR91,
Lakgl]. We would like to argue that this is not merely achieving the same effect as
higher-order abstract syntax, but it is in fact the same technique. It is an instance
of our translation. However, the standard technique used in logic programming
is not as general as the higher-order technique. In particular, it does not work
if the terms substituted for variables have bound variables. In that case, one
has to rename bound variables with fresh logical variables and the cleanliness of

317

T a b l e 4 . Higher-order abstract syntax in functional programming

t y p e term = vax(symbol) + lain(symbol x term) + ap(term x term)
t y p e hoterm = lam(hoterm ---, hoterm) + ap(hoterm x hoterm) + fvar(hoterm)
t y p e s u b s t = symbol --* hoterm
lookup : symbol --* subst -* hoterm

l o o k u p s e = e s
update : symbol ~ hoterm ~ subst ~ subst

update s x e = As'. if s ' = s then x else e s '

parse : term ~ subst ~ hoterm
parse vax(s) e = lookup s e
parse lain(s, m) e = lam(Ax, parse m (update s x e))
parse a p (m , n) e = a p (pa ~s e m e, parse n e)

norm : hoterm ~ hoterm
reduce : hoterm ~ hoterm

norm m = reduce (wkreduce m)
reduce lain(f) = lam(Ax, norm (f fvar(x)))
reduce m = m for other cases of m

wkreduce : hoterm ~ hoterm
apply : hoterm x hoterm ~ hoterm
wkreduce lain(f) = lam(f)
wkreduce ap(m, n) = apply (wkreduce m) n
wkreduce fvar(t) = fvar(t)
apply lain(f) n = wkreduce (f n)
apply m n = ap(m, n) for other cases of m

the technique is compromised . On the o the r hand , our t r a n s l a t i o n hand les the
genera l case as well. T h e na ive logic p r o g r a m m i n g techn ique is t he spec ia l case
where inpu t s of func t ions are a s sumed to be d a t a ob jec t s wi th no e m b e d d e d

funct ions .

In Table 5, we show the naive logic p r o g r a m m i n g technique for a no rma l i z e r
of l a m b d a te rms . Not ice t h a t l a m b d a a b s t r a c t i o n s are represen ted by t e r m s
of t y p e l a m (h o t e r m • h o t e r m) . W h e n an a b s t r a c t i o n As. m , is conver t ed to
th is r epresen ta t ion , a fresh logical va r i ab le x is c rea ted and all occur rences
of the s y m b o l s are rep laced wi th x. See the clause for parse (l a in (s , m) , e, t) .

T h e resu l t ing r ep resen ta t ion is la in(x , m~) . To reduce an a p p l i c a t i o n of such an
a b s t r a c t i o n t e rm, in the clause a p p l y (l a i n (f) , n, t) , we b ind x to the a r g u m e n t

t e r m n and reduce m n .

T h e p o i n t is t h a t t he logic p r o g r a m m i n g r ep re sen t a t i on l a m (h o t e r m • h o t e r m)

is a na ive encoding of the func t iona l r epresen ta t ion . I t works in the fo l lowing

cases:

- every m= conta ins precisely one occurrence of x, i .e., l a m b d a t e r m s are l inear ,

or

3]8

Table 5. A naive logic program for higher-order abstract syntax

type term = var(symbol) q- lain(symbol • term) q- ap(term • term)
type hoterm = lam(hoterm • hoterm) + ap(hoterm x hoterm) -b fvar(symbol)

parse : t e rm • subs t ~ ho te rm
parse(var(s), e, t) ~- lookup(s, e, t)
parse(lain(s, m), e, t) *-- update(s, x, e, e'), parse(m, e', t'), t = lam((x, t'))
parse(ap(m, n), e, t) *-- parse(m, e, tl), parse(n, e, t2), t = ap(tl, t2)

n o r m : ho te rm ~ ho te rm
reduce : ho t e rm ~ ho te rm

norm(m, t) ~-- wkreduce(m, t'), reduce(t', t)
reduce(lain(f), t) , - f = (fvas(x), m), norm(m, t'), t = lam((x, t'))
reduce(m, t) 4-- t = m f o r o ther cases o f m

wkreduce : h o t e r m ~ ho te rm
apply : h o t e r m • h o t e r m ~ h o t e r m
wkreduce(lam(f), t) *-- t = lam(f)
wkreduce(ap(m, n), t) ,--- wkreduce(m, t'), apply(t', n, t)
wkreduce(fvar(x), t) *-- t = fvar(x)
apply(lam(f), n, t) 4-- f = (n, m), w~educe(m, t)
apply(m, n, t) #-- t ----- ap(m, n) f o r o ther cases o f m

- the argument term has no bound variables, i .e . , argument terms are pure
data.

These two cases correspond to the translation schemes (3) and (2). To handle
the general case, we must use the general translation scheme (1). The result is
shown in Table 6. We have used the optimization of treating t e r m and s y m b o l

as pure data. Moreover, the arguments of n o r m , reduce and w k r e d u c e and the
first argument of app ly are treated as linear inputs. These optimizations give
considerable simplifications, but the reader might still find the resulting program
hard to comprehend. One would want to devise usable syntactic mechanisms to
cut down this complexity. (The focus of this paper being the expressive power
of pure logic programming, we have refrained from doing so.)

In this program, m k p a r s e is used to generate multiple h o t e r m ' s for any given
first-order t e r m . Each h o t e r m receives a fresh set of logic variables to represent
its bound variables. (See p a r s e l a m .) No extra mechanism for variable renaming
is necessary.

Many other programming techniques of higher-order functional programming
can be similarly adapted to the logic programming context. See [BW88, Pau91,
Wad92]. The reader is invited to t ry some of these using the translation scheme
of Section 3.

319

T a b l e 6. A general logic program for hlgher-order abstract syntax

t ype term = va~(symbol) + lain(symbol x term) + ap(term x term)
t yp e hoterm = lam(iF(IF hoterm • hoterm)) + ap(iF hoterm x IF hoterm)

+ fvar(IF hoterm)
t yp e subst = symbol • hoterm
lookup : symbol x IF subs t *--. ho t e rm

lookup(s, E, t) *-- E = {(s, t)}
update : symbol x IF h o t e r m x IF s u b s t *-+ subs t

update(s , X, E, (s', x')) ,-- s' = s, X = {x'} , E = {}
update(s , X, E, (s', x')) *-- s' # s, X = {} , E = {(s', x ') }

p a r s e : t e r m x IF su bs t *-+ h o t e r m

par se la m : symbol x t e rm x IF s u b s t ~ h o t e r m

parse(vax(s), E, t) *-- lookup(s , E, t)
parse(lain(s, m), E, t) ~- mkparselam(s, m, E, F), t = lam(F)
parse(ap(m, n), E, t) *--- E = E1 U E2,

mkparse(m, El, T1), mkparse(n, E2, T2), t = ap(T1, T2)
parselam(s, m, E, f) ~-- mkupdate(s, X, E, E'), paxse(m, E', t'), f = (X, t')

n o r m : h o t e r m ~ h o t e r m

reduce : h o t e r m *-+ h o t e r m

norm(m, t) *- wkreduce(m, t'), reduce(t', t)
reduce(lam(F), t) ~ mkfvar(X, TX), F = {(TX, m)}, norm(m, t'), t = lam((X, t'))
reduce(m, t) *-- t = m f o r o ther cases o f m

wkreduce : h o t e rm +-+ h o t e r m

apply : h o t e rm x IF h o t e r m ~ ho t e rm

wkreduce(lam(F), t) *-- t = lam(f)
wkreduce(ap(M, N), t) *--- M = {m}, wkreduce(m, t'), apply(C, N, t)
wkreduce(fvar(X), t) ~ t = fvar(X)
apply(lam(F), N, t) ~ F = {(N, m)}, wkreduce(m, t)
apply(m, N, t) ~-- t = ap({m}, N) f o r o ther cases o f m

[mkfvar, mkupdate , mkparse , and mkparse lam are ins tances o] mkgraph.]

5 C o n c l u s i o n

We have demonstrated the expressive power of logic programming by modelling
higher-order programming features in pure logic programs. Further, these pro-
gramming techniques, in a limited context, correspond to well-known techniques
of logic programs.

However, the significant abstraction facilities made possible by higher-order
techniques are not available in sequential logic programming. Thus, we believe
that sequential logic programming is a poor approximation to logic programming
and that efforts must be made to incorporate concurrency and fairness. Concur-
rent logic programming languages as well as coroutining facilities [Nai86] are
an impor tant step in this direction. These systems need to be extended to deal
with backtracking nondeterminism. Formal semantics and type systems must be

320

developed to place them on a firm foundation.
The correspondences drawn in this work are only a first step in exploiting the

richness of the logic programming paradigm. These techniques must be further
explored and applied to practical contexts.

References

[Abr91]

[Abr93]

[Bar91]

[BWS8]

[CKW89]

[CT77]

[DOPR91]

[Gir87]
[Gre87]

[Gun92]

[Hug86]

[Laf87]

[Lak91]

[LM84]

[LR91]

[Mil90]

[MN86]

S. Abramsky. Computational interpretation of linear logic. Tutorial Notes,
International Logic Prograzoming Symposium, San Diego, 1991, 1991.
S. Abramsky. Computational interpretations of linear logic. Theoretical
Comp. Science, 111(1-2):3-57, 1993.
M. Barr. *-Autonomous categories and linear logic. Math. Structures in
Comp. Science, 1:159-178, 1991.
R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-
Hall International, London, 1988.
W. Chen, M. Kifer, and D.S. Warren. HiLog: A first-order semantics
for higher-order logic programming constructs. In L. Lusk, E and R. A.
Overbeek, editors, Logic Programming: Proc. of the North American Conf.
1989, pages 1090-1144. MIT Press, 1989.
K. L. Clark and S. A. Tarnlund. A first-order theory of data and programs.
In Information Processing, pages 939-944. North-Holland, 1977.
A. Dovier, E .G. Omodeo, E. Pontelli, and G. F. Rossi. {log}: A logic

programming laagugae with finite sets. In K. Furukawa, editor, Logic
Programming: Proceedings of the Eigth International Conference. MIT
Press, 1991.
J.-Y. Girard. Linear logic. Theoretical Comp. Science, 50:1-102, 1987.
S. Gregory. Parallel Logic Programming in PARLOG: The Language and
its Implementation. Addison-Wesley, Reading, Mass., 1987.
C.A. Gunter. Semantics of Programming Languages: Structures and
Techniques. MIT Press, 1992.
R. J. M. Hughes. A novel representation of lists and its application to the
function "reverse". Information Processing Letters, 22:141-144, Mar 1986.
Y. Lafont. Linear logic programming. In P. Dybjer, editor, Pore. Workshop
on Programming Logic, pages 209-220. Univ. of Goteborg and Chalmers
Univ. Technology, Goteborg, Sweden, Oct 1987.
T. K. Lakshman. Typed prolog: Type checking/type reconstruction system
(version 1.0). Software avMlable by anonymous FTP from cs.uiuc.edu, 1991.
J.-L. Lassez and M. J. Maher. Closures and fairness in the semantics of
programming logic. Theoretical Computer Science, pages 167-184, May
1984.
T.K. Lakshman and U.S. Reddy. Typed Prolog: A Semantic Recon-
struction of the Mycroft-O'Keefe Type System. In V. Saraswat and
K. Ueda, editors, Logic Programming: Proceedings of the 1991 International
Symposium, pages 202 - 217. MIT Press, Cambridge, Mass., 1991.
R. Milner. Functions as processes. In Proceedings of ICALP 90, volume 443
of Leer. Notes in Comp. Science, pages 167-180. Springer-Verlag, 1990.
D. A. Miller and G. Nadathur. Higher-order logic programming. In Intern.
Conf. on Logic Programming, 1986.

321

[Nai86]

[Pan91]

[PE88]

[Plo77]

[Red93a]

[Red93b]

[Sat92]

[Sco69]

[Sha83]

[Sha87]

[ST86]

[Ued86]

[Wad92]

[WarS2]

Lee Naish. Negation and control in Prolog, volume 238 of Lect. Notes in
Comp. Science. Springer-Verlag, New York, 1986.
L. C. Paulson. ML for the Working Programmer. Cambridge Univ. Press,
Cambridge, 1991.
F. Pfenning and C. Elliott. Higher-order abstract syntax. In A CM
SIGPLAN '88 Conf. Program. Lang. Design and lmpl., pages 22-24. ACM,
1988.
G. D. Plotkin. LCF considered as a programming language. Theoretical
Comp. Science, 5:223-255, 1977.
U.S. Reddy. Higher-order functions and state-manipulation in logic
programming. In R. Dyckhoff, editor, Fourth Workshop on Extensions of
Logic Programming, pages 115-126, St. Andrews, Scotland, Mar 1993. St.
Andrews University.
U. S. Reddy, A typed foundation for directional logic programming. In
E. Lamma and P. Mello, editors, Extensions of Logic Programming, volume
660 of Lect. Notes in Artificial Intelligence, pages 282-318. Springer-Verlag,
1993.
Vijay Saxaswat. The category of constraint systems is Cartesian-closed.
In Proceedings, Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 341-345, Santa Cruz, California, 22-25 June 1992. IEEE
Computer Society Press.
D. S. Scott. A type theoretical alternative to CUCH, ISWIM and OWHY.
Unpublished manuscript, Oxford University, 1969.
E. Y. Shapiro. A subset of Concurrent Prolog and its interpreter. Technical
Report TR-003, ICOT- Institute of New Generation Computer Technology,
January 1983. (Reprinted in [Sha87].).
E. Shapiro. Concurrent Prolog: Collected Papers. MIT Press, 1987. (Two
volumes).
E. Shapiro and A. Takeuchi. Object-oriented programming in Concur-
rent Prolog. New Generation Computing, 4(2):25-49, 1986. (reprinted
in [Sha87].).
K. Ueda. Guarded Horn clauses. In E. Wada, editor, Logic Programming,
pages 168-179. Springer-Verlag, 1986. (reprinted in [Sha87].).
P. Wadler. The essence of functional programming. In A CM Syrup. on
Princ. of Program. Lang., 1992.
D. H. D. Warren. Higher-order extensions to Prolog: Are they needed?
In D. Michie, editor, Machine Intelligence, 10, pages 441-454. Edinburgh
University Press, 1982.

