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A b s t r a c t .  This paper is the continuation of [1] in this volume. There 
we present a sceptical semantics which avoids contradiction for extended 
logic programs plus integrity contraints in the form of denials, based on 
the notion of optative hypotheses -an abductive approach. In this part 
we define a program revision method for removing contradiction from 
contradictory programs under WFSX, based on the notion of revisable 
hypotheses -a belief revision approach- and show the equivalence be- 
tween the contradiction avoidance semantics and the WFSX of revised 
programs obtained by contradiction removal. 
The motivation, as well as some preliminary definitions can be found 
in [1]. Proofs of all theorems are omitted for brevity, but exist in an 
extended version of this work. 

1 Introduction 

I t  was argued in the in t roduct ion  of [1] tha t ,  to deal with the issue of contra-  
dict ion brought  abou t  by closed world assumptions,  r a the r  than defining more  
sceptical  semantics  one can rely instead on a less sceptical semantics  and accom- 
pany  it with an assumpt ion  revision process t ha t  restores consistency. 

In this pa r t  we define such a revision process for p rograms  cont rad ic tory  
with respect  to W F S X ,  t ha t  relies on taking back assumpt ions  about  the t ru th  
of  negative literals. The  set of  negative literals over which a revision can be 
made,  i.e. the assumpt ion  of their t ruthfulness  can be removed,  is called the set 
of revisable literals, and  can be any subset  of not 7-l. 

In  [6] a revision semantics  was defined where only base closed world assump- 
t ions are revisable, i.e. those default  literals whose complement  has no rules. 
In [8] the not ion of base closed world assumpt ion  was improved,  in order  to 
deal with the  case of direct  loops, i.e. wi thout  interposing nots  2. The notion of 
revisables there  presented is similar to the not ion of pr ime optat ives  in [1]. 

We show in section 5 tha t  the issue of  which are the  revisables (in contradic-  
t ion removal)  is t a n t a m o u n t  to t ha t  of which are the opta t ives  (in contradict ion 

* We thank JNICT and Esprit BR project Compulog 2 (no 6810) for their support. 
2 E.g. if not a is considered a base closed world assumption because a program has no 

rules for a, then there is no reason for not a not being so considered if the only rule 
for a is a ~ a. 
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avoidance). Thus the discussion on primacy of optatives in [1] is applicable to 
the issue of what literals are to be revisables. So no restriction is made here 
on which default literals are considered revisables, and they are supposed to be 
provided along with the program 3. 

For instance, in the wobbly wheel example of part I, the revisable literals 
might be: 

{not  f d ,  not  lv, not  pt, not  bs}. 

By not introducing not  f t  in this set, we are declaring that,  in order to remove 
contradiction, we will not consider directly revising its truth. However, this does 
not mean that  by revision of some other literal the t ruth value of not  f t  will not 
change. 

We take back revisable assumptions, i.e. assumptions on the truthfulness of 
revisable literals, in a minimal way and in all alternative ways of removing con- 
tradiction. Moreover, we identify a single unique revision that  defines a sceptical 
revision process which includes all alternative contradiction removing revisions, 
so as not to prefer one over the other. 

The structure of this part is as follows: first we present W F S X  and a para- 
consistent extension of it. Then we identify the intended revisions declaratively. 
Afterwards we define some useful constructible sets for establishing the causes 
of and the removal of contradiction within W F S X ,  and prove that  the result 
of their use concurs with the intended revisions defined. Finally we show the 
equivalence between the contradiction avoidance semantics and the W F S X  of 
revised programs obtained by contradiction removal. 

2 P a r a c o n s i s t e n t  W F S X  

In this section we present both the W F S X  and its paraconsistent extension. The 
presentation is focused in the paraconsistent extension, and the special case of 
W F S X  is pointed out. 

In order to revise possible contradictions we need first to identify those con- 
tradictory sets implied by a program under a paraconsistent W F S X .  The main 
idea here is to compute all consequences of the program, even those leading to 
contradiction, as well as those arising from contradiction. The following example 
provides an intuitive preview of what we intend to capture: 

Example  1. Consider program P : 

a ~ not  b (i) d ~ not  a (iii) 
- a  ~ not  c (ii) e ~ n o t - . a ( i v )  

3 The declaration of revisable literals by the user is akin to that of abducible literals. 
Although some frameworks identify what are the abducibles for some particular 
problems (cf. [4] where they are of the form a*), theories of abduction, for the sake 
of generality, make no restriction on which literals are abducible, and assume them 
to be provided by the user. 
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1. not b and not c hold since there are no rules for either b or c 
2. -~a and a hold from 1 and rules (i) and (ii) 
3. not a and not -~a hold from 2 and the coherence principle 4 relating the two 

negations 
4. d and e hold from 3 and rules (iii) and (iv) 
5. not d and not e hold from 2 and rules (iii) and (iv), as they are the only 

rules for d and e 
6. not -~d and not -~e hold from 4 and the coherence principle. 

The whole set of literal consequences is then: 

{not b, not c, -~a, a, not a, not ~a, d, e, not d, not e, not -~d, not -~e}. 

For the purpose of defining W F S X  and its paraconsistent  extension, we begin 
by defining what  is an interpretation.  

D e f i n i t i o n  1. A p-interpretation I is any set T U not F,  such tha t  if -,L E T 
then L E F.  

A p-interpretat ion is an interpretation iff T and F are disjoint. 

Let Q I  = Q T  o not Q F  be a set of literals. We define CohP(QI)  as the 
p-interpretat ion T U not F such tha t  T = Q T  and F = Q F  U {-,L I L e T}.  

The definition of W F S X  (in [5]) is based on a modulo transformation.  With- 
out loss of generality, and for the sake of technical simplicity, we consider that  
programs are always in their canonical form, i.e. for each rule of the program 
and any objective literal, if L is in the body then not -,L also belongs to the 
body  of tha t  rule s . 

D e f i n i t i o n  2. Let P be an canonical extended logic program, and I an interpre- 
tation. Then p (P  modulo I is the program obtained from P by performing the 
following three operations: remove from P all rules containing a default literal 
L = not A such tha t  A E I;  remove from all remaining rules of P their default 
literals L = not A such tha t  not A E I; replace all the remaining default literals 
by proposition u. 

In this definition one can apply the first two operat ions in any order, because 
the conditions of their  application are disjoint for any interpretation.  A potential  
conflict would rest on applying both  the first and the second operation, but tha t  
can never happen because if some A E I then not A qt I ,  and vice-versa. 

4 Recall, from part I, that it is stated as: if -,L holds, not L holds too, for every 
objective literal L. 

5 When the coherence principle is adopted, the truth value of L coincides with that 
of (L, not "~L). Taking programs in canonical form simplifies the techniques since we 
don't need to concern ourselves with objective literals in the bodies in the modulo 
transformation, but only with default literals, just as for non-extended programs. 
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This is not the case for p-interpretat ions pI ,  where for some objective literal 
A both  A and not  A might belong to pI .  Thus if one applies the t ransformat ion 
to p-interpretations,  different results are obtained depending on the order of the 
application of the first two operations. 

Example  2. Consider P of example 1, and let us compute:  

P 

{a, -~a, not  -~a, not  a, not  b, not  c}" 

If  one applies the operations in the order they are presented: Rules (iii) and 
(iv) of P are removed because both  a and -~a belong to the p-interpretat ion;  
not  b and not  c are removed from the bodies of rules since not  b and not  c 
belong to the p-interpretation. The resulting program is {a ~-- ; -~a ~---}. 

But if one applies the second operat ion first: not  b, not  c, not  a, and not  -~a 
are removed from the bodies of rules since not  b, not  c, not  a, and not  -~a belong 
to the p-interpretation; Since no literals remain in the body of rules no other 
operat ion is applicable. The resulting program in this case is {a ~-- d; -~a ~-- e}. 

In order to make the t ransformation independent of the order of application of 
the operations we define the corresponding t ransformation for the paraconsistent  
case as being nondeterministic in the order of application of those rules. 

D e f i n i t i o n  3. Let P be an canonical extended logic program and let I be a p- 
P interpretat ion.  By a TP program we mean any program obtained from P by first 

non-deterministically applying the operations until they are no longer applicable: 

- Remove all rules containing a default literal L = not  A such tha t  A E I .  
- Remove from rules their default literals L = not  A such tha t  not  A E I .  

and by next replacing all remaining default literals by proposition u. 

In order to get all consequences of the program, even those leading to con- 
tradictions, as well as those arising from contradictions, we consider the conse- 
quences of all possible such Pp  programs.  

D e f i n i t i o n  4. Let P be an canonical extended logic program,  I a p-interpre- 
tation, and let P I , . - .  Pn be all the possible results of Pp.  Then: 

qSPp(I) = U C ~  
l < i < n  

T h e o r e m  5. The ~Sp operator is monotone  under  set inclusion of  p- interpre-  
tations. 

Given tha t  ~ip is monotonic, then for every program it always has a least 
fixpoint, and this fixpoint can be obtained by i terating ~sv s tar t ing from the 
empty  set: 
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D e f i n i t i o n  6. The paraconsistent WFSX of a (canonical) extended logic pro- 
gram P, denoted by W F S X p ( P ) ,  is the least fixpoint of ~P applied to P. 

If some literal L belongs to the paraconsistent  W F S X  of P we write P Fp L. 

P r o p o s i t i o n  7. WFSXp is defined ]or every program with ICs. 

Now we can give a definition of a contradictory program with ICs: 

D e f i n i t i o n  8. A program P with language Lang where A is an atom, and a set 
of integrity constraints I V  is contradictory iff 

P U I C  U {3_ ~- A, -~A ] A E Lang} bp 3_ 

In this section we always refer to the paraconsistent  W F S X  as an extension 
of W F S X  for non-contradictory programs. This is so because: 

P r o p o s i t i o n  9. For a non-contradictory program P the paraconsistent WFSX 
coincides with WFSX. 

3 Dec lara t ive  R e v i s i o n s  

Before tackling the question of which assumptions to revise to abolish contra- 
diction, we begin by showing how to impose in a program a revision that  takes 
back some revisable assumption,  identifying rules of a special form, which have 
the effect of prohibiting the falsity of an objective literal in models of a program. 
Such rules can prevent an objective literal being false, hence their name: 

D e f i n i t i o n  10. The inhibition rule for a default literal not L is L ~-- not L. By 
I R ( S )  where S is a set of default literals, we mean: 

I R ( S )  = {L ~ not L I not L C S} 

These rules state tha t  if not L is true then L is also true, and so a contradic- 
tion arises. Intuitively this is quite similar to the effect of integrity rules of form 
3- ~-- not A. Technically, the difference is tha t  the removal of such a contradic- 
tion in the case of inhibition rules is dealt with by W F S X  itself, whereas in the 
case of the integrity rules it isn't.  

P r o p o s i t i o n  11. Let P be any program such that for some objective literal L, 
P ~/p ~L.  Then P U { L  ~-- not L}  (/p not L. Moreover, if there are no other rules 
for L, the truth value of L is undefined in WFSXp(P) .  

These rules allow, by adding them to a program, one to force default liter- 
als in the paraconsistent  W F S X  to become undefined. Note tha t  changing the 
t ru th  value of a revisable literal from true to undefined is less commit t ing than 
changing it to false 6. 

s In order to obtain revisions where the truth value of revisable literals is changed 
from true to false, one has to iterate the process we're about to define. The formal 
definition of such revisions can be found in [13]. 
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To declaratively define the intended program revisions void of contradiction 
we start by considering the resulting WFSXs of the programs obtained from all 
possible ways of adding to a program P inhibition rules for revisable literals 
(some may still be contradictory programs). 

Several different revisions might be equivalent, from the standpoint of their 
consequences. 

Example 3. Let P = {.1_ ~-- not a; a ~ b; b ~-- a; a ~-- c}, with revisables {not a, 
not b, not c}. 

Note that  adding a ~-- not a, b 4- not b, or both, has the same consequences, 
since undefining a leads to the undefinedness of b and vice-versa. Considering 
all three as distinct can be misleading because it appears that  the program has 
three different revisions. 

Revisables not a and not b are said to be indissociable, and it is indifferent to 
introduce inhibition rules for one, the other, or both. In the sequel, we coalesce 
the three revisions into a single standard one, that  adds both inhibition rules. 

Def in i t i on  12. Let P be an extended logic program with revisables Rev. The 
set Ind (S )  2 S of indissociable literals of a set of default literals S is a subset 
of Rev such that:  

- I nd (S )  C_ W F S X p ( P )  and W F S X p ( P  U I R ( S ) )  f3 Ind(S )  = {} 

i.e. Ind(S )  is the set of all revisables that change their truth value from true to 
undefined, once inhibition rules are added for every default literal of S to change 
their value. 

Example~. In example 3 Ind({not  a}) = Ind({not  b}) = {not a, not b} and 
Ind({not  c}) = {not a,,tot b, not c}. 

Def in i t ion  13. A submodel of a program P with integrity rules, and revisables 
Rev, is any pair (M, R) where R is a subset of Rev closed under indissociables, 
i.e VS C R, Ind (S )  C_ R, and M = W F S X p ( P U  {L ~ not L [ not L e R}) 7. 

In a submodel (M,R)  we dub R the submodel revision, and M are the 
consequences of the submodel revision. A submodel is contradictory iff M is 
contradictory (i.e. either contains _L or is not an interpretation). Note how there 
is a one-to-one correspondence between submodels and program revisions. 

The existence of W F S X p ( P )  for any program P (cf. proposition 7) grants 
that  M exists for every subset of Rev. Thus: 

P r o p o s i t i o n  14. The submodels (M, R) of any program P with revisables Rev 
forms a complete lattice under set inclusion on the submodel revisions. 

Example 5. Let P = {p ~ not q; -~p *-- not r; a ~-- not b}, with Rev = {nat q, 
not r, not b}. Its submodels lattice is depicted in fig. 1. For simplicity, contradic- 
tory models are not presented in full. 

7 For a study of submodels based on the XSMs instead of on the well-founded model 
s ee  [7]. 
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{} 

{ ~ ~ ,  not p, not r, a, not b} "~ ~" {p, not -~p, not q, a, not b} ~ 7 _L  '~ 

Fig. 1. Submodels lattice of example 5 

As we are interested in revising contradiction in a minimal way, we care about  
those submodels tha t  are non-contradictory and, among these, about  those tha t  
are minimal in the submodels lattice. 

D e f i n i t i o n  15. A submodel ( M , R )  is a minimal  non-contradictory submodel 
(MNS for short) of P iff it is non-contradictory and there exists no other non- 
contradictory submodel  (M I, R~}, such tha t  R ~ C R. 

Let P be a program with revisables Rev ,  and ( M , R )  some MNS of P. A 
minimal ly  revised program MRP of P is: P U I R ( R ) .  

By definition, each MNS of a program P reflects a revision of P, P U R e v R u l e  s, 
tha t  guarantees non-contradiction, and such that  for any set of rules R e v R u l e  ~ C 
R e v R u l e  closed under indissociables, P U R e v R u l e  t is contradictory. In other 
words, each MNS reflects a revision of the program tha t  restores consistency, 
and which adds a minimal set of inhibition rules for revisables. 

P r o p o s i t i o n  16. I f  P is non-contradictory its single M N S  is (WFSX(P) ,  {}), 
and P itself is its only minimal ly  revised program. 

Example  6. The MNSs of P in example 5 are the shadowed submodels of fig. 1, 
and the minimally revised programs are: 

M R P 1  = {p ~-- not  q; -,p ~-- not  r; a ~-- not b; q .-- not  q} and 
M R P 2  = {p ~-- not  q; -~p ~-- not  r; a ~-- not b; r ~ not r}. 

s Where RevRule  is the set of inhibition rules for the submodel revision. 
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Each of these two programs is a transformation of the original one that  min- 
imally removes contradiction by taking back the assumption of t ruth  of some 
revisables via their inhibition rules. In this example, one can remove the con- 
tradiction in p either by going back on the closed world assumption of falsity 
of q (or t ruth of not  q) or on the falsity of r. The program that  has the first 
effect is M R P 1 ,  the one with the second being M R P 2 .  Having no reason to ren- 
der q alone or r alone undefined, it is natural that  a sceptical revision should 
accomplish the effect of undefining them both. 

De f in i t i on  17. The sceptical submodel of a program P is the join (Ms, R j) of 
all MNSs of P. The sceptical revised program of P is P U I R ( R I ) .  

Example  7. The sceptical submodel of P of example 5 is depicted in bold in 
fig. 1. Note that  inhibiting b is irrelevant for revising P, and how taking the join 
of the MNSs captures what is required. 

It is important  to guarantee that  the sceptical revision indeed removes con- 
tradiction from a program. This is so because: 

P r o p o s i t i o n  18. Let (M1, R1) and (M2, R2) be any two non-contradictory sub- 
models. Then submodel (M, R1 U R2) is also non-contradictory.  

Example  8. Consider program P : 

p *-- not  a q ~-- not  r -~a ~-- not  b 
-~p *--- not  a r *-- not  s 

with Rev  = {not  q, not  a, not  b}. 
Its MNSs are: 

( {r, not  s ,p,  not  q} ,{not  a, not  b}) 
({r, not  s , - ,p , - ,a ,  not  a, not  b}, {not  q} ) 

Its sceptical submodel is ({r, not  s}, {no t  a, not  b, not  q}). 

It is clear that  with these intended revisions some programs have no revision. 
This happens when contradiction has a basis on non-revisable literals. 

Example  9. Let P = {a ~-- not  b; b ~-- not  c; -,a; c}, with R e v  = {no t  c}. 
The only submodels of P are: 

( W F S X v ( P ) , { } )  and ( W F S X p ( P U  {e ~ ,tot c } ) , { n o t  c}). 

As both these submodels are contradictory, P has no MNS and thus no re- 
visions. Note that  if not  b were revisable, the program would have a revision 
P U {b +- not  b}. If not  b were absent from the first rule, P would have no revi- 
sion no matter  what the revisables. 

De f in i t i on  19. A contradictory program P with revisables R e v  is unrevisable 
iff it has no non-contradictory submodel. 
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4 C o n t r a d i c t i o n  S u p p o r t  a n d  R e m o v a l  

Submodels characterize which are the possible revisions and the minimali ty cri- 
terium. Of course, a procedure for finding the minimal and the more sceptical 
submodels can hardly be based on their declarative definition: one has to gen- 
erate all the possible revisions to select those intended. In this section we define 
a revision procedure,  and show tha t  it concurs with the declaratively intended 
revisions. 

The procedure relies on the notions of contradiction supports  and of contra- 
diction removal sets. Informally, contradiction supports  are sets of revisable liter- 
als present in the WFSXp which are sufficient to suppor t  .l_, i.e. contradiction 9. 
From their t ru th  the t ru th  of .1_ inevitably follows. 

Contradiction removal sets are built from the contradiction supports.  They 
are minimal sets of literals chosen from the supports  such that  any support  of 
.l_ has at least one literal in tile removal set. Consequently, if all literals in some 
contradiction removal set were to become undefined in value then no support  of 
.1_ would subsist. Thus removal sets are the hitt ing sets of the supports.  

Example 10. Consider program P of example 5. I ts  only contradiction support  
is {not q, not r}, and its contradiction removal sets are {not q} and {not r}. 

Suppose we had q undefined as a result of introducing rules for q. In tha t  
case I would also be undefined, the program becoming non-contradictory. The 
same would happen if r alone became undefined. No other set, not containing 
one of these two alternatives, has this property. 

D e f i n i t i o n  20. Given a program P with revisables Rev, the supports of a literal 
L belonging to the WFSXp (any of which represented as SS(L)) are obtained 
as follows: 

1. If  L is an objective literal: 
(a) If  there is a fact for L then a support  of L is SS(L) = {}. 
(b) For each rule L ~ B 1 , . . . , B n  (n > 1) in P such tha t  { B 1 , . . . , B n }  C_ 

WFSXp(P), there is a support  SS(L) = Ui SSj(i)(Bi), for each combi- 
nation of one j(i) for each i. 

2. If  L = not A (where A is an objective literal): 
(a) If i E Rev then a support  of i is SS(L) = {L}. 
(b) If L ~ Rev and there are no rules for A then a support  of i is SS(L) = {}. 
(c) If L ~ Rev and there are rules for A, choose from each rule with a non- 

empty  body  for A, a literal such that  its default complement  belongs 
to WFSXp(P). For each such multiple choice there exist several SS(L); 
each contains one support  of each default complement  of the chosen 
literals. 

(d) If  -~A E WFSXp(P) there are, additionally, supports  SS(L) = SSk('~A) 
for each k. 

9 This notion is a special case of the notion of Suspect Sets introduced in declarative 
debugging in [12] 
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Example 11. Consider program P of example 8, whose paraconsistent well-foun- 
ded consequences are: 

WFSXp(P)  = {not s,r, not q,p, not "~p, not b,-~a, not a, ~p, not p}. 

The supports of p are computed as follows: from the only rule for p we 
conclude that  the supports of p are the supports of not q; since not q is a 
revisable then one of its supports is {not q}; as -~q r WFSXp(P),  there are no 
other supports of q. Thus the only support of p is {not q}. 

The supports of -~p are: from the only rule for -~p conclude that  the supports 
of -~p are the supports of not a; since not a is a revisable then one of its supports 
is {not a}; since -,a E WFSXp(P) supports of --,a are also supports of not a; 
from the only rule for -~a conclude that  the supports of -~a are the supports of 
not b; likewise not q above, the only support of not b is {not b}. Thus -~p has 
two supports, namely {not a} and {not b}. 

P r o p o s i t i o n  21. A literal L belongs to the WFSXp of a program P iff it has at 
least one support SS(L) .  

Def in i t ion  22. A contradiction support of a program P is a support  of I in the 
program obtained from P by adding to it integrity rules of the form 2. *-- L, -~L 
for every objective literal L in the language of P. 

N . B .  From now on, unless otherwise stated, when we refer to a program we 
mean the program obtained by adding to it all such rules. 

Example 12. The contradiction supports of P ill example 8 are the unions of 
pairs of supports of p and -~p. 

Thus, according to the supports of in example 11, P has two contradiction 
supports, namely {not q, not a} and {not q,,tot b}. 

Contradiction supports are sets of revisables true in the WFSXp involved in 
some support of contradiction (i.e. _1_) 1~ 

Having defined the sets of revisables that  together support some literal, it is 
easy to produce sets of revisables such that,  if all become undefined, the t ru th  of 
that  literal would necessarily become ungrounded. To cope with indissociability, 
these sets are closed under indissociable literals. 

Def in i t i on  23. A pre-removal set of a literal L belonging to the WFSXp of a 
program P is a set of literMs formed by the union of some nonempty subset fl'om 
each SS(L) .  

A removal set (RS) of L is the closure under indissociable literals of a pre- 
removal set of L. 

If the enlpty set is a SS(L)  then the only RS(L)  is, by definition, the empty 
set. Note that  a literal not belonging to WFSXp(P)  has no RSs defined for it. 

10 Note the close relationship between the SSs of .L and the sets of nogoods of Truth 
Maintenance Systems. 
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In view of considering minimal changes to the W F  Model, we next define 
those RSs which are minimal in the sense that  there is no other RS contained 
in them. 

Def in i t i on  24 M i n i m a l  r e m o v a l  set .  In a program P,  RSm(L) is a minimal 
removal set iff there exists no RSi(L) in P such that  RSm(L) D RSi(L). We 
represent a minimal RS of L in P as MRSp(L) .  

A contradiction removal set of program P is a minimal removal set of the 
(reserved) literal J_, i.e. a CRS of P is a MRSp(J_). 

Example 13. Consider program P of example 3. The only support of .l_ is {not a}. 
Thus the only pre-removal set of _L is also {not a}. Since Ind({not a}) = {not b}, 
the only contradiction removal set is {not a, not b}. 

Example 14. The removal sets of _L in the program of example 8 are: 

RSa = {not q} 
RS3 = {not q, not b} 

RS2 = {not q, not a} 
RS4 = {not a, not b} 

Thus RS1 and RS4 are contradiction removal sets. Note that these correspond 
exactly to the revisions of minimal non-contradictory submodels of example 8. 

It is important  to guarantee that  contradiction removal sets do indeed remove 
contradiction. 

L e m m a 2 5 .  Let P be a contradictory program with contradiction removal set 
CRS. Then P U IR(CRS)  is non-contradictory. 

Now we state 11 that  this process concurs with the intended revisions above: 

Theorem 26 Correctness of CRSs. 

1. Let R be a nonempty CRS of a contradictory program P. Then (M, R) is a 
MNS of P, where M = W F S X ( P  U IR(R)). 

2. If  {} is a CRS of a program P then P is unrevisable. 
3. Let (M, R) be a MNS, with R ys {}, of a contradictory program P. Then R 

is a CRS of P. 
4. Let P be a contradictory program with CRSs R1, . . . ,  Rn. The sceptical re- 

vised program of P is 

f 
P U I L *- not L I not L E 

aa The proof of correctness can be found in [2]. 

U Ri I" 
l<_i<_n 
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Thus in order to compute  the minimal and sceptical submodels,  one s tar ts  
by comput ing all supports  of .l_. Although the definition of suppor t  requires 
one to know a priori the paraconsistent WFSXp, an al ternative definition exists 
such tha t  this is not required. This definition is based on a top-down derivation 
procedure. Comput ing  all supports  of .1_ is like comput ing all the derivations for 
.s in WFSXp. 

If {} is a suppor t  of _l_ then the program is unrevisable. Otherwise, after 
having all supports  of 1 ,  the rest follows by operations on these sets. For such 
operations one can rely on efficient methods  known from the li terature.  For 
example the method of [15] for finding minimal diagnosis can be applied for 
finding CRSs given the supports .  Finally, a minimal revised program is obtained 
by adding to P one inhibition rule for each element of a CRS, and the sceptical 
revision is obtained as the union of all such minimally revised programs.  

Example 15. Consider the hiking/swimming program of par t  I, and let Rev = 
{not rain, not cold_water}. 

The supports  of .l_ are {not rain} and {not rain, not cold_water}. Thus its 
removal sets are {not rain}, and {not rain, not cold_water}. The only CRS is 
{not rain}, so the only MRP of P,  and its sceptical revised program is P U 
IR(rain), whose WFSX is {not cold_water, swimming}. This result coincides 
with the WFSopt calculated in par t  I. 

Example 16. Recall program P of example 9, whose WFSXp is: 

{c, --a, not a, not b, a, not ~a}. 

Tile supports  of 2_ result from the union of supports  of a and suppor ts  of 
-~a. As the only rule for ~a  is a fact, its only support  is {}. Supports  of a are 
the supports  of not b, and supports  of not b are the supports  of c. Again, as the 
only rule for c is a fact, its only support  is {}. 

Thus the only support  of _1_ is {}, and so P is unrevisable. 

5 E q u i v a l e n c e  b e t w e e n  A v o i d a n c e  a n d  R e m o v a l  

In this section we discuss the equivalence between the approaches of contradic- 
tion avoidance described in par t  I [1] and contradiction removal described in this 
part.  

The need for semantics more sceptical than  WFSX can be seen as showing 
the inadequacy of the la t ter  for certain problems. The equivalence results show 
that  this is not the case since, by providing a revision process, WFSX can deal 
with the same problems as the more sceptical semantics WFSopt, and give the 
same results. 

The advantages of using WFSX plus the revision process reside mainly on its 
simplicity compared to avoidance, and on the existence of top-down procedures 
for it. Moreover, as pointed out in [5], the top-down procedures for WFSX can 
be obtained by simple modifications of procedures for W F S  [14, 16, 10, 3]. The 



280 

specialized revision process corresponding to "POS has been sucessfully applied 
to a wide variety of classical non-monotonic reasoning domains [9, 11, 13]. 

The revision procedure can be implemented as a preprocessor of programs 12, 
and the maintenance of non-contradiction might benefit from existing procedures 
for Truth Maintenance Systems. 

In order to prove the main equivalence theorems, we begin by presenting two 
important  lemmas. These lemmas state tha t  avoiding a hypothesis in contradic- 
tion avoidance is equivalent to adding an inhibition rule for that  hypothesis in 
contradiction removal. 

L e m m a  27. If P O H is a complete scenario wrt Opt of a program P with 
avoidance set S then pr U H is a complete scenario of P~ = P U IR(S) .  

L e m m a 2 8 .  If P ' U H  is a complete scenario of P'  = P U I R ( R ) ,  and R C Opt, 
then P U H is complete wrt Opt. 

Theorem29  Quasi-complete scenarios a n d  M N S s .  P U H  is a quasi-com- 
plete scenario wrt Opt of program P with avoidance set S iff 

(WFSX(P l.J IR(S) ) ,  S) 

is a MNS of P with revisables Opt. 

This theorem states that  assuming hypotheses maximally and avoiding the 
contradiction, corresponds to minimally introducing inhibition rules, and then 
computing the WFSX. 

T h e o r e m  30 Scep t i ca l  r ev i s ion  a n d  WFSopt .  P U H is the WFSop t  of a 
program P with avoidance set S iff (WFSX(P  U IR(S) ) ,  S) is the sceptical sub- 
model of P with revisables Opt. 

From this theorem it follows that  the role of optatives in contradiction avoid- 
ance is the same as the role of revisables in contradiction removal. Thus the 
discussion about  special criteria for automatically inferring optatives from a 
program, applies directly to the issue of finding special criteria for inferring re- 
visables from the program. 
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