
Contradic t ion: w h e n avoidance equals removal
Part II

Lufs Moniz Pereira and Jos~ Jdlio Alferes

CRIA, Uninova and DCS, U. Nova de Lisboa*
2825 Monte da Caparica, Portugal

{lmp I jja}@fct.unl.pt

A b s t r a c t . This paper is the continuation of [1] in this volume. There
we present a sceptical semantics which avoids contradiction for extended
logic programs plus integrity contraints in the form of denials, based on
the notion of optative hypotheses -an abductive approach. In this part
we define a program revision method for removing contradiction from
contradictory programs under WFSX, based on the notion of revisable
hypotheses -a belief revision approach- and show the equivalence be-
tween the contradiction avoidance semantics and the WFSX of revised
programs obtained by contradiction removal.
The motivation, as well as some preliminary definitions can be found
in [1]. Proofs of all theorems are omitted for brevity, but exist in an
extended version of this work.

1 Introduction

I t was argued in the in t roduct ion of [1] tha t , to deal with the issue of contra-
dict ion brought abou t by closed world assumptions, r a the r than defining more
sceptical semantics one can rely instead on a less sceptical semantics and accom-
pany it with an assumpt ion revision process t ha t restores consistency.

In this pa r t we define such a revision process for p rograms cont rad ic tory
with respect to W F S X , t ha t relies on taking back assumpt ions about the t ru th
of negative literals. The set of negative literals over which a revision can be
made, i.e. the assumpt ion of their t ruthfulness can be removed, is called the set
of revisable literals, and can be any subset of not 7-l.

In [6] a revision semantics was defined where only base closed world assump-
t ions are revisable, i.e. those default literals whose complement has no rules.
In [8] the not ion of base closed world assumpt ion was improved, in order to
deal with the case of direct loops, i.e. wi thout interposing nots 2. The notion of
revisables there presented is similar to the not ion of pr ime optat ives in [1].

We show in section 5 tha t the issue of which are the revisables (in contradic-
t ion removal) is t a n t a m o u n t to t ha t of which are the opta t ives (in contradict ion

* We thank JNICT and Esprit BR project Compulog 2 (no 6810) for their support.
2 E.g. if not a is considered a base closed world assumption because a program has no

rules for a, then there is no reason for not a not being so considered if the only rule
for a is a ~ a.

269

avoidance). Thus the discussion on primacy of optatives in [1] is applicable to
the issue of what literals are to be revisables. So no restriction is made here
on which default literals are considered revisables, and they are supposed to be
provided along with the program 3.

For instance, in the wobbly wheel example of part I, the revisable literals
might be:

{not f d , not lv, not pt, not bs}.

By not introducing not f t in this set, we are declaring that, in order to remove
contradiction, we will not consider directly revising its truth. However, this does
not mean that by revision of some other literal the t ruth value of not f t will not
change.

We take back revisable assumptions, i.e. assumptions on the truthfulness of
revisable literals, in a minimal way and in all alternative ways of removing con-
tradiction. Moreover, we identify a single unique revision that defines a sceptical
revision process which includes all alternative contradiction removing revisions,
so as not to prefer one over the other.

The structure of this part is as follows: first we present W F S X and a para-
consistent extension of it. Then we identify the intended revisions declaratively.
Afterwards we define some useful constructible sets for establishing the causes
of and the removal of contradiction within W F S X , and prove that the result
of their use concurs with the intended revisions defined. Finally we show the
equivalence between the contradiction avoidance semantics and the W F S X of
revised programs obtained by contradiction removal.

2 P a r a c o n s i s t e n t W F S X

In this section we present both the W F S X and its paraconsistent extension. The
presentation is focused in the paraconsistent extension, and the special case of
W F S X is pointed out.

In order to revise possible contradictions we need first to identify those con-
tradictory sets implied by a program under a paraconsistent W F S X . The main
idea here is to compute all consequences of the program, even those leading to
contradiction, as well as those arising from contradiction. The following example
provides an intuitive preview of what we intend to capture:

Example 1. Consider program P :

a ~ not b (i) d ~ not a (iii)
- a ~ not c (ii) e ~ n o t - . a (i v)

3 The declaration of revisable literals by the user is akin to that of abducible literals.
Although some frameworks identify what are the abducibles for some particular
problems (cf. [4] where they are of the form a*), theories of abduction, for the sake
of generality, make no restriction on which literals are abducible, and assume them
to be provided by the user.

270

1. not b and not c hold since there are no rules for either b or c
2. -~a and a hold from 1 and rules (i) and (ii)
3. not a and not -~a hold from 2 and the coherence principle 4 relating the two

negations
4. d and e hold from 3 and rules (iii) and (iv)
5. not d and not e hold from 2 and rules (iii) and (iv), as they are the only

rules for d and e
6. not -~d and not -~e hold from 4 and the coherence principle.

The whole set of literal consequences is then:

{not b, not c, -~a, a, not a, not ~a, d, e, not d, not e, not -~d, not -~e}.

For the purpose of defining W F S X and its paraconsistent extension, we begin
by defining what is an interpretation.

D e f i n i t i o n 1. A p-interpretation I is any set T U not F, such tha t if -,L E T
then L E F.

A p-interpretat ion is an interpretation iff T and F are disjoint.

Let Q I = Q T o not Q F be a set of literals. We define CohP(QI) as the
p-interpretat ion T U not F such tha t T = Q T and F = Q F U {-,L I L e T}.

The definition of W F S X (in [5]) is based on a modulo transformation. With-
out loss of generality, and for the sake of technical simplicity, we consider that
programs are always in their canonical form, i.e. for each rule of the program
and any objective literal, if L is in the body then not -,L also belongs to the
body of tha t rule s .

D e f i n i t i o n 2. Let P be an canonical extended logic program, and I an interpre-
tation. Then p (P modulo I is the program obtained from P by performing the
following three operations: remove from P all rules containing a default literal
L = not A such tha t A E I; remove from all remaining rules of P their default
literals L = not A such tha t not A E I; replace all the remaining default literals
by proposition u.

In this definition one can apply the first two operat ions in any order, because
the conditions of their application are disjoint for any interpretation. A potential
conflict would rest on applying both the first and the second operation, but tha t
can never happen because if some A E I then not A qt I , and vice-versa.

4 Recall, from part I, that it is stated as: if -,L holds, not L holds too, for every
objective literal L.

5 When the coherence principle is adopted, the truth value of L coincides with that
of (L, not "~L). Taking programs in canonical form simplifies the techniques since we
don't need to concern ourselves with objective literals in the bodies in the modulo
transformation, but only with default literals, just as for non-extended programs.

271

This is not the case for p-interpretat ions pI , where for some objective literal
A both A and not A might belong to pI . Thus if one applies the t ransformat ion
to p-interpretations, different results are obtained depending on the order of the
application of the first two operations.

Example 2. Consider P of example 1, and let us compute:

P

{a, -~a, not -~a, not a, not b, not c}"

If one applies the operations in the order they are presented: Rules (iii) and
(iv) of P are removed because both a and -~a belong to the p-interpretat ion;
not b and not c are removed from the bodies of rules since not b and not c
belong to the p-interpretation. The resulting program is {a ~-- ; -~a ~---}.

But if one applies the second operat ion first: not b, not c, not a, and not -~a
are removed from the bodies of rules since not b, not c, not a, and not -~a belong
to the p-interpretation; Since no literals remain in the body of rules no other
operat ion is applicable. The resulting program in this case is {a ~-- d; -~a ~-- e}.

In order to make the t ransformation independent of the order of application of
the operations we define the corresponding t ransformation for the paraconsistent
case as being nondeterministic in the order of application of those rules.

D e f i n i t i o n 3. Let P be an canonical extended logic program and let I be a p-
P interpretat ion. By a TP program we mean any program obtained from P by first

non-deterministically applying the operations until they are no longer applicable:

- Remove all rules containing a default literal L = not A such tha t A E I .
- Remove from rules their default literals L = not A such tha t not A E I .

and by next replacing all remaining default literals by proposition u.

In order to get all consequences of the program, even those leading to con-
tradictions, as well as those arising from contradictions, we consider the conse-
quences of all possible such Pp programs.

D e f i n i t i o n 4. Let P be an canonical extended logic program, I a p-interpre-
tation, and let P I , . - . Pn be all the possible results of Pp. Then:

qSPp(I) = U C ~
l < i < n

T h e o r e m 5. The ~Sp operator is monotone under set inclusion of p- interpre-
tations.

Given tha t ~ip is monotonic, then for every program it always has a least
fixpoint, and this fixpoint can be obtained by i terating ~sv s tar t ing from the
empty set:

272

D e f i n i t i o n 6. The paraconsistent WFSX of a (canonical) extended logic pro-
gram P, denoted by W F S X p (P) , is the least fixpoint of ~P applied to P.

If some literal L belongs to the paraconsistent W F S X of P we write P Fp L.

P r o p o s i t i o n 7. WFSXp is defined]or every program with ICs.

Now we can give a definition of a contradictory program with ICs:

D e f i n i t i o n 8. A program P with language Lang where A is an atom, and a set
of integrity constraints I V is contradictory iff

P U I C U {3_ ~- A, -~A] A E Lang} bp 3_

In this section we always refer to the paraconsistent W F S X as an extension
of W F S X for non-contradictory programs. This is so because:

P r o p o s i t i o n 9. For a non-contradictory program P the paraconsistent WFSX
coincides with WFSX.

3 Dec lara t ive R e v i s i o n s

Before tackling the question of which assumptions to revise to abolish contra-
diction, we begin by showing how to impose in a program a revision that takes
back some revisable assumption, identifying rules of a special form, which have
the effect of prohibiting the falsity of an objective literal in models of a program.
Such rules can prevent an objective literal being false, hence their name:

D e f i n i t i o n 10. The inhibition rule for a default literal not L is L ~-- not L. By
I R (S) where S is a set of default literals, we mean:

I R (S) = {L ~ not L I not L C S}

These rules state tha t if not L is true then L is also true, and so a contradic-
tion arises. Intuitively this is quite similar to the effect of integrity rules of form
3- ~-- not A. Technically, the difference is tha t the removal of such a contradic-
tion in the case of inhibition rules is dealt with by W F S X itself, whereas in the
case of the integrity rules it isn't.

P r o p o s i t i o n 11. Let P be any program such that for some objective literal L,
P ~/p ~L. Then P U { L ~-- not L} (/p not L. Moreover, if there are no other rules
for L, the truth value of L is undefined in WFSXp(P) .

These rules allow, by adding them to a program, one to force default liter-
als in the paraconsistent W F S X to become undefined. Note tha t changing the
t ru th value of a revisable literal from true to undefined is less commit t ing than
changing it to false 6.

s In order to obtain revisions where the truth value of revisable literals is changed
from true to false, one has to iterate the process we're about to define. The formal
definition of such revisions can be found in [13].

273

To declaratively define the intended program revisions void of contradiction
we start by considering the resulting WFSXs of the programs obtained from all
possible ways of adding to a program P inhibition rules for revisable literals
(some may still be contradictory programs).

Several different revisions might be equivalent, from the standpoint of their
consequences.

Example 3. Let P = {.1_ ~-- not a; a ~ b; b ~-- a; a ~-- c}, with revisables {not a,
not b, not c}.

Note that adding a ~-- not a, b 4- not b, or both, has the same consequences,
since undefining a leads to the undefinedness of b and vice-versa. Considering
all three as distinct can be misleading because it appears that the program has
three different revisions.

Revisables not a and not b are said to be indissociable, and it is indifferent to
introduce inhibition rules for one, the other, or both. In the sequel, we coalesce
the three revisions into a single standard one, that adds both inhibition rules.

Def in i t i on 12. Let P be an extended logic program with revisables Rev. The
set Ind (S) 2 S of indissociable literals of a set of default literals S is a subset
of Rev such that:

- I nd (S) C_ W F S X p (P) and W F S X p (P U I R (S)) f3 Ind(S) = {}

i.e. Ind(S) is the set of all revisables that change their truth value from true to
undefined, once inhibition rules are added for every default literal of S to change
their value.

Example~. In example 3 Ind({not a}) = Ind({not b}) = {not a, not b} and
Ind({not c}) = {not a,,tot b, not c}.

Def in i t ion 13. A submodel of a program P with integrity rules, and revisables
Rev, is any pair (M, R) where R is a subset of Rev closed under indissociables,
i.e VS C R, Ind (S) C_ R, and M = W F S X p (P U {L ~ not L [not L e R}) 7.

In a submodel (M,R) we dub R the submodel revision, and M are the
consequences of the submodel revision. A submodel is contradictory iff M is
contradictory (i.e. either contains _L or is not an interpretation). Note how there
is a one-to-one correspondence between submodels and program revisions.

The existence of W F S X p (P) for any program P (cf. proposition 7) grants
that M exists for every subset of Rev. Thus:

P r o p o s i t i o n 14. The submodels (M, R) of any program P with revisables Rev
forms a complete lattice under set inclusion on the submodel revisions.

Example 5. Let P = {p ~ not q; -~p *-- not r; a ~-- not b}, with Rev = {nat q,
not r, not b}. Its submodels lattice is depicted in fig. 1. For simplicity, contradic-
tory models are not presented in full.

7 For a study of submodels based on the XSMs instead of on the well-founded model
s ee [7].

274

{}

{ ~ ~ , not p, not r, a, not b} "~ ~" {p, not -~p, not q, a, not b} ~ 7 _L '~

Fig. 1. Submodels lattice of example 5

As we are interested in revising contradiction in a minimal way, we care about
those submodels tha t are non-contradictory and, among these, about those tha t
are minimal in the submodels lattice.

D e f i n i t i o n 15. A submodel (M , R) is a minimal non-contradictory submodel
(MNS for short) of P iff it is non-contradictory and there exists no other non-
contradictory submodel (M I, R~}, such tha t R ~ C R.

Let P be a program with revisables Rev , and (M , R) some MNS of P. A
minimal ly revised program MRP of P is: P U I R (R) .

By definition, each MNS of a program P reflects a revision of P, P U R e v R u l e s,
tha t guarantees non-contradiction, and such that for any set of rules R e v R u l e ~ C
R e v R u l e closed under indissociables, P U R e v R u l e t is contradictory. In other
words, each MNS reflects a revision of the program tha t restores consistency,
and which adds a minimal set of inhibition rules for revisables.

P r o p o s i t i o n 16. I f P is non-contradictory its single M N S is (WFSX(P) , {}),
and P itself is its only minimal ly revised program.

Example 6. The MNSs of P in example 5 are the shadowed submodels of fig. 1,
and the minimally revised programs are:

M R P 1 = {p ~-- not q; -,p ~-- not r; a ~-- not b; q .-- not q} and
M R P 2 = {p ~-- not q; -~p ~-- not r; a ~-- not b; r ~ not r}.

s Where RevRule is the set of inhibition rules for the submodel revision.

275

Each of these two programs is a transformation of the original one that min-
imally removes contradiction by taking back the assumption of t ruth of some
revisables via their inhibition rules. In this example, one can remove the con-
tradiction in p either by going back on the closed world assumption of falsity
of q (or t ruth of not q) or on the falsity of r. The program that has the first
effect is M R P 1 , the one with the second being M R P 2 . Having no reason to ren-
der q alone or r alone undefined, it is natural that a sceptical revision should
accomplish the effect of undefining them both.

De f in i t i on 17. The sceptical submodel of a program P is the join (Ms, R j) of
all MNSs of P. The sceptical revised program of P is P U I R (R I) .

Example 7. The sceptical submodel of P of example 5 is depicted in bold in
fig. 1. Note that inhibiting b is irrelevant for revising P, and how taking the join
of the MNSs captures what is required.

It is important to guarantee that the sceptical revision indeed removes con-
tradiction from a program. This is so because:

P r o p o s i t i o n 18. Let (M1, R1) and (M2, R2) be any two non-contradictory sub-
models. Then submodel (M, R1 U R2) is also non-contradictory.

Example 8. Consider program P :

p *-- not a q ~-- not r -~a ~-- not b
-~p *--- not a r *-- not s

with Rev = {not q, not a, not b}.
Its MNSs are:

({r, not s ,p, not q} ,{not a, not b})
({r, not s , - ,p , - ,a , not a, not b}, {not q})

Its sceptical submodel is ({r, not s}, {no t a, not b, not q}).

It is clear that with these intended revisions some programs have no revision.
This happens when contradiction has a basis on non-revisable literals.

Example 9. Let P = {a ~-- not b; b ~-- not c; -,a; c}, with R e v = {no t c}.
The only submodels of P are:

(W F S X v (P) , { }) and (W F S X p (P U {e ~ ,tot c }) , { n o t c}).

As both these submodels are contradictory, P has no MNS and thus no re-
visions. Note that if not b were revisable, the program would have a revision
P U {b +- not b}. If not b were absent from the first rule, P would have no revi-
sion no matter what the revisables.

De f in i t i on 19. A contradictory program P with revisables R e v is unrevisable
iff it has no non-contradictory submodel.

276

4 C o n t r a d i c t i o n S u p p o r t a n d R e m o v a l

Submodels characterize which are the possible revisions and the minimali ty cri-
terium. Of course, a procedure for finding the minimal and the more sceptical
submodels can hardly be based on their declarative definition: one has to gen-
erate all the possible revisions to select those intended. In this section we define
a revision procedure, and show tha t it concurs with the declaratively intended
revisions.

The procedure relies on the notions of contradiction supports and of contra-
diction removal sets. Informally, contradiction supports are sets of revisable liter-
als present in the WFSXp which are sufficient to suppor t .l_, i.e. contradiction 9.
From their t ru th the t ru th of .1_ inevitably follows.

Contradiction removal sets are built from the contradiction supports. They
are minimal sets of literals chosen from the supports such that any support of
.l_ has at least one literal in tile removal set. Consequently, if all literals in some
contradiction removal set were to become undefined in value then no support of
.1_ would subsist. Thus removal sets are the hitt ing sets of the supports.

Example 10. Consider program P of example 5. I ts only contradiction support
is {not q, not r}, and its contradiction removal sets are {not q} and {not r}.

Suppose we had q undefined as a result of introducing rules for q. In tha t
case I would also be undefined, the program becoming non-contradictory. The
same would happen if r alone became undefined. No other set, not containing
one of these two alternatives, has this property.

D e f i n i t i o n 20. Given a program P with revisables Rev, the supports of a literal
L belonging to the WFSXp (any of which represented as SS(L)) are obtained
as follows:

1. If L is an objective literal:
(a) If there is a fact for L then a support of L is SS(L) = {}.
(b) For each rule L ~ B 1 , . . . , B n (n > 1) in P such tha t { B 1 , . . . , B n } C_

WFSXp(P), there is a support SS(L) = Ui SSj(i)(Bi), for each combi-
nation of one j(i) for each i.

2. If L = not A (where A is an objective literal):
(a) If i E Rev then a support of i is SS(L) = {L}.
(b) If L ~ Rev and there are no rules for A then a support of i is SS(L) = {}.
(c) If L ~ Rev and there are rules for A, choose from each rule with a non-

empty body for A, a literal such that its default complement belongs
to WFSXp(P). For each such multiple choice there exist several SS(L);
each contains one support of each default complement of the chosen
literals.

(d) If -~A E WFSXp(P) there are, additionally, supports SS(L) = SSk('~A)
for each k.

9 This notion is a special case of the notion of Suspect Sets introduced in declarative
debugging in [12]

277

Example 11. Consider program P of example 8, whose paraconsistent well-foun-
ded consequences are:

WFSXp(P) = {not s,r, not q,p, not "~p, not b,-~a, not a, ~p, not p}.

The supports of p are computed as follows: from the only rule for p we
conclude that the supports of p are the supports of not q; since not q is a
revisable then one of its supports is {not q}; as -~q r WFSXp(P), there are no
other supports of q. Thus the only support of p is {not q}.

The supports of -~p are: from the only rule for -~p conclude that the supports
of -~p are the supports of not a; since not a is a revisable then one of its supports
is {not a}; since -,a E WFSXp(P) supports of --,a are also supports of not a;
from the only rule for -~a conclude that the supports of -~a are the supports of
not b; likewise not q above, the only support of not b is {not b}. Thus -~p has
two supports, namely {not a} and {not b}.

P r o p o s i t i o n 21. A literal L belongs to the WFSXp of a program P iff it has at
least one support SS(L) .

Def in i t ion 22. A contradiction support of a program P is a support of I in the
program obtained from P by adding to it integrity rules of the form 2. *-- L, -~L
for every objective literal L in the language of P.

N . B . From now on, unless otherwise stated, when we refer to a program we
mean the program obtained by adding to it all such rules.

Example 12. The contradiction supports of P ill example 8 are the unions of
pairs of supports of p and -~p.

Thus, according to the supports of in example 11, P has two contradiction
supports, namely {not q, not a} and {not q,,tot b}.

Contradiction supports are sets of revisables true in the WFSXp involved in
some support of contradiction (i.e. _1_) 1~

Having defined the sets of revisables that together support some literal, it is
easy to produce sets of revisables such that, if all become undefined, the t ru th of
that literal would necessarily become ungrounded. To cope with indissociability,
these sets are closed under indissociable literals.

Def in i t i on 23. A pre-removal set of a literal L belonging to the WFSXp of a
program P is a set of literMs formed by the union of some nonempty subset fl'om
each SS(L) .

A removal set (RS) of L is the closure under indissociable literals of a pre-
removal set of L.

If the enlpty set is a SS(L) then the only RS(L) is, by definition, the empty
set. Note that a literal not belonging to WFSXp(P) has no RSs defined for it.

10 Note the close relationship between the SSs of .L and the sets of nogoods of Truth
Maintenance Systems.

278

In view of considering minimal changes to the W F Model, we next define
those RSs which are minimal in the sense that there is no other RS contained
in them.

Def in i t i on 24 M i n i m a l r e m o v a l set . In a program P, RSm(L) is a minimal
removal set iff there exists no RSi(L) in P such that RSm(L) D RSi(L). We
represent a minimal RS of L in P as MRSp(L) .

A contradiction removal set of program P is a minimal removal set of the
(reserved) literal J_, i.e. a CRS of P is a MRSp(J_).

Example 13. Consider program P of example 3. The only support of .l_ is {not a}.
Thus the only pre-removal set of _L is also {not a}. Since Ind({not a}) = {not b},
the only contradiction removal set is {not a, not b}.

Example 14. The removal sets of _L in the program of example 8 are:

RSa = {not q}
RS3 = {not q, not b}

RS2 = {not q, not a}
RS4 = {not a, not b}

Thus RS1 and RS4 are contradiction removal sets. Note that these correspond
exactly to the revisions of minimal non-contradictory submodels of example 8.

It is important to guarantee that contradiction removal sets do indeed remove
contradiction.

L e m m a 2 5 . Let P be a contradictory program with contradiction removal set
CRS. Then P U IR(CRS) is non-contradictory.

Now we state 11 that this process concurs with the intended revisions above:

Theorem 26 Correctness of CRSs.

1. Let R be a nonempty CRS of a contradictory program P. Then (M, R) is a
MNS of P, where M = W F S X (P U IR(R)).

2. If {} is a CRS of a program P then P is unrevisable.
3. Let (M, R) be a MNS, with R ys {}, of a contradictory program P. Then R

is a CRS of P.
4. Let P be a contradictory program with CRSs R1, . . . , Rn. The sceptical re-

vised program of P is

f
P U I L *- not L I not L E

aa The proof of correctness can be found in [2].

U Ri I"
l<_i<_n

279

Thus in order to compute the minimal and sceptical submodels, one s tar ts
by comput ing all supports of .l_. Although the definition of suppor t requires
one to know a priori the paraconsistent WFSXp, an al ternative definition exists
such tha t this is not required. This definition is based on a top-down derivation
procedure. Comput ing all supports of .1_ is like comput ing all the derivations for
.s in WFSXp.

If {} is a suppor t of _l_ then the program is unrevisable. Otherwise, after
having all supports of 1 , the rest follows by operations on these sets. For such
operations one can rely on efficient methods known from the li terature. For
example the method of [15] for finding minimal diagnosis can be applied for
finding CRSs given the supports . Finally, a minimal revised program is obtained
by adding to P one inhibition rule for each element of a CRS, and the sceptical
revision is obtained as the union of all such minimally revised programs.

Example 15. Consider the hiking/swimming program of par t I, and let Rev =
{not rain, not cold_water}.

The supports of .l_ are {not rain} and {not rain, not cold_water}. Thus its
removal sets are {not rain}, and {not rain, not cold_water}. The only CRS is
{not rain}, so the only MRP of P, and its sceptical revised program is P U
IR(rain), whose WFSX is {not cold_water, swimming}. This result coincides
with the WFSopt calculated in par t I.

Example 16. Recall program P of example 9, whose WFSXp is:

{c, --a, not a, not b, a, not ~a}.

Tile supports of 2_ result from the union of supports of a and suppor ts of
-~a. As the only rule for ~a is a fact, its only support is {}. Supports of a are
the supports of not b, and supports of not b are the supports of c. Again, as the
only rule for c is a fact, its only support is {}.

Thus the only support of _1_ is {}, and so P is unrevisable.

5 E q u i v a l e n c e b e t w e e n A v o i d a n c e a n d R e m o v a l

In this section we discuss the equivalence between the approaches of contradic-
tion avoidance described in par t I [1] and contradiction removal described in this
part.

The need for semantics more sceptical than WFSX can be seen as showing
the inadequacy of the la t ter for certain problems. The equivalence results show
that this is not the case since, by providing a revision process, WFSX can deal
with the same problems as the more sceptical semantics WFSopt, and give the
same results.

The advantages of using WFSX plus the revision process reside mainly on its
simplicity compared to avoidance, and on the existence of top-down procedures
for it. Moreover, as pointed out in [5], the top-down procedures for WFSX can
be obtained by simple modifications of procedures for W F S [14, 16, 10, 3]. The

280

specialized revision process corresponding to "POS has been sucessfully applied
to a wide variety of classical non-monotonic reasoning domains [9, 11, 13].

The revision procedure can be implemented as a preprocessor of programs 12,
and the maintenance of non-contradiction might benefit from existing procedures
for Truth Maintenance Systems.

In order to prove the main equivalence theorems, we begin by presenting two
important lemmas. These lemmas state tha t avoiding a hypothesis in contradic-
tion avoidance is equivalent to adding an inhibition rule for that hypothesis in
contradiction removal.

L e m m a 27. If P O H is a complete scenario wrt Opt of a program P with
avoidance set S then pr U H is a complete scenario of P~ = P U IR(S) .

L e m m a 2 8 . If P ' U H is a complete scenario of P' = P U I R (R) , and R C Opt,
then P U H is complete wrt Opt.

Theorem29 Quasi-complete scenarios a n d M N S s . P U H is a quasi-com-
plete scenario wrt Opt of program P with avoidance set S iff

(WFSX(P l.J IR(S)) , S)

is a MNS of P with revisables Opt.

This theorem states that assuming hypotheses maximally and avoiding the
contradiction, corresponds to minimally introducing inhibition rules, and then
computing the WFSX.

T h e o r e m 30 Scep t i ca l r ev i s ion a n d WFSopt . P U H is the WFSop t of a
program P with avoidance set S iff (WFSX(P U IR(S)) , S) is the sceptical sub-
model of P with revisables Opt.

From this theorem it follows that the role of optatives in contradiction avoid-
ance is the same as the role of revisables in contradiction removal. Thus the
discussion about special criteria for automatically inferring optatives from a
program, applies directly to the issue of finding special criteria for inferring re-
visables from the program.

R e f e r e n c e s

1. J. J. Alferes and L. M. Pereira. Contradiction: when avoidance equal removal.
Part I. In R. Dyckhoff, editor, 4th Int. Ws. on Extensions of Logic Programming,
1993.

2. Jos6 Jfilio Alferes. Semantics of Logic Programs with Explicit Negation. PhD
thesis, Universidade Nova de Lisboa, October 1993.

12 The implementation of such a preprocessor for the revision process above exists, and
is available on request.

281

3. W. Chen and D. tI. D. Warren. A goal-or iented approach to computing well-
founded semantics. In K. Apt, editor, Int. Joint Conf. and Syrup. on Logic Pro-
gramming, pages 589-603. MIT Press, 1992.

4. K. Eshghi and R. Kowalski. Abduction compared with negation by failure. In
G. Levi and M. Martelli, editors, 6th Int. Conf. on Logic Programming. MIT Press,
1989.

5. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with
explicit negation. In B. Neumann, editor, European Conf. on AI, pages 102-106.
John Wiley & Sons, Ltd, 1992.

6. L. M. Pereira, J. J. Alferes, and J. N. Aparlcio. Contradiction Removal within
Well Pounded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian, edi-
tors, Logic Programming and NonMonotonic Reasoning, pages 105-119. MIT Press,
1991.

7. L. M. Pereira, J. J. Alferes, and J. N. Aparlcio. The extended stable models of
contradiction removal semantics. In P. Barahona, L. M. Pereira, and A. Porto,
editors, 5th Portuguese AI Conf. Springer-Verlag, 1991.

8. L. M. Pereira, J. J. Alferes, and J. N. Aparlcio. Contradiction removal semantics
with explicit negation. In Applied Logic Conf. ILLC, Amsterdam, 1992.

9. L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Counterfactual reasoning based
on revising assumptions. In Ueda and Saraswat, editors, Int. Logic Programming
Syrup. MIT Press, 1991.

10. L. M. Pereira, J. N. Aparicio, and J. J. Alferes. A derivation procedure for ex-
tended stable models. In Int. Joint Conf. on AL Morgan Kaufmann Publishers,
1991.

11. L. M. Pereira, J. N. Aparlcio, and J. J. Alferes. Logic programming for nonmono-
tonic reasoning. In Applied Logic Conf. ILLC, Amsterdam, 1992.

12. L. M. Pereira and M. Calejo. A framework for Prolog debugging. In R. Kowalski,
editor, 5th Int. Conf. on Logic Programming. MIT Press, 1988.

13. L. M. Pereira, C. Dams and J. J. Alferes. Diagnosis and debugging as con-
t radict ion removal. In L. M. Pereira and A. Nerode, editors, 2nd International
Workshop on Logic Programming and NonMonotonic Reasoning, pages 316-330.
MIT Press, 1993.

14. T. Przymusinski. Every logic program has a natural stratif ication and an iter-
ated fixed point model. In 8th Syrup. on Principles of Database Systems. ACM
SIGACT-SIGMOD, 1989.

15. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57-
96, 1987.

16. D.S. Warren. The XWAM: A machine that integrates prolog and deductive
databases. Technical report, SUNY at Stony Brook, 1989.

