
Logic Programming with Multiple Context
Management Schemes

Joshua S. Hodas

Computer Science Department*
Harvey Mudd College
Claremont, CA 91711

h o d ~ Q c s , h l c . edu

Abst rac t . Two years experience with prograanmlng in Linear Logic has
shown that while some problems require the full power of linear context
management, for many this much control is too much. In such cases a re-
striction on either weakening or contraction, but not both, is most appro-
priate. In this article we introduce a refinement of the system proposed
by Hodas and Miller in which each of these constraints is independently
available. This enables programs to be more succinct, understandable,
and efficient.

1 I n t r o d u c t i o n

Sequential logic programming based on linear logic was first proposed by Hodas
and Miller in 1991 [8]. The motivating idea was that the context (database)
management provided by traditional languages based on intuitionistic logic--
such as Prolog, AProlog [12], N-Prolog [2], and others--was insufficient for many
applications. Therefore, a new language was introduced which extended AProlog
by using two separate contexts. Clauses in the ordinary, intuitionistic, context
continue to be usable as many or as few times as desired; that is, the structural
rules of weakening and contraction are available in that context. In contrast,
those rules are not available in the bounded, linear, context; the usability of
clauses in that context is far more restricted.

In the two years since the system was first proposed, however, it has become
apparent that for many purposes the system is too restrictive. In some cases
the programmer wants to bar weakening but allow contraction, in others the
opposite effect is desired. While both these situations can be simulated in the
existing system, the programs that result are not as clear as one would hope,
and their execution profiles may be less than ideal. In this paper, therefore, we
introduce a further refinement of the Hodas-Miller system in which there are
now four separate contexts:

* This material was mostly developed while the author was a student in the De-
partment of Computer Science at the University of Pennsylvania. The work was
funded under ONR N00014-88-K-0633, NSF CCR-87-05596, NSF CCR-91-02753,
and DARPA N00014-85-K-0018 through the University of Pennsylvania

172

Linear: Neither contraction nor weakening are available.
A~ine: Only weakening is available; clauses may be discarded but not dupli-

cated.
Relevant: Only contraction is available; clauses may be duplicated but not dis-

carded.
Intuitionistic: Both contraction and weakening are available.

2 Logic Programming in Linear Logic

Linear logic was developed in the mid 1980% as a result of Girard's work in
the semantics of logic [3]. In this system, the structural rules of contraction
and weakening can only be applied to formulas that are marked with the ,I,
modal. To understand the motivation and effect of this restriction, consider the
intuitionistic (and classical) tautology:

[(D D K) A (D D M)] D [D D (KA M)]

which has the following proof:

D 'D K KK DL D 'D M MM DL
D D K,D ~ D D M,D ,

AR
DDK, DDM, D,D , KAM

contract
D D K , D D M , D , K A M

DR
D D K , D D M , D D (K A M)

AL
(D D K) A (D D M) , D D (K A M)

DR
, ((D D K) A (D D M)) D (D D (K A M))

There is nothing disturbing about this proof, until one considers the model:

D := I have a dollar
K :-- I can buy a pack of Kools
M :-- I can buy a pack of Marlboros

In which case we have proven that if a dollar is enough to buy a pack of cigarettes,
then it is enough to buy two packs. The unlimited availability of the contraction
rule amounts to a license to print money. In linear logic this formula is not a
tautology. In order for it to be provable it would require the provision of two D
formulas in the rightmost implication, as in:

[(D D K) A(D D M)] D [(DA D) D (K A M)]

In order to simplify the presentation of their system, which they called s
Hodas and Miller used a non-standard presentation of the fragment of linear
logic on which it is based. The rules of s are given in Figs. 1 and 2. Rather
than using the '!' modal to control the use of contraction and weakening, the
sequents in this system have two separate contexts, each consisting of a multiset

173

of formulas. 2 The structural rules are available in the left hand context but not
in the right hand one. Thus the s

B 1 , . . . , B , ~ ; C I , . . . , C m ~ D

is intended to behave like the linear logic sequent:

! B 1 , . . . , ! B , ~ , C 1 , . . . , C r n ~ D

In addition, the structural rules themselves are not explicit, but rather are
woven implicitly into the way in which the other rules treat the two contexts.
So, for instance, the axioms of the system require that the linear context contain
only the formula being matched, while the intuitionistic context 's contents are
arbitrary. In this way weakening is barred in the linear context, but allowed (and
moved to the leaves) in the intuitionistic context.

In linear logic the left hand introduction rules, other than !L apply only to
formulas not marked with '!'. In s this behavior is mimicked by defining the
left hand introduction rules to apply only in the linear context. The absorb rule
is used to copy a formula from the intuitionistic context to the linear one to
make it available to the other left hand rules. The original formula remains in
the intuitionistic context, thereby providing some of the behavior of contraction
for that context.

Clauses are added to each context by using t~he corresponding implication
operator in goal position. Searching bot tom up for a proof of an implication goal
leads to an a t tempt to prove the conclusion of the implication in a setting where
the assumption has been added to the appropriate context.

The system /: has several desirable properties. First, the cut-elimination
property holds, though the proof is a bit more complex than for intuitionis-
tic logic. Second, uniform proofs, those in which sequents with non-atomic right
hand sides are always the conclusion of the right hand rule for the principal
logical operator of the right hand side, are complete. Taken together, these facts
imply that there is a simple, effective, bot tom-up search strategy for finding
proofs in the system. This strategy corresponds roughly to SLD-Resolution, and
qualifies the system to be called a logic programming language, a Another impor-
tant property is that the proof system of SProlog properly embeds into this one.
The proof of a formula that does not include any instances of --o can be directly
mapped into a corresponding proof in the theory of hereditary Harrop formu-
las. Thus the -o operator extends the behavior of that system. These properties
were discussed by Hodas and Miller [8, 9] and proved in full detail in Hodas'
dissertation [7].

2 In the original presentation of s the intuitionistic context was described as a set
rather than a multiset. This assumption eased the proof of certain properties of the
system's model theory, but is unnecessary here.

3 The definition of uniform proofs and the notion that the completeness of such proofs
qualifies a logic to be called a logic programming language is due to Miller, et a2.
[10, 11].

174

iden t i ty
F;B- - - -~ B F; ,4 , T T ~

F , B ; , 4 , B , C

F, B ; ,4 , C
absorb

F; "4, Bi ~ C
F; "4, B1 & B2 ~ C &L~

F; A --- , B F; A - - - , C

F ; "4 - - - , B & C

F; A1 ---* B F; ,42, C ----, E F; ,4, B ---* C
F ; , 4 1 , , 4 2 , B . - o C - - - ~ E --or. F ; , 4 : B - o C - o k

F ; ~ - - - ~ B F ; , 4 , C - - . E F , B ; , 4 - - ~ C

F ; ,4 , B :~ C , E F ; ,4 - - ~ B ~ C

F; ,4, B[x ~ t] , C F; ,4 ----, B[x ~ c]
F ; , 4 , V x . B , C Vz F ; A ---~ V x . B u

provided that c is not free in the lower sequent.

F~;,4~ ----,B P2; ,42,B---*C /"I;~---.--,B F2, B ; A - - . C
cu t cur l

FI,F2;'41,'42 ~ C F1, F2 ; ,4 ---* C

Fig. 1. s A proof system for the connectives T, &, -o, =~, and V.

1R
F;~ , I

F; II ----, C F; A1 ----* B1 F; "42 ~ B2
!R

F; ~ ----,!C F; "41, "42 ---' B1 | B2
|

F; ,4 - - , 3z.B F; ,4 ---, B~ ~ B2

Fig. 2. Additional operator rules for s

A programming language, Lolli, which directly implements the logic of this
system has been developed and distributed. The behavior of the various oper-
ators, and their relation to the operators of AProlog has heavily influenced the
syntax of Lolli [5, 9]:

�9 Clauses, unless marked with the keyword LINEAR, are assumed to be loaded
into the intuitionistic context.

�9 The implication operators --o and =r are represented by ' -o ' and '=>', re-
spectively, in goals, and by ' : - ' and '<=' in clauses.

�9 The two conjunctions, & and | are represented by ' t ' and ' , ', respectively.

175

�9 The atomic t ru th formulas T, and 1 are written ' e r a s e ' , and ' t r u e ' , respec-
tively.

�9 The standard quantifier assumptions are made. Explicit quantifiers are writ-
ten as in ' f o r a l l x \ (foo x) ' .

3 M o t i v a t i o n s for a N e w S y s t e m

The system described by Hodas and Miller succeeded in many ways at meeting
the goals of its designers. It is an attractive system for implementing a variety
of programs in which the management of clausal resources during execution is
of interest [6, 7, 8, 9].

However, in many cases the system has proven to be less than ideal. Consider
one of the simplest motivating examples for the system: the simulation of a toggle
switch. The state of a named switch is represented by a clause for the binary
relation state(name, value) which is stored in the linear context. A program to
manage the switch might be given by:

i n i t Name S t a t e G : - s t a t e Name S t a t e -O G.

s e t Name N e e S t a t e G : - s t a t e Name S t a t e ,

s t a t e Name N e w S t a t e - o G.

t o g g l e Name G : - s t a t e Name o f f , s t a t e Name on - o G.

t o g g l e Name G : - s t a t e Name o n , s t a t e Name o f f - o G.

setting Name State :- state Name State.

Unfortunately, when there is more than one switch, the system behaves in
unexpected ways. Consider the following interaction: 4

?- init sl on top.

?- toggle sl top.

?- setting sl S.

S <- off

yes

?- init s2 on top.

?- setting sl S.

no

The problem is that once the second switch is initialized there are two formulas
in the linear context. Any future goal must use both of these formulas if its proof
is to succeed. Thus, in order to check the state of one switch, the state of the
other must also be accessed:

4 The goal top used in this interaction is a built in predicate used to re-invoke the
read-prove-print loop at that point in a proof.

176

7 - s e t t i n g s l S1 , s e t t i n g s2 $ 2 .
S1 <- o f f
$2 < - on
y e s

If we are not actually interested in the setting of the second switch at the
moment, we can direct the interpreter to ignore it (and any other formulas in the
linear context) by including a I in the query, in the form of the e r a s e command,
as in:

?- s e t t i n g sl S, e r a s e .
S <- off

yes

This behavior could be added to the definition of the s e t t i n g predicate, but
that is somewhat confusing and leads to other complications. The problem is
that the formula used to store the state of the switch cannot he weakened or
contracted, while the programmer really wants to restrict only contraction. This
is the form of control provided in affine logic. It seems that such a constraint
should he indicated at the point where the clauses for the predicate are assumed,
rather than at the point where the predicate is called.

If we were to augment the proof system for / : with a form of weakening for
just the special formula 1, as in:

F ; A , C
F; A, I ' C IL

then affine reasoning for a formula A could be simulated by replacing instances
of A with instances of (A & 1). The interpreter could weaken such a formula by
first using the &L2 rule to select the 1 portion of the formula, which could then
be discarded by using the new rule. The switch program would then be replaced
by:

k n i t Name S t a t e G : - (s t a t e Name S t a t e k t r u e) - o G.
s e t Name N e w S t a t e G : - s t a t e Name S t a t e ,

(s t a t e Name N e w S t a t e R t r u e) - o G.

t o g g l e Name G : - s t a t e Name o f f , (s t a t e Name on ~ t r u e) - o G.
t o g g l e Name G : - s t a t e Name o n , (s t a t e Name o f f ~ t r u e) - o G.

s e t t i n g Name S t a t e : - s t a t e Name S t a t e .

which would behave as desired.
Unfortunately, this rule cannot be added directly to s without compromising

the completeness of uniform proofs and correspondingly complicating the proof
procedure. Even then, the resulting programs would be somewhat less readable
than one would hope.

A similar problem occurs when the programmer wants to use relevant rea-
soning, as in artificiM intelligence applications. In such a setting the answer to

177

"Does A imply B?" should be "yes" only if A was actually used to demonstrate
B, not if B is true regardless. On the other hand, it is not generally of inter-
est whether the assertion A was referenced more than once in the proof of B.
Relevant behavior can be simulated in L: goals by adding the assumption to
both contexts simultaneously. Adding it to the linear context guarantees that it
must be used at least once; adding it to the intuitionistic context allows it to
be used as many additional times as needed. Thus the relevant goal A R. B can
be replaced by t h e / : goal A =~ (A -o B). Unfortunately the execution profile of
programs encoded in this way is somewhat leas than ideal, since the interpreter
spends a good deal of t ime enforcing the linear constraint needlessly.

4 An Omnibus Logic

A logic programming language with direct support for relevant reasoning was
first proposed by Bollen in his work on Conditional Logic Programming (CLOG-
PROG) [1]. While that system shares much of its philosophical and formal foun-
dations with s it is somewhat weaker in that arbitrary nesting of quantifiers
and implications is not Mlowed. 5 In addition it says nothing about the affine
and linear constraints which have been shown to have many useful applications.

In this section we introduce a new system, O, whose rules are given in Figs. 3
and 4. The system is similar to s but the left hand sides of its sequents are com-
posed of four separate multiset contexts. Left to right these are the intuitionistic,
relevant, atfine, and linear contexts.

As with s the structure of the axioms and the absorb rules determines much
of the behavior of the system. In the identity axioms, both the intuitionistic and
affine contexts may have arbitrary contents, while the relevant context must be
empty and the linear context must contain only the formula being matched. This
enables implicit weakening in the intuitionistic and affine contexts but not the
other two.

The absx rule, which corresponds to the absorb rule in s makes a copy of a
formula in the intuitionistic context and makes it available for use in the linear
context. In contrast, the absA rule removes the formula being absorbed from the
affine context when it is added to the linear context, so that the formula cannot
be reused. Finally, the absR rule removes its formula from the relevant context
but places copies in both the intuitionistic and linear contexts. Thus, once the
formula has been used once, it can then be used zero or more additional times.

As with the system s there is an implication operator corresponding to each
of the contexts used to load clauses into that context.

The rest of this section takes the form of a series of propositions about the
formal properties of O, in particular its relationship to /~ and other systems.
These propositions are proved in full in the author 's dissertation [7]. As with
the papers which introduced s the bulk of the propositions here are stated in

s Miller and Hodas have demonstrated in several papers the advantages of allowing
such arbitrary nesting. These issues are summarized in Hodas' dissertation [7].

F; 8; g'; B

178

identi ty
, B F; T ; ~ ; A ---* T T R

F, B;T; ~; A, B - - * C
F, B;T; ~; A ----* C

F, B; T; ~; A , B ----, C
abs~ F; 7l", B; ~; A ---* C abs~

F; T; ~; ZX, B --- , C
F; T; ~, B; zl ~ C absA

F; T; ~; zI, B~ --- . C

F; T; ~; A , BI & B~ ----* C

F ; T ; ~ ; A --- , B F ; T ; ~ ; z 3 , C
&Li & R

F ; T ; ~ ; A , B & C

F;T;~I;ZXl , B F;T;~2;z i2 ,C--- - - . E F ; T ; ~ ; A , B - - . C
--o L - o R

F ; T ; ~ , ~ 2 ; A ~ , A 2 , B - o C , E F;T;~;Z3-- - - , B - o C

F; ~;~1;~ --- . B F ; T ; ~ 2 ; A , C - - - - - . E F ; T ; ~ , B ; z X - - . C
~ L ~ R

F ; T ; ~ I , ~ 2 ; z I , B A__. C , E F ; T ; ~ ; A , B ~ C

F;T;O;O---* B F ; T ; ~ ; A , C - - - ~ E F ; T ; ~ ; A , B , C
R_. L R. R

F ; T ; ~ ; A , B R. C --- , E F ; T ; g f ; ~ --- , B ~ C

F; $; ~; 0 -----* B F ; T ; ~ ; z 3 , C - - - , E

F ; T ; ~ ; A , B =~ C , E
=}L

F , B ; T ; ~ ; z l , C
F; T; ~; A ---~ B ~ C ~ R

F; T; ~,; A, B[x ~ t] , C F; T; ~; zX ---~ B[x ~ c]
VL VR F; T; ~; A, Vx.B , C F; T; ~; A ~ Vz.B

provided that c is not free in the lower sequent.

F~;T~;IP~;A~ ~. B F2;T2;!P2;A1,B , C
CUrL

]'1, f2; Y1, Y2 ; ~1, ~2; A:t, A2 - - -*C

F1;~;$;0 ---* B F 2 , B ; T ; ~ ; A -----* C
cuti

F 1 , F 2 ; T ; ~ ; A , C

~ ; 8 ; ~ ; 0 - - - ~ B ~ ; T ; ~ , B ; A , C
~ , ~ ; T ; ~ , ~ ; A . C cutA

~ ; ~ ; ~ ; 8 - - - - . B ~ ; ~ , B ; ~ ; A
~ , ~ ; ~ , ~ ; ~ ; A - - - * C

, C
cutR

Fig. 3. System O for Intuitionistic, Relevant, Afline, and Linear Implication

179

F;T;~I ;A1 ~ Bt F;T;~2;A2 , B2
IR |

F;0 ;~ ;~ , 1 F;T;~I,~z;Aa,A2----~B~|

F;r ~;g ---* C !R
F; r r r ----~!C

F; T; ~; za ~ B[z ~ t] F; T; ~; A ----, Bi
F; T; g'; Zi ~ Bx.B BR F; T; ~; Z~ ~ B1 ~ B2 ~R~

Fig. 4. Additional operator rules for O

terms of the core system. The additional operator rules can however be added
once the view is restricted to uniform, cut-free proofs. The first two propositions
describe the relationship between s and (9:

P r o p o s i t i o n l . The system (9 is complete for L. That is, i f the ~ sequent
F; A , C is provable, then F; 0; 0; A , C is provable in (9.

Proof. The proof is immediate, since each step in the s proof can be mapped
directly to an (9 step by inserting the two empty contexts into the antecedents
of the sequents. Tha t the middle two contexts never need to be involved is clear
since the F, A and {C} are multisets of formulas with none of the new operators
from (9, and it is only the left-hand rules for the two new implications that lead
formulas to be moved into the two middle contexts. []

P r o p o s i t i o n 2 . The system (9 is sound for s augmented with the rule:

F ; A , C
F; A , I ' C 1L

in the sense that if C ~ is the result of recursively replacing all instances of (D n_~
E) and (D ~ E) in C with (D ~ (D -o E)) and ((D ~ 1) -o E), respectively,
and i f r o = {C~ �9 r } and r ~ ' = { (C ~ 1)1C �9 r } , then, if the (9-sequent
F;Y;~P;A , C is (9-provable, then F ~ 1 7 6 1 7 6 1 7 6 A ~ , C o is provable
in the augmented s

The proof is by induction on the structure of proofs.
Hodas and Miller showed that there is an encoding of hereditary Harrop

formulas, and their corresponding sequents, in to / : such that a sequent is provable
in intuitionistic logic if and only if the encoded sequent is provable in s [7, 9].
By Propositions 1 and 2, then, the same holds true for (9. (The "if and only
if" is maintained, because the new 1L rule in Proposition 2 will not occur in
the proof of an encoded Harrop sequent.) A similar encoding and proof can be
used to show that the same property holds for relevant and affine logic (over
implication, conjunction and universal quantification) relative to (9.

The last two propositions demonstrate that , in spite of its enrichment relative
to s (9 still has two crucial properties that justify using it as the foundation of
a logic programming language:

180

Propos i t i on3 . Cut elimination holds for system O. That is, if there is an O-
proof of the sequent FI; Fit; F,4; FL ~ C, then there is a proof which does not
include occurrences of the cuQ, cutit, tUfA, or CUrL rules.

The proof is an extension of the proof of cut-elimination for Z: also given in the
author's thesis [7]. It consists, in the usual manner, of a terminating algorithm
for removing instances of cut. In this case the algorithm proceeds in phases, each
of which removes cuts of a particular type.

P ropos i t ion4 . Uniform proofs are complete for O. That is, i f there is a cut-
free 0 proof of the sequent F; T; g/; A , C, then there is a uniform proof, i.e.
one in which any occurrence of a sequent with a non-atomic succeedent is the
conclusion of the right hand rule for the principal operator of the succeedent.

Again, the proof is an extension of the proof for L: and appears partially in [9]
and fully in [7].

As with s though, the completeness of uniform proofs is not enough to
yield an efficient interpreter, for the resulting programming language, due to the
need to partition the affine and linear contexts in applying many of the system's
rules. Fortunately, the IO proof system developed fo r / : [9] which shows how
to delay this process (in much the same way that unification delays the choice
of substitution in traditional logic programming) can be extended to the new
system with only a few changes.

5 Conclusion

We have shown that the system O forms an attractive refinement of L which
provides new implication operators corresponding to all the possible variants of
context management. This system will be implemented in the next public release
of the Lolli linear-logic programming interpreter.

So, returning to the original motivation, programs can now be written which
use the new forms of reasoning directly. For instance, if affine implication is given
the concrete syntax __@,s the switch example can be written as:

1 n i t Name S t a t e G : - s t a t e Name S t a t e - - @ G.

s e t l a m e l l e w S t a t e G : - s t a t e Name S t a t e ,
s t a t e Name l i e @ S t a t e - - @ G.

t o g g l e Name G : - s t a t e Name o f f , s t a t e Name o n - - @ G.
t o g g l e Name G : - s t a t e Name o n , s t a t e Name o f f - - @ G.

s e t t i n g Name S t a t e : - s t a t e Name S t a t e .

s Finding a reasonable concrete syntax for the new arrows of this system has been a
challenge. The hope is that the at-sign in '--Q' will at least be mnemonic for 'afline'.
Suggestions for better choices axe welcome.

181

which will behave properly, even when multiple switches have been defined.
Similarly, if relevant implication is given the concrete syntax '->>' then it is

possible to implement relevant reasoning systems like the following one, which
is taken from Bollen's article [1].

s t a t e z o n e l (downwind-of z o n e 2) .
s t a t e zone4 tox ic -dump.
s t a t e zone4 p o p u l a t e d .

s t a t e Z p o l l u t e d : - s t a t e Zl f a c t o r y , s t a t e Z (downe ind-o f Z l) .
s t a t e Z d a n g e r - t o - p o p : - s t a t e Z t o x i c -dmap , s t a t e Z p o p u l a t e d .

In this setting we can have the following interaction:

?- s t a t e zone2 f a c t o r y - > > s t a t e p o l l u t e d zone2 .
y e s .
? - s t a t e zone2 f a c t o r y ->> s t a t e d a n g e r - t o - p o p zone4 .
n o .

? - s t a t e d a n g e r - t o - p o p zone4 .
y e s .

While this particular interaction does not actually make use of the allowed con-
traction, it is not hard to conceive of queries that would.

It is important to note the fact that the simplicity of most of the proofs of
properties of/~ and O is the result of the careful restriction of these systems to
a few well behaved operators. Any a t tempt to integrate these different forms of
reasoning over a broad set of operators is likely to prove quite difficult. Witness
the complexity of Girard's system fr which unifies classical and intuitionistic
reasoning [4]. The fact that a useful language results from this work demon-
strates that sequential logic programming is really based mostly on the logic of
implication.

6 Acknowledgments

The author is thankful to Dale Miller, Frank Pfenning, and many others for their
helpful comments on this work.

R e f e r e n c e s

1. A.W. Bollen. Relevant logic programming. Journal o] Automated Reasoning,
7(4):563-586, December 1991.

2. D. M. Gabbay and U. Reyle. N-Prolog: An extension of Prolog with hypothetical
implications. I. Journal o] Logic Programming, 1:319 - 355, 1984.

3. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
4. Jean-Yves Girard. On the unity of logic. Technical Report 26, Universit~ Paris

VII, June 1991.

182

5. Joshua S. Hodas. Loni: An extension of ~Prolog with linear logic context manage-
ment. In Dale Miller, editor, Proceedings of the 199~)tProlog Workshop, 1992.

6. Joshua S. Hodas. Specifying filler-gap dependency parsers in a linear-logic pro-
gramming language. In Krzysztof R. Apt, editor, Proceedings of the Joint Interna-
tional Conference and Symposium on Logic Programming, Washington D.C., pages
622 - 636, 1992.

7. Joshua S. Hodas. Logic Programming in lntuitionistic Linear Logic: Theory, De-
sign, and Implementation. PhD thesis, University of Pennsylvania, Department of
Computer and Information Science, August 1993.

8. Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuition-
istic linear logic: Extended abstract. In G. Kahn, editor, Sizth Annual Symposium
on Logic in Computer Science, pages 32 - 42, Amsterdam, July 1991.

9. Joshua S. Hodas aJad Dale Miller. Logic programming in a fragment of intuition-
istic lineax logic. Journal of Information and Computation, 1994. To appear.

10. Dale Miller. A logical analysis of modules in logic programming. Journal of Logic
Programming, 6:79 - 108, 1989.

11. Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied Logic,
51:125-157, 1991.

12. Gopalan Nadathur and Dale Miller. An Overview of)tProlog. In Fifth Interna-
tional Logic Programming Conference, pages 810-827, Seattle, Washington, August
1988. MIT Press.

