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Abst rac t .  Two years experience with prograanmlng in Linear Logic has 
shown that while some problems require the full power of linear context 
management, for many this much control is too much. In such cases a re- 
striction on either weakening or contraction, but not both, is most appro- 
priate. In this article we introduce a refinement of the system proposed 
by Hodas and Miller in which each of these constraints is independently 
available. This enables programs to be more succinct, understandable, 
and efficient. 

1 I n t r o d u c t i o n  

Sequential logic programming based on linear logic was first proposed by Hodas 
and Miller in 1991 [8]. The motivating idea was that the context (database) 
management provided by traditional languages based on intuitionistic logic--  
such as Prolog, AProlog [12], N-Prolog [2], and others--was insufficient for many 
applications. Therefore, a new language was introduced which extended AProlog 
by using two separate contexts. Clauses in the ordinary, intuitionistic, context 
continue to be usable as many or as few times as desired; that  is, the structural 
rules of weakening and contraction are available in that  context. In contrast, 
those rules are not available in the bounded, linear, context; the usability of 
clauses in that context is far more restricted. 

In the two years since the system was first proposed, however, it has become 
apparent that  for many purposes the system is too restrictive. In some cases 
the programmer wants to bar weakening but allow contraction, in others the 
opposite effect is desired. While both these situations can be simulated in the 
existing system, the programs that result are not as clear as one would hope, 
and their execution profiles may be less than ideal. In this paper, therefore, we 
introduce a further refinement of the Hodas-Miller system in which there are 
now four separate contexts: 

* This material was mostly developed while the author was a student in the De- 
partment of Computer Science at the University of Pennsylvania. The work was 
funded under ONR N00014-88-K-0633, NSF CCR-87-05596, NSF CCR-91-02753, 
and DARPA N00014-85-K-0018 through the University of Pennsylvania 
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Linear: Neither contraction nor weakening are available. 
A~ine: Only weakening is available; clauses may be discarded but not dupli- 

cated. 
Relevant: Only contraction is available; clauses may be duplicated but not dis- 

carded. 
Intuitionistic: Both contraction and weakening are available. 

2 Logic Programming in Linear Logic 

Linear logic was developed in the mid 1980% as a result of Girard's work in 
the semantics of logic [3]. In this system, the structural rules of contraction 
and weakening can only be applied to formulas that  are marked with the ,I, 
modal. To understand the motivation and effect of this restriction, consider the 
intuitionistic (and classical) tautology: 

[(D D K) A (D D M)] D [D D (KA M)] 

which has the following proof: 

D 'D K KK DL D 'D M MM DL 
D D K,D ~ D D M,D , 

AR 
DDK, DDM, D,D , KAM 

contract 
D D K ,  D D M ,  D , K A M  

DR 
D D K ,  D D M  , D D ( K A M )  

AL 
(D D K)  A (D D M)  , D D (K A M) 

DR 
, ((D D K) A (D D M)) D (D D (K A M)) 

There is nothing disturbing about  this proof, until one considers the model: 

D := I have a dollar 
K :-- I can buy a pack of Kools 
M :-- I can buy a pack of Marlboros 

In which case we have proven that  if a dollar is enough to buy a pack of cigarettes, 
then it is enough to buy two packs. The unlimited availability of the contraction 
rule amounts to a license to print money. In linear logic this formula is not a 
tautology. In order for it to be provable it would require the provision of two D 
formulas in the rightmost implication, as in: 

[(D D K) A(D D M)] D [(DA D) D (K A M)] 

In order to simplify the presentation of their system, which they called s 
Hodas and Miller used a non-standard presentation of the fragment of linear 
logic on which it is based. The rules of s are given in Figs. 1 and 2. Rather 
than using the '!' modal to control the use of contraction and weakening, the 
sequents in this system have two separate contexts, each consisting of a multiset 
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of formulas. 2 The structural rules are available in the left hand context but  not 
in the right hand one. Thus the s 

B 1 , . . . , B , ~ ; C I , . . . , C m  ~ D 

is intended to behave like the linear logic sequent: 

! B 1 , . . . , ! B , ~ , C 1 , . . . , C r n  ~ D 

In addition, the structural rules themselves are not explicit, but  rather are 
woven implicitly into the way in which the other rules treat  the two contexts. 
So, for instance, the axioms of the system require that  the linear context contain 
only the formula being matched, while the intuitionistic context 's contents are 
arbitrary. In this way weakening is barred in the linear context, but  allowed (and 
moved to the leaves) in the intuitionistic context. 

In linear logic the left hand introduction rules, other than !L apply only to 
formulas not marked with '!'. In s this behavior is mimicked by defining the 
left hand introduction rules to apply only in the linear context. The absorb rule 
is used to copy a formula from the intuitionistic context to the linear one to 
make it available to the other left hand rules. The original formula remains in 
the intuitionistic context, thereby providing some of the behavior of contraction 
for that  context. 

Clauses are added to each context by using t~he corresponding implication 
operator in goal position. Searching bot tom up for a proof of an implication goal 
leads to an a t tempt  to prove the conclusion of the implication in a setting where 
the assumption has been added to the appropriate context. 

The system /: has several desirable properties. First, the cut-elimination 
property holds, though the proof is a bit more complex than for intuitionis- 
tic logic. Second, uniform proofs, those in which sequents with non-atomic right 
hand sides are always the conclusion of the right hand rule for the principal 
logical operator of the right hand side, are complete. Taken together, these facts 
imply that  there is a simple, effective, bot tom-up search strategy for finding 
proofs in the system. This strategy corresponds roughly to SLD-Resolution, and 
qualifies the system to be called a logic programming language, a Another impor- 
tant  property is that  the proof system of SProlog properly embeds into this one. 
The proof of a formula that  does not include any instances of --o can be directly 
mapped into a corresponding proof in the theory of hereditary Harrop formu- 
las. Thus the -o  operator extends the behavior of that  system. These properties 
were discussed by Hodas and Miller [8, 9] and proved in full detail in Hodas'  
dissertation [7]. 

2 In the original presentation of s the intuitionistic context was described as a set 
rather than a multiset. This assumption eased the proof of certain properties of the 
system's model theory, but is unnecessary here. 

3 The definition of uniform proofs and the notion that the completeness of such proofs 
qualifies a logic to be called a logic programming language is due to Miller, et a2. 
[10, 11]. 
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iden t i ty  
F;B- - - -~  B F; ,4 , T T ~  

F , B ; , 4 ,  B , C 

F, B ; ,4 , C 
absorb 

F; "4, Bi  ~ C 
F; "4, B1 & B2 ~ C &L~ 

F; A --- ,  B F; A - - - ,  C 

F ; "4 - - - ,  B & C 

F; A1 ---* B F; ,42, C ----, E F; ,4, B ---* C 
F ; , 4 1 , , 4 2 , B . - o C - - - ~  E --or. F ; , 4  : B - o C  - o k  

F ; ~ - - - ~  B F ; , 4 , C - - .  E F , B ; , 4 - - ~ C  

F ; ,4 , B :~ C , E F ; ,4 - - ~  B ~ C 

F; ,4, B[x ~ t] , C F; ,4 ----, B[x  ~ c] 
F ; , 4 , V x . B  , C Vz F ; A  ---~ V x . B  u  

provided that c is not  free in the lower sequent. 

F~;,4~ ----,B P2; ,42,B---*C /"I;~---.--,B F2, B ; A - - . C  
cu t  cur l  

FI,F2;'41,'42 ~ C F1, F2 ; ,4 ---* C 

Fig. 1. s A proof system for the connectives T, &, -o, =~, and V. 

1R 
F;~ , I 

F; II ----, C F; A1 ----* B1 F; "42 ~ B2 
!R 

F; ~ ----,!C F; "41, "42 ---' B1 | B2 
| 

F; ,4 - - ,  3z.B F; ,4 ---, B~ ~ B2 

Fig. 2. Additional operator rules for s 

A programming language, Lolli, which directly implements the logic of this 
system has been developed and distributed. The behavior of the various oper- 
ators, and their relation to the operators of AProlog has heavily influenced the 
syntax of Lolli [5, 9]: 

�9 Clauses, unless marked with the keyword LINEAR, are assumed to be loaded 
into the intuitionistic context. 

�9 The implication operators --o and =r are represented by ' -o '  and '=>', re- 
spectively, in goals, and by ' : - '  and '<=' in clauses. 

�9 The two conjunctions, & and | are represented by ' t '  and ' ,  ', respectively. 
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�9 The atomic t ru th  formulas T, and 1 are written ' e r a s e ' ,  and ' t r u e ' ,  respec- 
tively. 

�9 The standard quantifier assumptions are made. Explicit quantifiers are writ- 
ten as in ' f o r a l l  x \  ( foo  x) ' .  

3 M o t i v a t i o n s  for a N e w  S y s t e m  

The  system described by Hodas and Miller succeeded in many ways at meeting 
the goals of its designers. It is an attractive system for implementing a variety 
of programs in which the management of clausal resources during execution is 
of interest [6, 7, 8, 9]. 

However, in many cases the system has proven to be less than ideal. Consider 
one of the simplest motivating examples for the system: the simulation of a toggle 
switch. The state of a named switch is represented by a clause for the binary 
relation state(name, value) which is stored in the linear context. A program to 
manage the switch might be given by: 

i n i t  Name S t a t e  G : -  s t a t e  Name S t a t e  -O G. 

s e t  Name N e e S t a t e  G : -  s t a t e  Name S t a t e ,  

s t a t e  Name N e w S t a t e  - o  G. 

t o g g l e  Name G : -  s t a t e  Name o f f ,  s t a t e  Name on  - o  G. 

t o g g l e  Name G : -  s t a t e  Name o n ,  s t a t e  Name o f f  - o  G. 

setting Name State :- state Name State. 

Unfortunately, when there is more than one switch, the system behaves in 
unexpected ways. Consider the following interaction: 4 

?- init sl on top. 

?- toggle sl top. 

?- setting sl S. 

S <- off 

yes 

?- init s2 on top. 

?- setting sl S. 

no 

The problem is that  once the second switch is initialized there are two formulas 
in the linear context. Any future goal must use both of these formulas if its proof 
is to succeed. Thus, in order to check the state of one switch, the state of the 
other must also be accessed: 

4 The goal top used in this interaction is a built in predicate used to re-invoke the 
read-prove-print loop at that point in a proof. 
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7 -  s e t t i n g  s l  S1 ,  s e t t i n g  s2  $ 2 .  
S1 <- o f f  
$2 < -  on 
y e s  

If we are not actually interested in the setting of the second switch at the 
moment, we can direct the interpreter to ignore it (and any other formulas in the 
linear context) by including a I in the query, in the form of the e r a s e  command, 
as in: 

?- s e t t i n g  sl S,  e r a s e .  
S <- off 

yes 

This behavior could be added to the definition of the s e t t i n g  predicate, but 
that is somewhat confusing and leads to other complications. The problem is 
that the formula used to store the state of the switch cannot he weakened or 
contracted, while the programmer really wants to restrict only contraction. This 
is the form of control provided in affine logic. It seems that such a constraint 
should he indicated at the point where the clauses for the predicate are assumed, 
rather than at the point where the predicate is called. 

If we were to augment the proof system for / :  with a form of weakening for 
just the special formula 1, as in: 

F ; A  , C 
F; A, I ' C IL 

then affine reasoning for a formula A could be simulated by replacing instances 
of A with instances of (A & 1). The interpreter could weaken such a formula by 
first using the &L2 rule to select the 1 portion of the formula, which could then 
be discarded by using the new rule. The switch program would then be replaced 
by: 

k n i t  Name S t a t e  G : -  ( s t a t e  Name S t a t e  k t r u e )  - o  G. 
s e t  Name N e w S t a t e  G : -  s t a t e  Name S t a t e ,  

( s t a t e  Name N e w S t a t e  R t r u e )  - o  G. 

t o g g l e  Name G : -  s t a t e  Name o f f ,  ( s t a t e  Name on ~ t r u e )  - o  G. 
t o g g l e  Name G : -  s t a t e  Name o n ,  ( s t a t e  Name o f f  ~ t r u e )  - o  G. 

s e t t i n g  Name S t a t e  : -  s t a t e  Name S t a t e .  

which would behave as desired. 
Unfortunately, this rule cannot be added directly to s without compromising 

the completeness of uniform proofs and correspondingly complicating the proof 
procedure. Even then, the resulting programs would be somewhat less readable 
than one would hope. 

A similar problem occurs when the programmer wants to use relevant rea- 
soning, as in artificiM intelligence applications. In such a setting the answer to 
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"Does A imply B?" should be "yes" only if A was actually used to demonstrate 
B, not if B is true regardless. On the other hand, it is not generally of inter- 
est whether the assertion A was referenced more than once in the proof of B. 
Relevant behavior can be simulated in L: goals by adding the assumption to 
both contexts simultaneously. Adding it to the linear context guarantees that  it 
must be used at least once; adding it to the intuitionistic context allows it to 
be used as many additional times as needed. Thus the relevant goal A R. B can 
be replaced by t h e / :  goal A =~ (A -o  B). Unfortunately the execution profile of 
programs encoded in this way is somewhat leas than ideal, since the interpreter 
spends a good deal of t ime enforcing the linear constraint needlessly. 

4 An Omnibus Logic 

A logic programming language with direct support  for relevant reasoning was 
first proposed by Bollen in his work on Conditional Logic Programming (CLOG- 
PROG)  [1]. While that  system shares much of its philosophical and formal foun- 
dations with s it is somewhat weaker in that  arbitrary nesting of quantifiers 
and implications is not Mlowed. 5 In addition it says nothing about  the affine 
and linear constraints which have been shown to have many useful applications. 

In this section we introduce a new system, O, whose rules are given in Figs. 3 
and 4. The system is similar to s but  the left hand sides of its sequents are com- 
posed of four separate multiset contexts. Left to right these are the intuitionistic, 
relevant, atfine, and linear contexts. 

As with s  the structure of the axioms and the absorb rules determines much 
of the behavior of the system. In the identity axioms, both the intuitionistic and 
affine contexts may have arbitrary contents, while the relevant context must be 
empty and the linear context must contain only the formula being matched. This 
enables implicit weakening in the intuitionistic and affine contexts but  not the 
other two. 

The absx rule, which corresponds to the absorb rule in s  makes a copy of a 
formula in the intuitionistic context and makes it available for use in the linear 
context. In contrast, the absA rule removes the formula being absorbed from the 
affine context when it is added to the linear context, so that  the formula cannot 
be reused. Finally, the absR rule removes its formula from the relevant context 
but  places copies in both the intuitionistic and linear contexts. Thus, once the 
formula has been used once, it can then be used zero or more additional times. 

As with the system s  there is an implication operator corresponding to each 
of the contexts used to load clauses into that  context. 

The  rest of this section takes the form of a series of propositions about  the 
formal properties of O, in particular its relationship to /~ and other systems. 
These propositions are proved in full in the author 's  dissertation [7]. As with 
the papers which introduced s  the bulk of the propositions here are stated in 

s Miller and Hodas have demonstrated in several papers the advantages of allowing 
such arbitrary nesting. These issues are summarized in Hodas' dissertation [7]. 
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identi ty  
, B  F; T ; ~ ; A  ---* T T R  

F, B;T;  ~; A, B - - *  C 
F, B;T;  ~; A ----* C 

F, B; T; ~; A ,  B ----, C 
abs~ F; 7l", B; ~; A ---* C abs~ 

F; T; ~; ZX, B --- ,  C 
F; T; ~,  B; zl ~ C absA 

F; T; ~; zI, B~ --- .  C 

F; T; ~; A ,  BI & B~ ----* C 

F ; T ; ~ ; A  --- ,  B F ; T ; ~ ; z 3  , C 
&Li & R  

F ; T ; ~ ; A  , B & C  

F;T;~I;ZXl  , B F;T;~2;z i2 ,C--- - - .  E F ; T ; ~ ; A , B - - . C  
--o L - o R  

F ; T ; ~ , ~ 2 ; A ~ , A 2 , B - o C  , E F;T;~;Z3-- - - ,  B - o C  

F; ~;~1;~ --- .  B F ; T ; ~ 2 ; A , C - - - - - . E  F ; T ; ~ , B ; z X - - . C  
~ L  ~ R  

F ; T ; ~ I , ~ 2 ; z I ,  B A__. C , E F ; T ; ~ ; A  , B ~ C 

F;T;O;O---* B F ; T ; ~ ;  A , C - - - ~  E F ; T ; ~ ; A , B  , C 
R_. L R. R 

F ; T ; ~ ;  A , B  R. C --- ,  E F ; T ; g f ; ~  --- ,  B ~ C 

F; $; ~; 0 -----* B F ; T ; ~ ; z 3 , C - - - , E  

F ; T ; ~ ;  A , B  =~ C , E 
=}L  

F , B ; T ; ~ ; z l  , C 
F; T; ~; A ---~ B ~ C ~ R 

F; T; ~,; A, B[x ~ t] , C F; T; ~; zX ---~ B[x ~ c] 
VL VR F; T; ~; A, Vx.B , C F; T; ~; A ~ Vz.B 

provided that c is not free in the lower sequent. 

F~;T~;IP~;A~ ~. B F2;T2;!P2;A1,B , C 
CUrL 

]'1, f2; Y1, Y2 ; ~1, ~2; A:t, A2 - - -*C  

F1;~;$;0 ---* B F 2 , B ; T ; ~ ; A  -----* C 
cuti 

F 1 , F 2 ; T ; ~ ; A  , C 

~ ; 8 ; ~ ; 0 - - - ~ B  ~ ; T ; ~ , B ; A  , C  
~ , ~ ; T ; ~ , ~ ; A  . C  cutA 

~ ; ~ ; ~ ; 8 - - - - . B  ~ ; ~ , B ; ~ ; A  
~ , ~ ; ~ , ~ ; ~ ; A - - - * C  

, C  
cutR 

Fig.  3. System O for Intuitionistic, Relevant, Afline, and Linear Implication 



179 

F;T;~I ;A1 ~ Bt F;T;~2;A2 , B2 
IR | 

F;0 ;~ ;~  , 1  F;T;~I,~z;Aa,A2----~B~| 

F;r ~;g ---* C !R 
F; r r r ----~!C 

F; T; ~; za ~ B[z ~ t] F; T; ~; A ----, Bi 
F; T; g'; Zi ~ Bx.B BR F; T; ~; Z~ ~ B1 ~ B2 ~R~ 

Fig. 4. Additional operator rules for O 

terms of the core system. The additional operator rules can however be added 
once the view is restricted to uniform, cut-free proofs. The first two propositions 
describe the relationship between s and (9: 

P r o p o s i t i o n l .  The system (9 is complete for L. That is, i f  the ~ sequent 
F; A , C is provable, then F; 0; 0; A , C is provable in (9. 

Proof. The proof is immediate, since each step in the s proof can be mapped 
directly to an (9 step by inserting the two empty contexts into the antecedents 
of the sequents. Tha t  the middle two contexts never need to be involved is clear 
since the F,  A and {C} are multisets of formulas with none of the new operators 
from (9, and it is only the left-hand rules for the two new implications that  lead 
formulas to be moved into the two middle contexts. [] 

P r o p o s i t i o n 2 .  The system (9 is sound for s augmented with the rule: 

F ; A  , C 
F; A , I  ' C 1L 

in the sense that if  C ~ is the result of recursively replacing all instances of (D n_~ 
E) and (D ~ E) in C with (D ~ (D -o E))  and ((D ~ 1) -o E), respectively, 
and i f r  o = {C~ �9 r }  and r ~ '  = { ( C ~  1)1C �9 r } ,  then, if  the (9-sequent 
F;Y;~P;A , C is (9-provable, then F ~ 1 7 6 1 7 6 1 7 6  A ~ , C o is provable 
in the augmented s 

The proof is by induction on the structure of proofs. 
Hodas and Miller showed that there is an encoding of hereditary Harrop 

formulas, and their corresponding sequents, in to / :  such that  a sequent is provable 
in intuitionistic logic if and only if the encoded sequent is provable in s [7, 9]. 
By Propositions 1 and 2, then, the same holds true for (9. (The "if and only 
if" is maintained, because the new 1L rule in Proposition 2 will not occur in 
the proof of an encoded Harrop sequent.) A similar encoding and proof can be 
used to show that  the same property holds for relevant and affine logic (over 
implication, conjunction and universal quantification) relative to (9. 

The last two propositions demonstrate that ,  in spite of its enrichment relative 
to s  (9 still has two crucial properties that  justify using it as the foundation of 
a logic programming language: 
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Propos i t i on3 .  Cut elimination holds for system O. That is, if  there is an O- 
proof of the sequent FI; Fit; F,4; FL ~ C, then there is a proof which does not 
include occurrences of the cuQ, cutit, tUfA, or CUrL rules. 

The proof is an extension of the proof of cut-elimination for Z: also given in the 
author's thesis [7]. It consists, in the usual manner, of a terminating algorithm 
for removing instances of cut. In this case the algorithm proceeds in phases, each 
of which removes cuts of a particular type. 

P ropos i t ion4 .  Uniform proofs are complete for O. That is, i f  there is a cut- 
free 0 proof of the sequent F; T; g/; A , C, then there is a uniform proof, i.e. 
one in which any occurrence of a sequent with a non-atomic succeedent is the 
conclusion of the right hand rule for the principal operator of the succeedent. 

Again, the proof is an extension of the proof for L: and appears partially in [9] 
and fully in [7]. 

As with s though, the completeness of uniform proofs is not enough to 
yield an efficient interpreter, for the resulting programming language, due to the 
need to partition the affine and linear contexts in applying many of the system's 
rules. Fortunately, the IO proof system developed fo r / :  [9] which shows how 
to delay this process (in much the same way that unification delays the choice 
of substitution in traditional logic programming) can be extended to the new 
system with only a few changes. 

5 Conclusion 

We have shown that the system O forms an attractive refinement of L which 
provides new implication operators corresponding to all the possible variants of 
context management. This system will be implemented in the next public release 
of the Lolli linear-logic programming interpreter. 

So, returning to the original motivation, programs can now be written which 
use the new forms of reasoning directly. For instance, if affine implication is given 
the concrete syntax __@,s the switch example can be written as: 

1 n i t  Name S t a t e  G : -  s t a t e  Name S t a t e  - - @  G. 

s e t  l a m e  l l e w S t a t e  G : -  s t a t e  Name S t a t e ,  
s t a t e  Name l i e @ S t a t e  - - @  G. 

t o g g l e  Name G : -  s t a t e  Name o f f ,  s t a t e  Name o n  - - @  G. 
t o g g l e  Name G : -  s t a t e  Name o n ,  s t a t e  Name o f f  - - @  G. 

s e t t i n g  Name S t a t e  : -  s t a t e  Name S t a t e .  

s Finding a reasonable concrete syntax for the new arrows of this system has been a 
challenge. The hope is that the at-sign in '--Q' will at least be mnemonic for 'afline'. 
Suggestions for better choices axe welcome. 
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which will behave properly, even when multiple switches have been defined. 
Similarly, if relevant implication is given the concrete syntax '->>' then it is 

possible to implement relevant reasoning systems like the following one, which 
is taken from Bollen's article [1]. 

s t a t e  z o n e l  (downwind-of  z o n e 2 ) .  
s t a t e  zone4  tox ic -dump.  
s t a t e  zone4  p o p u l a t e d .  

s t a t e  Z p o l l u t e d  : -  s t a t e  Zl f a c t o r y ,  s t a t e  Z (downe ind-o f  Z l ) .  
s t a t e  Z d a n g e r - t o - p o p  : -  s t a t e  Z t o x i c -dmap ,  s t a t e  Z p o p u l a t e d .  

In this setting we can have the following interaction: 

?-  s t a t e  zone2  f a c t o r y  - > >  s t a t e  p o l l u t e d  zone2 .  
y e s .  
? -  s t a t e  zone2  f a c t o r y  ->> s t a t e  d a n g e r - t o - p o p  zone4 .  
n o .  

? -  s t a t e  d a n g e r - t o - p o p  zone4 .  
y e s .  

While this particular interaction does not actually make use of the allowed con- 
traction, it is not hard to conceive of queries that  would. 

It is important  to note the fact that  the simplicity of most of the proofs of 
properties of/~ and O is the result of the careful restriction of these systems to 
a few well behaved operators. Any a t tempt  to integrate these different forms of 
reasoning over a broad set of operators is likely to prove quite difficult. Witness 
the complexity of Girard's system fr which unifies classical and intuitionistic 
reasoning [4]. The fact that  a useful language results from this work demon- 
strates that  sequential logic programming is really based mostly on the logic of 
implication. 
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