
A Language wi th Fini te Sets
E m b e d d e d in the C L P - s c h e m e

Agostino Dovier

Universitd di Pisa, Dip. di Informatica
C.so Italia, 40. 56100-Pisa (Italy)

e-mail: dovier@di.unipi, it

Abs t r ac t . Problems and solutions related to the introduction of finite
set formers and basic operations on sets in a Logic Programming lan-
guage axe discussed. In particular it is shown that a good solution is
to begin with a CLP-scheme whose signature ,U is endowed with two
functional symbols: 0 for the empty set and with for the set construction
symbol, using the symbols E, ~, =, ~ as constraint predicate symbols.
The axioms of the selected set theory axe described, along with the cor-
responding algebraic interpretation and the constraint satisfiability al-
gorithm. Other usual set operators (such as _, t3, etc.) are shown to be
definable in the extended language. Also, such an approach turns out to
be well suited to accommodate for intensional set formers, providing the
language is endowed with some form of negation.

1 I n t r o d u c t i o n

Aiming at extending a logic p rogramming language with the addition of set
manipula t ion capabilities, it is necessary to decide first what kind of objects and
which operations on them the language should provide. Possible choices are, for
instance:

- (finite) extensional sets, such as { t 0 , . . . , t , } ;
- (finite) intensional sets, such as {~ e S : T};
- predicate symbols =, E, C, C;
- operators (by the way of functional/predicative symbols) tA, A,\.

Other similar objects such as hyper-sets (i.e. non well founded sets) or multi-
sets [10] are not explicitly considered in this paper. Furthermore, it is impor tan t
to decide which logic language has to be extended. In particular, we can choose
between:

- Horn Clauses Language with SLD-resolution [9];
- Constraint Logic Programming [6].

Throughout the introduction we will not be too formal. Our aim here is
to give an informal overview of the problem to an interested reader with some
knowledge of logic Programming and of sets.

78

As a starting point we analyze the problem of representing extensional sets.
At least two alternative solutions are viable:

i. {to ,t,,} is represented as union of singletons, i.e. {to} U . . . U {t,};
ii. { to , . . . , t , } is represented as a list, i.e. (. . . (0 w i t h t n) . . .) wi th t0 .

In i three functional symbols are needed: 0, of arity 0, {.}, of arity 1, and U,
of arity 2. In a non trivial set theory (such as ZF), t9 must be Associative (i.e.
A U (B U C) = (A L) B) LJ C), Commutative (i.e. A U B = B U A) and Idempotent
(i.e. A tJ A = A). Moreover 0 is the identity w.r.t, union (i.e. A U 0 = 0 U A = A).

In ii only two functional symbols are needed: 0, of arity 0, and with, of arity
2. Again in a significant set theory, wi th must exhibit a Right permutativity
property (i.e. (X with Y) with Z -- (X with Z) with Y) and a Right absorption
Property (i.e. (X wi th Y) wi th Y -- X wi th Y).

However, notice that the unification problem for set terms would be NP-
complete [5] (no matter which representation has been choosen).

In this paper, as well as in [3, 5], we have choosen approach ii. This is mainly
motivated by the simpler (in the sense of number of independent solutions)
unification problems characterizable with the latter approach.

Assuming the set representation approach ii, we could define a logic program-
ming language, based on HCL with resolution but with the additional capability
of performing the unification between set terms taking into account the proper-
ties of wi th described above.

The following basic predicates for set manipulation are then definable in the
language 1 :

= (x, x)
~(X, Y with X) *--
C (X, Y) ~-

(VZ �9 X)~(Z, Y)
or(X, B wi th X, C) ~--

U(A,B,C) ~-
(VX �9 A)E(X, C),
(vY e B)g(Y, C),
(VZ �9 C) or(Z, B, C)

or(X, B, C with X)

The resulting language (i.e. HCL + extensional set terms + set unification) is
powerful though simple. Nevertheless, the following two issues (at least) cannot
be resolved adequately:

- effectiveness: if, for instance, the resolution algorithm is applied to the goal
�9 --C (A, 0 wi th a) then an infinite SLD-tree is generated trying to compute
the (sound) answers A ~ 0, A ~ 0 wi th a, A ~-* 0 wi th a wil;h a, To
solve the problem one could add the literal X ~ Z to the body of the second
clause defining C (see footnote I);

1 The construct (Vx E y)~o is intended to denote the formula Vz(x E y ---* ~). In
[5] it is shown that an extended Horn clause containing such restricted universM
quantiiiers can be translated via simple pre-processing to a set of pure Horn clauses.
For instance the definition of the predicate C, if ~ ---- {~, with}, can be re-written as
follows: _C (+,Y) +--. C_ (Z , i t h X , Y) +- ~(X,Y) ,C (Z,Y).

79

- expressive power: other basic set-operations, such as ~, r N, C, \ cannot
be defined unless some form of negation is introduced in the language (thus
introducing also a number of well-known new problems).

Actually, having the definition of r and (or) r would suffice to solve these
problems. In particular it is now possible to define the remaining set operations
(set predicates are used infixed):

n(A, B, C) *--
(VX e C)(X A ̂ Xr
(VY �9 A) iff(Y, B, C),
(u E B) iff(Z, A, C)

\(A, B, C) *--
(u �9 A) or(X, A, B),
(Wl E C) (YEA A Y r B)

where a negative information is needed to define iff.

i f f(X, A, B)
X ~ A , X ~ B XCA, X B.

Furthermore, C (X, Y) ~ X C Y, X 5s Y.
Hence the problem is that of introducing ~ and r into the HC language

with set unification; if we want to avoid the drawbacks of full negation, the most
elegant way to do it is introducing them as constraints.

Notice that ~ and 5s can be easily defined one in terms of the other:

(A, B) ~ ~ (A, B) *--
A ~ r wi th B B wi th A # B.

Therefore, the simplest language able to deal with extensional sets in the
desired way is a CLP-like language equipped with the proper handling of the
constraint -- (for set unification) and 5s (or alternatively r

A hybrid solution based on this approach is described in [3, 5]. In that paper,
and 5s are treated as constraints; on the other hand E e = are built in the

language and their treatment is introduced directly into the resolution algorithm
(for the sake of a more precise completeness result). The resolution step does not
differ too much from the logic one of the CLP-scheme [6]. The main drawback
there is the non-uniformity of treatment between E and -- and their negative
counterparts.

In this paper we try to obviate these difficulties starting from a real CLP-
Schema containing ~, 5s E, and -- in the set of constraint predicative symbols.

Section 2 presents the language, its interpretation and its logical axiomatiz-
ation. The satisfiability algorithm is described in section 3. A solution for the
problem of introducing intensional sets is presented in section 4. In section 5
some future directions of the work are shown.

80

2 T h e l a n g u a g e

Standard CLP notations and results [6] are assumed. As noticed in the previous
section, we would like to have a CLP language able to deal with extensional set
terms together with standard Herbrand terms. Therefore, we introduce into the
signature 27 two particular functional symbols:

- with, binary, and
- 0, nullary.

wi th will be used infixed, left associative: for example the term 0 with cwith
(0 wi th b wi th a) w i th a will denote the set {a, {a, b}, c} (in this particular case
we assume that a, b, and c belong to 27).

If other functional symbols (i.e. a and b) are in 27, we would like to write
terms of the form (awithO)withb. Such a term will be interpreted as a 'coloured'
set, i.e. a set based on an object different from 0 (in this case a). Two sets will
be considered equal if (and only if) they have the same elements and they are
based on the same 'seed'. Furthermore we fix I I e = {E, ~, =, #}.

2 . 1 I n t e r p r e t a t i o n

First of all we must define the interpretation domain ,4 (a single sort is suf-
ficient for our purpose). Let us consider UH, the Herbrand universe on 27 =
{0, w i th , . . . } . Fixed an ordering on UH, let ~ be the finest equivalence relation
on UH built with the right absorption and right permutat ivi ty property. Suppose
we are able to choose a canonical representative for each equivalence class; then
,4 ---~ {t : t E UH A t is canonical }.

Constructively, let < v be an order relation on 27, we extend it to terms in
reverse lexicographic order (in particular r w i th t < s w i th u holds if t < u or
t = s and r < s).

A ground term t is said to be canonical if:

- it is a constant, or
- each its subterm is canonical and, furthermore, for each subterm of t of the

form s wi th u wi th v, u < v holds.

We define the function 7" mapping each term in its canonical representation,
in the following way:

- r (f (t l , . . . , tn)) = f (r (t l) , . . . , r (t ,)) if f is different from with;
- ~-(kwithtl w i t h . . , w i t h t ,) = r (k) w i t h S l w i t h . . . w i t h s m where s l , . . . , sm

(m _< n) are the distinct canonical representatives of t l , . . . , t , ~ such that
sl < " " < sra (i.e. { s x , . . . , s,n} and { r (t l) , . . . , r (tn)} coincides).

Now we are ready to define the interpretation functions. I f is defined as I f =

A (x l , . . . , xn).r(f (za, . . . , xn)) for each f n-ary occurring in ~7. ~ is the identity
function on ,4; I~(s, t) = True if and only if/__~(s, t) = False. I~(s, t) = False if

t is of the form f (t l , . . . , t ,), f different from with; I~ (r, s w i th t) = True if and

81

only if/__~(r, t) or I~ (r , s) = True . I~ (r , s) = T r u e if and only if I~ (r , s) = False.
I '4(t Ir s) = I ~ (r (t) , v(s)), for 7r in {=, E, r ~}. I A will be then inductively
extended to first order formulas in the usual way.

Such an interpretation is clearly solution compact (in fact each element a E ,4
is uniquely definable by the finite constraint C -- {X = a} - no limit elements
occur in ,4).

2.2 T h e t h e o r y

We are looking for a set theory T such that .4 and T correspond [6]. In what
follows, free variables are intended to be universally quantified.

(U) (Scheme) z ~ f (x l , . . . , x ,) , for each f different from wi'zh;
(w) �9 E z w i t h y ++ (~ E z v �9 = y)
(L) y E �9 - ~ 3~ (y r ~ A �9 = ~ w i t h y)
(E) v wi th x = w wi th y *-+

(~ = y A, = ~) v (= = y A v with �9 = w)V

(x = yA v = w w i t h y) V 3z (v = z w i t h y A w -- z w i t h x)
(a) 3 z V y (y E �9 -~ (~ ~ �9 A ~ r z))

Remarks: since 0 E E, (U) states, in particular, the existence of an object which
does not contain any element: the emptyset; (W) describes the behaviour of
the functional symbol with, the set constructor; the less axiom (L) states the
existence of the set x \ {y}; the extensionality axiom (E) shows how to decide
if two sets can be considered equal; finally regularity axiom (R) assures that
membership cannot form cycles.

Such a theory departs from the 'standard one' in two aspects:

- Presence of ur-elements. By (U) each term with a main functional symbol
different from wi th is a set lacking in elements. In particular it is possible
to introduce by definition the predicate ur(x) ~ Vy (y ~ x) in the theory.

- Each term t has a kernel associated with it; if ur(t) then t is also its kernel,
otherwise the kernel is the seed on which the set term is based. We may then
define, by induction, for each term x:

k e r (~) = ~ ++ (~ r (~) ^ y = ~) v

(3~ ~ (~ = ~ w i t h v A , r ,1, A y = k e r (w))) .

It is easy to derive the following properties in the theory:

- (~ . i t h y) ~ i t h z = (~ . i t h z) . i t h y (p e r m u t a t i ~ i t ~) ,
- (x , i t h y) wi th y = = w i t h y (absorption): (by using (W) and (E));
- Let (E*) be the formula v w i t h z = w w i t h y +-+ (ker(v) = ker(w) A Vz (z E

v wi th z +-+ z E w wi th y)). (E*) holds in T , if v, w, z , y are E-terms.

82

Standard equality axioms are assumed, together with the following freeness
schemes of axioms:

1. f (z l , . . . , z ,) # g(Yl , . . . , ym), if f is different from g;
2. f (z l , . . . , Xn) = f (Y l , . . . , Ym) ~ (Zl : Yl A . . . A xn = Yn), if f is different

from with;
3. t[x] -7/= r (t[x] stands for a term different from x, with main functor different

from with, in which z appears);
4. t[z] ~ z, and ker(z) r t[z]: they are needed to enforce (R) for 'sets' contain-

ing terms built not only with {}, with, and variables.

In section 3.5 we will show that 7" is satisfaction complete. Furthermore the
following lemma holds:

L e m m a 1. T(IIc , ~7) and ,4(IIc , ~7) correspond.
Proof: (1): ,4 ~ 7"; it is sufficient to show that I'a(~o) - True for each axiom ~o
of 7".

(U) Immediate from the definition of I~e(s, t);
(W) I~t(z e z with y) = True iff Iae(r(x), r(z with y)) = True, iff

r(zwithy) -~ hwi th{ to , . . . , t , } 2 and r (z) (~ x) ~ t l fo r some i E {0 , . . . , n}.
If t, ~ r (y) (~ y) then IA(r = y) = True; else I ~ (z e z) = True. The
converse is straightforward;

(L) Let z, y e ,4 such that IA(y e z) = True; then z = h wi th (t o , . . . , tn) and
y ~= ti for some i E {0 , . ' . , n} . z = h w i t h { t 0 , . . . , t i _] , t i + l , . . . , t ,) is the z
such that 3z E ,4 I'4(y ~ z A z = z w i t h y) = True;

(E) I (.ith = wwithy) = True iffr(vwit) r(wwithy) hwith{t0, . . . ,
t ,} . Now, r (vwi thz) ~ he i th{ to , . . . , tn} iffthere exists i such that t, ~ r (z)
and r(v) = h with { to , . . . , tn} or r(v) = h with {to, . . . , t i - l , t i+l , . . . ,in}.
Similarly, r(w with y) =* h wi th {to , . . . ,tn} iff there exists j such that tj
r(y) and, r(v) ~ hwi th{ t0 , . . . , tn} or r(v) ~ hwi th{ t0 , . . . , ti_l, t j+ l , . . . , tn}.

- if i = j then r (x) ~ r(y) and i) r(v) ~ r(w) or ii) r(v) ~ r(w with y)
or iii) r (v w i t h z) -~ r(v) or iv) let z = h w i t h { t 0 , . . . , t i - l , t i+l , . . . , t , } .
Then r(v) & r(z wi th y) and r(w) ~ r(z wi th z).

- if i # j , let z = h wi th (t 0 , . . . , t , } . Since r eliminates duplications we
have: r(v) ~ r(z wi th y) and r(w) ~- r (z wi th z).

The converse is straightforward.
(R), (equality) and (freeness) are straightforward.

(2) A ~ 3C implies T ~- 3C for each constraint C: it is sufficient to prove the
claim for atomical constraints: (a) `4 ~ 3~(s = t), (b) `4 ~ 3~(s r t), (c)

In order to show (a) we will prove the claim: f ir(s) ~ r(t) then T F (s = t),
by structural induction on the ground term s.

2 with the object h with {to,.. . , tn } we will denote the term h with to with. . , with t ,

83

- s is a constant: r(s) = s. This implies that t = r (t) = s and (by equality)
we have T t- (s = t);

- s is f (s l , . . - , Sn), f different from with:

r (f (s l , . . . , s ,)) = f (r (S l) , . . . , r (s ,)) g 7(t). This means that t has the
form f (t l , . . . , t ,) and for each i v(ti) ~- r (s i) . By induction hypothesis, for
each i E { 1 , . . . , n } we have 7" ~- (sl = tl). Then T F (sl = t l A . - . A s , = t ,) ,
and, by equality, 7" l- (f (s l , . . . , sn) = f (t l , . . . , tn));

- s is h w i t h { s 0 , . . . , sin}: r(s) = r(h)with{~'(sio),.. . , z'(sip)} (/9 _< m); then t
has the form k wi th{ t0 , . . . ,tn}, where r(t) = v (k) , i t h { r (t j o) , . . . , v(t j ,)} ,

(p < n) and, moreover, r(h) ~ r(k) and for each r E { 0 , . . . , p } , r(si.) ~-
r(tj.). By induction hypothesis and equality we have: 7" ~- (h wi th {s i0 , . . . ,
si, } = k w i t h { t / o , . . . , t j , }). By means of absorption and perrnutativity prop-
erties proved in the theory, the desired result follows.

(a) follows immediately. (c) follows from (a) and (W).

Likewise, to prove (b) and (d), we need the to prove following if r(s) ~ r(t)
then 7" t- (s ~ t) always by structural induction on the ground term s:

- s i s a constant: r (s) = s: by the first freeness axiom;

- s is f (s l , . . . , sn), f different from , i t h : r(s) = f (r (s l) , . . . , r(s,)), r(t)
r (s) if v(t) = g(rl , . . . , rm), f different from g, or r (t) = f (~ ' (r l) , . . . , r (r ,))
and there exists i such that r(si) ~ r(ri). By the first freeness axiom in the
former and by the second freeness axiom and induction hypothesis in the
second, we can get the proof.

- s is h wi th {so , . . . ,sin}: z'(s) = r (h)wi th {r(sio),... ,r(sin)}. Therefore
r (t) = f (r (t l) , . . . , r (tp)) , f different from ~ i t h (by first freeness axiom) or

r(t) = r (k) w i t h { r (t ~ o) , . . ., r (t j ,)} and (i) r (h) ~ r(le) or (ii) there exists 11
such that r(si,1) does not appear in { r (t / 0) , . . . , r (t j ,)} , or (iii)there exists
12 such that r(tj,~) does not appear in { r (t j o) , . . . , r (t / ~) } . By induction
hypothesis and (E) the result holds.

This is sufficient for (b); (b) and (W) implies (d). []

3 Satisfiability algorithm

An atomic constraint is a (IIc,5:)-atom or the predicative constant False; a
constraint is a finite set of atomic constraint. Given a constraint C, let C =
C= U C~ O C~ U Ce U Cot U C F be a constraint, where

- each C , is a finite set of atomic constraints over predicate symbol r ;
- C~, C~ are respectively composed by atomic constraints not involving the

symbol ker at all, and involving it at least once;
- C r is empty or {False}.

We will refer to a non-variable term with main functor different from wi th as a
nucleo.

84

The constraint solver is an algorithm which verifies the solvability in the
structure (which implies satisfiability of the theory because of lemma 1) of
a generic conjunction of (IIc, 27)-atoms. The initial constraint is successively
transformed into an equisatisfiable disjunctive normal form; each disjunct is in
a simplified form for which the satisfiability is guaranteed.

Here below we describe the actions taken by the algorithm on the different
components of the constraint C.

3.1 C o n s t r a i n t E

We eliminate all membership atomic constraints by replacing them with ad-
equate equality atomic constraints:

function member(C)
if C~ = 0 then return C
else choose c in Ce ; let C' = C \ {c}

case c of
1. t E s and s is a nucleo: return {False};
2. t E X and X is a variable: return {X = N w i t h t } U member(C'), N new

variable;
3. t E v wi"ch w: select non-deterministically from:

(a) return member({t E v} U C')
(b) return { t = w} U member(C').

3.2 C o n s t r a i n t =

A constraint C= is said in canonical form if C= = {X1 - - t l , . . . , Xn = tn} and
each variable Xi does not occur in C \ {Xi = ti}. An equality atomic constraint
X = t of C is said to be in canonical form if X does not appear either in t or in
c \ {x = t}:

function unify(C)
if C= is in canonical form then return C
else choose c (not in canonical form) in C=; let C' = C \ {c}

case c of
1. X = X : return unify(C');
2. t = X , t ~ V: return uni fy({X = t } U C') ;
3. X = t, t is a nucleo and X occurs in t: return {False};
4. X = t wi l ;h tn w i t h . . , w i t h t 0 and X occurs in to or . . . or in tn, or t is a

nucleo and X occurs in t: return {False};
5. X = X w i t h t , w i t h . . , w i th to and X does not occur in t 0 . . . t , :

return unify({X = N w i t h t n w i t h . . , w i th to} LJ C'), N new variable;
6. X = t. X does not occur in t: return uni fy(C'cr)U{X = t } , where ~r = { X ~ t } ;
7. f (t l , . . . , t n) -- g (s l , . . . ,sin), f different from g: return {False};
8. f (t l , . . . , tn) = f (s l , . . . , S n) , f is not with:

return unify(= = s , } U C');

85

9. h w i t h { / n , . . . , t 0 } = k w i t h {Sm, . . . , s0 } . h and k nucleos or variables:
(a) if h and k are not the same variable, then select non-deterministically one

of the following actions:
i. return unify({to = so, h w i t h { t n , . . . , t l } = kwi th{sm,. . . , 81}}UC/)

ii. return unify({to = so, h , i t h { tn , . . . , to} = k , i th {sm, . . . , sl } } } U C ')
iii. return unify({to = so, h g i t h { t n , . . . , t l } = k , i t h { s m , . . . , so } } }UC ')
iv. return unify({h w i t h { tn, . . . , t l } = N w i t h so,

N with to = k w i t h {sin,.. . , s l } } U C'), N new variable;
(b) otherwise select non-deterministically a number i in { 0 , . . . , m} and one of

the following actions:
i . return unify({to = si, h wi th { t n , . . . , t l} ----

k , i t h {am, . . . , s i -1 ,8 i+1 , . . . , 8o}} U C')
ii. return unify(fro = sl, h , i t h { t , , . . . , to} =

k , i t] l {Sin,..., 8i--1, Si-I-X,..., 80}} U C t)
iii. return unify({t0 = si, h , i C h { t n , , . . , t l } = k, iCh{sm, . . . , so}} UC')
iv. return unify({h = N w i t h t 0 , N w i t h f / n , . . . , t l } --

N with {Sm,..., so}} U C'), N new variable.

3.3 C o n s t r a i n t

An atomic constraint t ~ X is said to be in canonical form if X is a variable and
X does not occur in t. A constraint Cr is said to be in canonical form if every
element is:

function notmember(C)
if Cr is in canonical form then return C
else choose c (not in canonical form) in Cr let C' -- C \ {c}

case c of
1. t ~ r wi l ;h s: return {t ~ s} U notmember({t ~ r })
2. t ~ f (Q , . . . , t n) , f different from = i t h : return notmember(C')
3. t E X , X variable occurring in t: return notmember(C').

3.4 C o n s t r a i n t

We first deal with the constraints in C~, those in which ker does not appear.
An atomic constraint in X r t in C~ is said to be in canonical form if X is a
variable not occurring in t. A constraint C~ is said to be in canonical form if all
its elements are:

function notequal(C)
if C~ is in canonical form then return C
else choose c (not in canonical form) in C~; let C' = C \ {c}

case c of
1. f (Q, . . . , tn) ~ g(S l , . . . , sm) , f different from g: return notequal(C');
2. f (to , . . . , tn) ~ f (so, . . . , Sn), f different from w i th : select non-deterministical-

ly i in { O , . . . , n } : return notequal({ti ~ si} U C');

86

3. f ~ f , f constant: return {False};
4. X ~: X, X variable: return {False};
5. t ~ X and t is not a variable: return notequal({X ~ t } U C');
6. X ~ t, t is a nucleo and X occur in t, or t is h w i t h t n . . . w i t h t l , h nucleo

or variable, and X occurs in t l or . . .or in t , : return notequal(C');
7. X ~ X withtn ... wieht0 select non-deterministically i in { 0 , . . . , n}:

return {ti ~ X } U notequal(C');
8. r w i t h s ~ t w i t h u: select non-deterministically one of the three following

actions (X denotes a new variable):
(a) return { X e r , i t h s, X r t , i ~ h u} U notequal(C')
(b) return { X E t w i t hu , X ~ r , i t h s } U notequal(C')
(c) if ~E' D {r with, ker} then return notequal(C' U {ker(r) ~ ker(t)}) 3

A few words about constraints involving the functional symbol ker are in
order. We require explicitly that they can not be introduced by the user but
only by the step 8-(c) of the function notequal. Moreover,we fix their canonical
form either as:

- ker(X) ~ f(t l , . . . , t ,) , where X is a variable, f is different from wi th and
from ker or

- ker(X) r ker(Y), where X, Y are distinct variables.

The constraint C~ is in pre-normalized form if Ml its atomic constraints are
in canonical form; it is in canonical form if it is in pre-normalized form and
kernel_sat(C~) = true, where kernel_sat is defined below:

function kernel_analyzer(C)
if C~ is in pre-norraalized form
then if kernel_sat(C~)= true

then return C
else return False

else choose c (not in canonical form)in C~; let C' = C \ {c}
case c of

1. ker(s) ~ wi th(t l , t2) : return kernel_analyzer(C');
2. ker(r with s) ~ t, t has not the form v i t h (t l , t2):

return kernel_analyzer({ker(r) ~ t} U C');
3. ker(f (t l , . . . , t ,)) r t, f different from , i t h and t has not the form

, i th(sx, s2): return kernel_analyzer({f(h,..., t ,) ~ t} U C');
4. f (t l , . . . , t ,) ~ ker(t) , f different from ker.

re tu rn kernel_analyzer({ ker(t) # f (h , . . . , t ,) } V C');
5. ker(X) # ker(X), X is a variable: return {False}.

The function kernel_sat tests the satisfiability of the constraint C~ in pre-
normalized form. It is ensured whenever the signature contains an infinite num-
ber of constant symbols, or at least a functional symbol of arity greater than O,

3 by D, we mean strict inclusion.

87

distinct from w i t h and ker tha t C~ has solutions (if these are the cases, we are
able to construct an infinity of different kernels). If the signature contains only
a finite number of constant symbols, more than r then satisfiability has to be
checked.

function kernel_sat(C)
if 22 is infinite or :tg E 22 s.t. arity(g) > 0 or C is the empty constraint
then return true
else (22 = {with, ker, @, el, a2, . . . , an}, n > 1)

Let { X 1 , . . . , X m } = Vats(C);
Consider the non-oriented graph of vertixes V and edges E s.t.

V-- {I/1,. . . ,vm,al, . . . ,an}
< vi,vj >e E iff (ker(Xi) 5~ ker(Xj)) E C
< vl,aj >e E iff (ker(Xi) r aj) r C

if there exists an assignment f from { v l , . . . , v,~} to { a l , . . . , a , } s.t.
1. f(vl) = aj only if < vi, aj >E E, and
9. Vi, j E {1 , . . . ,m} , i :fl j no cycles of the form

< vi, f(vi) >, < f(vi), vj >, < vj, vi > occur
then return true
else return False.

3.5 T h e sa t i s f i ab i l i t y f u n c t i o n

A constraint C is in canonical form either if it is 'False' or its components
C=, Cr C~, C~ are in canonical form, and C e is empty.

The function rank, defined as:
0 if ur(x)

rank(x) =- max{rank(s), 1 + rank(t)} i f x has the form s r
returns the 'depth ' of a ground set. The function find, defined as:

{~ 0} if t coincides with x
find(x, t) = if t is 0

{1 + n : n E find(x,y)} U find(x,s) i f t has the form s w i t h y
returns the set of 'depth ' in which a given element x occurs in the set t.

These two functions will be used in the following proposition to find a suitable
.A-solution of atomical constraints. For instance, consider the atomical constraint
x r {y}. By definition, find(y, {y}) = {1}. Considering the integer equation
v~ r vy + 1, obtained by the conditions above, and picking up one solution (i.e.
v u = 0, v~ = 2) we may define the substitution: a = {z ~-+ {{0}}, y ~ O} ({{0}}
has 'depth ' 2, while ~ has 'depth ' 0). (x r {y})a is obviously true in .A.

L e m m a 2. Let C be a constraint in canonical form different from {False}. Then
C is -A-solvable and 7--satisfiable.
Proof: To start we assume that C~ is empty; successively we will show how to
extend the proof to the general case. Let C = C= U Cr U C#, and let C~ in
canonical form for each ~r in {=, ~, 5} .

88

C= takes the form {X1 = tl, . . . ,Xm -- tin} and Vi = 1 , . . . , m Xi appears
uniquely in Xi = ti and Xi ~ Vars(ti). Let us define 01 = {XI ~-* Q , . . . , Xm ~-+
tin}. It is clear that A ~ VC=01.

cr takes the form {n r t , . . . , r. r r . } does not appear in and
takes the form {Zt ~ s t , . . . , Zo ~ so} (Zi does not appear in si). Let Wt, �9 �9 Wh
be the variables occurring in r t , . . . , rn, S l , . . . , so other than Yt , - . . , Yn, Z1, �9 �9
Zo. Furthermore, let 02 = {W1 ~-* ~ , . . . , Wh ~-* r and let
C I~ = {(t ~ X) E Cr : with and r are the only functional symbols in t),
C~ = {(X ~ t) E C~02 : with and r are the only functional symbols in t,

and t is not a variable}.
Let i = maz({size(t) : (t ~ X) �9 Cr U {size(t) : (X ~ t) �9 C~02}) and

let Vt , . . . , Vk the variables occurring in C#02 U Cr but not in C~ U C~. Let
03 = {Vt ~-* ~(with~)~+l,... ,Vk ~-* ~(with~) ~+k } and let ~ = g + k + 1.

It is straightforward to prove that A ~ V(Cr \ C~)020s and A ~ V(C# \

Let R t , . . . , R i be the variables occurring in C~ U C~. Let n t , . . . , nj be
auxiliary variables. Build an integer disequation system E in the following way:

1. E = {nl > ~ :Vi �9 {1 , . . . , j }}U{n l , ~ ni2 :Vil,i2 �9 { 1 , . . . , j) , i l r i2).
2. For each atomical constraint (R/, r t) �9 C~:

E = E U {ni, r ni, + c :Vig_ r i t , re �9 f ind(Ri, , t)}
3. For each atomical constraint (t r R~,) �9 C~:

E = E U {ni, r ni2 + e + 1 : Vi~. r it, Vc �9 find(R~2, t)}

To solve the problem of finding a solution for E is trivial (it is sufficient to
choose arbitrarily big solutions satisfying the constraints). Let {nt = h i , . . . ,
ni = ill} be a solution, define 04 = {R~ ~-~ r162 n' : Vi �9 {1, . . . , k)) . Fur-
thermore, let 05 = {X ~ $: X appears in C0t020304}, and let 0 = 0102030405;
CO is a ground constraint. Let us show that ,4 ~ CO.

1. Pick (X = t) �9 C; since XOt coincides with tot = t, A ~ (X = t)O;
2. Pick (t ~ X) �9 C: three cases are possible:

(a) if f different from with occurs in t then ,4 cannot model the membership
of t0 (in which f occurs) in X0 (term of the form r

(b) i f t is one of the variables Wt , . . . ,W~, then tO = tO2 = $ cannot belong
to XO = r I since i > ~ + k + 1 > 1;

(c) Otherwise, from the solution of the integer system E, we obtain
r~nk(tO) # rank(XO) - 1.

3. Analogous considerations can be applied to the constraints of the form X r t.

By (R) we get rank(s) ~ rank(t) ~ s ~ t; if C~ is not empty, the function
kernel_sat automatically supplies the elements to be used as kernels in the sets
used to define the Ois substitutions. Then C is A-solvable. By lemma 1, C is
T-satisfiable. []

The canonical form algorithm is performed by the following (non-determini-
stic) function:

step(C) = kernel_analyzer(notequal(notmember(unify(member(C))))).

89

L e m m a 3 . Whatever are the non-deterministic choices performed during the
execution of step there e~ists n such that stepn+t(C) = stepn(C) is a constraint
in canonical form (b y stepn(C) w e m e a n the iteration n times of step on an input
C - conjunction of (Hc, l~)-atoms).
Proof: In the case of termination, the procedure returns a constraint in canonical
form (otherwise one of the steps of the algorithm would be applicable). Termin-
ation of the algorithm is based on the termination of each single function at
any call. By introducing a measure K of structural complexity of the constraints
relative to a specific predicate symbol, it is immediate that it decreases every
time a new call of the function is performed. These partial results are combined
into a global termination proof.
(1) Each function terminates at any call:

member. Assume K = ~ (x e t) a c e size(t); then, it decreases at every call;
unify. See [4];
notmember. Assume K =)-~(xr size(t); then, it decreases at every call;
notequal. Let Kt =)-]~(,#t)ec~ size(s), K2 = ~-~(,#Oec~ (Size(s) + size(t)); then

the pair (K1, K2), ordered by the lexicographic order, is the selected com-
plexity, which decreases at each call.

kernel_analyzer Let K1 = [((s # ker(t)) E C~}I, K2 = E(,# t)~cg size(s). Due

the peculiar form of the inequations containing ker, the selected complexity
< K1,/(2 >, with the lexicographic order decreases at each call.

(2) Suppose C1 is returned by notmember (unify(member(C))).
Then, notequal(C1) may introduce atomic constraints over predicates other than
' r only in the following cases:

7. In the successive call, i f X does not occur in tl, the constraint is in canonical
form and then no actions may be performed on it; otherwise the constraint
is eliminated by step 3 of notmember;

8. An atomic constraint of the form
h with s o . . . with Sm ~ k with t 0 . . . w i t h tn, where h, k are variables or

kernels, is replaced, according to step (a), by the following atomic constraints:
Z E h with so . . . with Sm (i)
Z r k with t o . . . within (it)

(case (b) is analogous; case (c) does not raise By applying member, the
constraint (i) is replaced by one of the following ones:

* Z = si, for some i E { 0 , . . . , m } .
Therefore, unify applies the substitution {Z ~-+ sl} (only in (it)), and
notmember deals with the atomical constraint si ~ k witht0 . . . w i th tn .
Then, notmember replaces the last constraint with: {si ~ t o , . . . , si ~ t , ,
si ~ k}, where k is a variable and sl ~ k is in canonical form. The new
call of notmember will work on objects having a smaller size and this
implies the full termination.

�9 h = N with Z, where h is a variable.
Then, unify applies the substitution {h ~-, N wi th Z}, making the con-

90

straint size bigger. This may be done a number of times less or equal to
the number of occurrences of the variable h in C' .

(3) The total termination follows from the termination of the function obtained
as follows:

1. Cl = notmember(unify(member(C)));
2. 02 = CtO, where 0 = {X ~-~ O wieh Z} x) w i t h . . . w i t h Z ~ x) , in which VX

occurring in E l , , we denote by [X[the number of occurrences of X in C1~,

Z}") are new distinct variables;
3. Ca = notequal(C2).

The computation restarts from step(Ca); termination follows by the fact that
the critical case is never generated in this way. []

Let sat be the function which computes the minimum fixpoint of step on the
input C, defined as follows:

sat(C) = while step(C) # C do

C := step(C);
return C.

The termination of step, proved in lemma 3, and the finiteness of the number of
non deterministic choices generated by sat in correspondence of each call of step,
ensure the finiteness of the number of constraints non-deterministically returned
by sat. We may then state the following:

Lemma 4. T F C *-* 3 V~=sat(c) ~-
Proof: It is sufficient to show that , for each atomical action of each constraint
function we have T t- e *-* 3(cl V . . . V c ,) where c is the analyzed atomical con-
straint and c , , . . . , c , are the n _> 0 constraints produced non-deterministically
by the single action (see algorithm description for the notation):
member:

1. i f f # with, T F t 6 f (t l , . . . , t ,) ~-* False: by (U);
2. T b t 6 X ,-, B N X = N wi th t : ,--- by (L), ---, by (W);
3. ~r ~ t ~ ~ . i t h ~ ~ (t ~ ~ v t = ~) : by (W).

unify:

1. For each variable X , T F X = X ~ True (the empty constraint represents
True): by (equality);

2. T F t = X ~ X = t: by (equality);
3. Z F x = t [x] ~ False: by (freene~ 3);
4. T F X = t[X] wi th { t0 , . . . , t n} ~ False, and

7" F X = h w i th { . . . t [X] . . . } *-* False: by (freeness 4);
5. T F X = X w i t h { t o , . . . , t , } *-* 3 N X = N w i t h { t 0 , . . . , t ,) : ~-- by (E), --+

by (W) e (L);

91

6. 7" I- C O {X = t} 4-+ {X = t} U c{x~"} : by (equality);
7. 7/- ~- f (t l , . . . , t n) = g (s l , . . . , s i n) ~-+ False: by (freeness 1);
8. 7/- F- f (t l , . . . , tn) = f (s l , . . . , sn) *-+ (tl = s lY . . .Vtn = sn): *--by (equality),

--4 by (freeness 2);
9. (a) is just (E); (b) follows from (L), (W) and (E).

notmernber:

1. 7/- I- t ~ r , i t h s ~-+ t r r A t ~ r: by (W);
2. 7/- > t r f (t a , . . . , t ,) ,~ False: by (U);
3. 7- b- X r X *-+ False: by (R), 7- t- I[X] r X ~-+ False: by (freeness 4).

notequal:

1. 7" F f (Q , . . . ,t,,) • g (s l , . . . ,sin) ~ True: by (freeness 1);
2. 7"1- f (t l , . . . , t n) # f (s l , . . . , s n) ~ (tl # s l V . . . V t n r Sn): *-- by (freeness

2), --+ by (equality);
3. 7/- b f r f *-+ False: as in (2) (the empty disjunction is equivalent to False);
4 . 7 " t -
5 . 7 " t -
6 . 7 " t -

7"t-
7.

.

X ~ X *-+ False: as above;
t r X ~-~ X r t: by (equality);
X • t[X] *-+ False: by (freeness 3),
X r h wi th { . . . t [X] . . . } *-~ False: by (freeness 4);

7" I- Z r X w i t h { t 0 , . . . , t , } ~ 3i E { 0 , . . . , n } (X ~ ti): *-- by (W), ---+ by
(L) and (E);
We have to show 7- b r wi th s r t wi th u ~-+ qx (x E r wi th s A x
t u i t h u) V qx (x ~ r wi th s A x e t wi th u) V kernel(r) 5s kernel(t). This
follows from (E), (L), (W) and the definition of kernel. []

As corollary we get:

L e m m a 5 . C is 7.-satisfiable if and only if there exists a non-deterministic
choice such that False r sat(C). []

T h e o r e m 6. 7" is satisfaction complete. []

The algebraic derivation is then algorithmically implementable. In order to
implement the logic is therefore sufficient to choose one of the C constraints
different from {False} returned by sat(C) and as 0 the substitution induced by
O= (i.e. 0 = O=).

4 I n t e n s i o n a l S e t s

As pointed out in section 1, it would be interesting to introduce also intensional
set formers in the language. If we allow set formers as general as {x : ~}, para-
doxal situations would easily rise (for instance ~o defined z ~ x leads us to the
Russell paradox). A more rigid syntax is then needed.

92

However, in this paper we want to focus on another problem: the correla-
tion between set grouping and negation; suppose you wish to use an intensional
construct in the definition of a predicate, for instance:

minimump(X) ~-- minimum(Set, N)
minimnm({y : p(y)}, X) N E Set,

(VZ E Set) lessorequal(N, Z).

In order to compute minimump we should be able to collect the set of com-
puted answers of another predicate (set grouping facility [1]). Let us try to define
such a facility using the language defined so far:

snbsetolp(X) ~ (VY E X) p(Y);

such a predicate however does not compute {y : p(y)} but all its subsets. Actu-
ally, we need a negative information, in order to be able to say: 'there does not
ezist any element Z not belonging to X snch that p(Z)':

setof p (X) ~ partialp (X) *--
(vY x) p(Y), z r x,
-,part ialp (X) p(Z) .

This motivates the need to introduce negation in the language. It is easy to
write a transformation algorithm which transform a (/ /p , / - /c , 27)-program with
intensional set formers, into a (/ /p U A,/-/c, E)-program with negation, where
A is a new set of predicate names introduced by the translation.

5 Future work

Every work on the semantics and on implementation of the CLP-scheme may
improve the property of the language described. In particular we wish to acco-
modate constructive negation techniques [2, 12] for the presented language, in
order to be able to deal with intensional set terms.

Furthermore, wishing to extend the complexity of the manipulated terms
(i.e. rational terms together with hyper-sets) it is sufficient to modify the satis-
fiability algorithm in a proper way. In particular, for each satisfiability result in
set theories however defined, it is easy to find the corresponding programming
language.

A purpose on extension of the CLP-scheme in the direction of providing it
with set manipulation capability is presented in [8]; the representation choice is
the one of union of singletons (see introduction); nevertheless semantics problems
are not studied there and so it is not clear what kind of computed answer to
expect from a given goal. Furthermore set operations are defined only on ground
sets.

A general framework for the design of languages manipulating decidable the-
ories based on modular extension of the resolution algorithm is presented in [11].
A comparison between it and the CLP-scheme seems to be promising.

93

Acknowledgements

My thanks are due to Davide Aliffi, Giorgio Levi, Alberto Policriti, Eugenio
Omodeo, Alessandro Roncato, and, in particular, to Enrico Pontelli and Gian-
franco Rossi.

References

1. C. Beeri, S. Naqvi et ai. Set and Negation in a Logic Database Language. In
Proceedings 6 th ACM SIGMOD Symposium, 1987.

2. D. Chan. Constructive negation based on the completed databases. In Proceedings
1988 Conference and Symposium on Logic Programming, Seattle, Washington.

3. A. Dovier, E.G. Omodeo, E. Pontelli, and G. Rossi. (log}: A Logic Program-
ming Language with Finite Sets. In Logic Programming: Proceedings of the Eighth
International Con]erence (K.Furukawa, ed.), The MIT Press, 1991, 111-124.

4. A. Dovier, E.G. Omodeo, E. Pontelli and G. Rossi. Embedding Finite Sets in a Lo-
gic Programming Language. Research Report, University of Rome, "La Sapienza",
1993.

5. A. Dovier, E.G. Omodeo, E. Pontelli, and G. Rossi. Embedding Finite Sets in
a Logic Programming Language. In E. Lamina, P. Mello eds, No. 660 of Lecture
Notes in Artificial Intelligence, Springer Verlag.

6. J. JMfax and J.L. Lassez. Constraint Logic Programming. Research Report, June
1986.

7. G.M. Kuper. Logic Programming with Sets. In Proceedings 6 r ACM SIGMOD
Symposium, 1987.

8. B. Legeard and E. Legros. CLPS: A Set Constraint Logic Programming Language.
Research Report, Laboratoire d'automatique de Besan~on. Institut de Productique,
Besan~on, France, 1991.

9. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag series Symbolic
Computation. Artificial Intelligence, 2 nd edition, 1987.

10. E.G. Omodeo, A. Poficriti and G. Rossi. Che genere di Insiemi-Multiinsiemi-
Iperinsiemi incorporate nella Programmaozione Logica? In 'GULP 93', Proceedings
Of 8 th ConJerence on Locgic Programming. Gizzeria Lido, Italy, 1993.

11. A.Policriti and J.T.Schwartz. T-Theorem Proving. Research Report, University of
Udine and Courant Institute of Mathematical Sciences, New York, 1992.

12. P.J. Stuckey. Constructive Negation for Constraint Logic Programming. In Proc.
Sixth IEEE Syrup. on Logic In Computer Science. IEEE Computer Society Press,
1991.

