
F i n i t e D o m a i n s and E x c l u s i o n s
as F i r s t -C las s C i t i z e n s

Harold Boley

DFKI
Box 2080, 67608 Kaiserslautern, Germany

boley~informatik.uni-kl.de

A b s t r a c t . Languages based on logical variables can regard finite do-
mains, finite exclusions, and, generally, types as values. Like a variable
can be bound to a non-ground structure which can be later specialized
through in-place assignment of some inner variables, it can also be bound
to, say, a domain structure which can be specialized later through 'in-
place deletion' of some of its elements (e.g. by intersection with other
domain structures). While finite domains prescribe the elements of a
disjunctive structure, the complementary finite exclusions forbid the ele-
ments of a conjunctive structure. Domains and exclusions can be values
of variables or occur inside clauses as/in terms or within an occurrence-
binding construct (useful to name arbitrary terms). In a relational-
functional language (e.g., RELFUN) they can also be returned as values
of functions. Altogether, domains and exclusions become first-class cit-
izens. Because they are completely handled by an extended unification
routine, they do not require delay techniques needed in (more expres-
sive) constraint systems. Still, their backtracking-superseding 'closed'
representation leads to smaller proof trees (efficiency), and abstracted,
intensional answers (readability). Anti-unification (for generalization) ex-
changes the roles of domains and exclusions. The operational semantics
of domains, exclusions, and occurrence bindings is specified by a REL-
FUN meta-unify function (and implemented in pure LISP). 1

1 I n t r o d u c t i o n

Character is t ic for logic p rog ramming (LP) is its uni form variable concept: the
single construct of logical variables is usable in different modes (input, ou tpu t ,
or mixed). However, main ly for efficiency (control) reasons, committed-choice
languages have compromised this uniformity: they distinguish modes at the user
level (e.g., ' r ead-only ' annotat ions) . Similarly, finite domains, which turned out
to be mos t useful in constraint systems [16], can entail a compromised vari-
able concept: they introduce ' d o m a i n ' variables separately f rom logical variables,
l imit ing which variables m a y be unified with which kind of te rm (e.g., domain
variables mus t not be bound to logical variables).

1 This research was supported by the BMFT under Grants]TW 8902 C4 and 413-
5839-ITW9304/3.

38

The latter problem leads us to the issue of extending LP languages by a clean
construct for finite domains (generally, types), deeply integrated with existing
LP constructs. In other words, we come to this basic question: Is there a method
of optional, predeclaration-free, variable domain restriction (generally, variable
typing) fully in the spirit of logical variables? This can be answered affirmatively
by applying the following principle: Instead of introducing a new kind of variable
with an associated domain (type) a n d a possible value, regard the domain (type)
as an initial value. A domain value can then be successively constrained or
specialized (e.g. by intersecting it with other domain terms) until it ultimately
fails or becomes an ordinary value. (The empty domain is identified with failure,
the singleton domain with its single element.)

The 'type-as-value' principle will also be applied to a new type-like construct,
namely finite exclusions, complementary to finite domains. 2 An exclusion term
specifies the values that c a n n o t be assigned to a variable. It becomes specialized
on unification with other exclusions (here performing union!), fails when unified
with one of its argument values, and transmutes to an ordinary value unequal
to any of its arguments. (The empty exclusion is identified with success.)

On domain-exclusion unification the exclusion values are set-theoretically
subtracted from the domain values. Thus, while a domain corresponds to a dis-
junction of solved equalities, an exclusion corresponds to a conjunction of solved
disequalities, where 'solved' stands for single-variable constraints. General dis-
equality constraints were introduced to LP by PROLOG II/III [4]. By consid-
ering only the special case of solved (dis)equalities we can regard constraints
as typed logical variables: all their value specializations can be handled as part
of the unification routine of LP languages, without need for the goal-delaying
mechanisms on which constraint languages are often based.

After having established finite domains and exclusions as values of variables,
we will show that they may also be used 'anonymously' anywhere a term can oc-
cur (e.g. as top-level arguments of clauses). The final step then is to allow domain
and exclusion terms also as values returned by functions of functional LP exten-
sions such as RELFUN [2]. Altogether, domains and exclusions become first-class
citizens of cleanly extended relational, functional, and relational-functional lan-
guages.

2 D o m a i n T e r m s

As the predefined term for finite domains we will use variable-length dora struc-
tures. They are built from an arbitrary finite number, n, ofunordered, repetition-

We will not expand much on further type-like constructs as values, but should note
here that certain unary predicates p (e.g. woman) could be marked (with a "$'-
prefix) as user-defined sorts $p (here $woman) that may be assigned to variables,
where unification applies p to an ordinary value (e.g. mary) or looks up $p's glb (e.g.
Smother) with another marked predicate (e.g. $parent) in a finite sort lattice.

39

free 3 constants, ci:4

dora [el, . . . , Cn]

In general, dora s t ructures can be used like ordinary terms.
The e m p t y and singleton domains reduce as follows (unknown indicates fail-

are):

dom[]) unknown

dom [e] ' C

In our R E L F U N implementat ion, the behavior of dora s t ructures is handled
by an extension of the unification rout ine (cf. appendix A). This behavior will
be described by employing R E L F U N ' s generalized i s -p r imi t ive for unification:

term is expression

unifies term (e.g. a variable) with the value of expression (e.g. another term).
For instance, the (left-to-right-ordered) conjunct ion

X is dom[l,2,3], X is dom[2,3,4,S]

initializes X with the three-element domain containing the integers 1, 2, and 3,
and then intersects it with the four-element domain containing 2, 3, 4, and 5,
thus specializing the X value to the two-element domain dora [2 , 3 J . Similarly, the
conjunct ion

X is dom[l,2,3], X is dom[2,3,4,5], X is dom[l,3,5]

specializes X to a singleton domain, i.e. is equivalent to

Xis 3

However,

X is dom[l,2,3], X is dom[2,3,4,5], X is dom[l,3,5],
X is dom[l,2,4,8]

3 In accordance with RELFUN's call-by-value semantics, we also permit active d o r a

(and exc) calls, using round parentheses, which remove repetitions before construct-
ing passive dora (and exc) structures, using square brackets.

4 Unlike many finite-domain systems, we introduce no special treatment for inte-
ger domains here. Conversely, generalizing domain elements beyond arbitrary con-
stants would entail complications in using finite domains: even ground structures
as in dom[f [a] , f [bJ] would suggest that unification with f [X] be successful, non-
deterministically binding X to a or b, where in fact the advantage of finite domains
is their deterministic behavior, as in dom[a,b] unified with X, just binding X to the
entire domain term. Rules for reducing a unification like f[X] i s dora[f [a] , f [b]]
to the deterministic X i s dom[a,b], perhaps via f[X] i s f [dom[a ,b]] , would be a
challenge for non-constant-element extensions of finite domains.

40

fails since X now degenerates to the empty domain.
Note that all orders of successive domain constraining are (result-)equivalent,

including the usual left-to-right order of P R O L O G ' s implementat ion of SLD
resolution, which we could thus keep for our domain implementat ion: information
about the current domain specialization can always immediate ly be stored as
variable values, and goals need never be delayed.

There is an analogy between our finite-domain structures and the well-known
non-ground structures of LP: binding a variable to a finite-domain structure
corresponds to binding a variable to a non-ground structure. In both cases,
when unified with another such variable, its value may become specialized:

1. Some elements of the domain structure may become deleted. (The domain
structure can thus t ransmute to a single element.)

2. Some inner variables of the non-ground structure may become bound. (The
non-ground structure can thus become a ground structure.)

This extension thus preserves the 'specializing-assignment' property of logic
programming (a given value can be subsequently specialized, while arbi trary
reassignment of a variable leads to failure). 5

Two conjunctions exhibit the analogy:

X is dom[l,2,3], Y is dom[2,3,4,5], X is Y

deletes i from X, 4 and 5 from Y, assigning dom[2,3] to X and Y.

X is f[A,B,3,4,5], Y is f[I,B,3,D,E], X is Y

binds A to I, D and E to 4 and 5, respectively, assigning f [I,B,3,4,5] to X and
Y.

Note that the final (right-most) result of domain specializations need not
be a single value such as 3 but can still be a domain value such as dotal '2,3],
because such an 'intensional answer' is perfectly legitmate in our language; lack
of further specialization possibilities does not lead to 'floundering' goals.

We can carry the analogy one step further. Instead of being assigned to a
variable, a non-ground structure can occur directly everywhere a term can occur
in a formula (e.g., within another structure). Such 'anonymous use' can also
be permit ted for finite-domain structures. An anonymous non-ground structure
or domain structure has the same advantages as an anonymous variable: by
eliminating variable names, 's ingle-occurrence'and 'back-subst i tutable ' variables

5 Of course, assigning type-like (e.g. domain or non-ground) structures to variables as
initial 'non-terminal' values and specializing them to 'terminal' values after success-
ful (unifying) type checks is only possible for specializing-assignment (LP) languages:
in reassignment (imperative) languages, a variable has to preserve its original type
'value' - in a separate 'slot' - when assigning a terminal value to it because the
type will be needed unchanged on reassigning further terminal values. This preven-
tion of the type-as-value principle, and consequently of type 'first-classness', can be
construed as one more disadvantage of imperative languages.

41

(non-ground structures, domain structures) can be immediately identified as
such, programs become more concise, and no spurious bindings will be created.

For instance, since the variables X and Y are only used as intermediate stores,
the above conjunctions via back-substitution become single expressions:

dom[1 ,2 ,3] i s dom[2 ,3 ,4 ,5]

succeeds, bindingless, with the intersection domain dom[2,3] .

f i b , B , 3 , 4 , 5] i s f [1 ,B,3,D,E]

succeeds, not creating spurious bindings (just I = 1, D = 4, and E = 5), with
the most general common non-ground structure f [1, B, 3 , 4 , 5] .

3 E x c l u s i o n T e r m s

While finite domains prescribe some constant of a disjunction, finite exclusions
forbid every constant of a conjunction. Thus the constants in an exclusion struc-
ture are implicitly 'negative'. If a variable is constrained by an exclusion and
a domain assignment (in any order), both possibly singleton, the constants of
the exclusion delete equal constants of the domain (set difference). If a variable
is constrained by two exclusion assignments, their constants are taken together
(set union), which spec ia l i zes the original values.

Our predefined term for finite exclusions will be variable-length exc struc-
tures. They are again built from an arbitrary finite number, n, of unordered,
repetition-free constants, ci:

exc[cl, . �9 cn]

In general, also exc structures can be used like ordinary terms.
The empty exclusion reduces as follows (the anonymous variable, "_", indi-

cates success):

exc[] ---~_

A singleton exclusion cannot be reduced context-freely since its element repre-
sents a single 'negative' constant, which has to await a unification partner.

In RELFUN, exc structures are again handled by an extension of the unifi-
cation routine (cf. appendix A).

For instance, these conjunctions show three principal unifications of exr
structures:

X is exc[1,2,3], Y is dom[2,3,4,5], X is Y

X is dom[1,2,3], Y is exc[2,3,4,5], X is Y

X is exc[l,2,3], Y is exc[2,3,4,5], X is Y

42

The first binds X to an exclusion of 1, 2, and 3, Y to d o m [2 , 3 , 4 , 5] , and then
subtracts the former from the latter, specializing both X and Y to dom[4,$] .
The second symmetrically 'excludes' 2 through 5 from do ta l1 ,2 ,3] , ultimately
binding X and Y to dotal1] or 1. The third leads to X and Y being bound to the
united exclusion exc [1 , 2 , 3 , 4 , 5 3 .

Note that an exclusion can result from unification only if both respective
unification partners are exc structures. If one partner is a dora structure or a
constant, either of these kinds of terms also appears in successful results; e x c

structures "subtract and disappear". Thus, the first result, dom[4,5] , is a -
sufficiently specialized - finite domain ("Only constants 4 or S are allowed"),
while, say, e x c [1 , 2 , 3 , 6 ] would not be a - sufficiently specialized - f i n i t e
exclusion ("All constants but 1 and 2 and 3 and 6 and ... are allowed").

Like for domains, we can choose any order of exclusion constraining, and
thus keep the left-to-right order: the negative information of exclusions is also
stored as part of the variable substitution, not with goals, which, again, need
never be delayed. Also, if only exclusions are involved, the right-most result of
exclusion specializations still is a 'negative answer' such as exc [1 , 2 , 3 , 4 , 5 3 ; if
all intermediate values are identical singleton exclusions, a 'negative singleton
answer' such as exc[3] arises.

Exclusions can also be used anonymously, with the same advantages as men-
tioned for anonymous domains (see end of section 2). For instance, shortening
the above conjunctions, the expressions

exc[l,2,3] is dom[2,3,4,5]
dom[l,2,3] is exc[2,3,4,5]

exc[l,2,3] is exc[2,3,4,5]

succeed bindingless with, respectively, the difference domain dom[4,5], the dif-
ference constant 1, and the united exclusion exc [1 , 2 , 3 , 4 , S].

Summarizing the domain and exclusion constructs, a 'domain assignment'

X----domEcl , . . . ,cn]

corresponds to the disjunction of X-solved equalities

X = cl V . . . V X = c~ (1)

with " = " being used like RELFUN's " i s " , while an 'exclusion assignment'

X = e x c [c l , . . . , c .]

corresponds to the conjunction of X-solved disequalities (where (2) = -~(1) shows
that exclusions are negated domains)

x # c l ^ . . . ^ x r c. (2)

with "#" having no direct analogue in RELFUN. However, since in such con-
junctions (in RELFUN written with " ," instead of "A") exclusion values become
united, the equivalent n-ary exclusion assignment

X is exc [el, �9 �9 �9 c.']

43

natural ly corresponds to the following conjunction of n unary ones:

X i s exr X i s exr

Thus, finite exclusions express negative information as v a l u e s ('object-centered')
that can be simply passed around and unified like positive information, while LP
extensions via a "#" c o n n e c t i v e (symmetric) suggest two-variable constraints
like X # Y, normally entailing another layer of complexity such as the need
to delay a disequality until a variable becomes bound. (A possible non-ground
extension of exclusions for representing two-variable constraints will be discussed
in section 9.)

4 O c c u r r e n c e B i n d i n g s

Let us further introduce a generally useful construct for binding a variable to
some (initial) value(s) at one or more of its occurrences in arbi trary formulas. I f
this is a type-like value, e.g. a non-ground structure or a domain or an exclusion,
it can become specialized by subsequent unification.

Occurrence bindings are written as binary bad structures built f rom a vari-
able, v, and a term, t: 6

bnd [v, t]

In general, bnd structures can be used as terms.
Taking a non-ground-structure example,

bnd[X,f[A,B,3,4,5]] is f[I,B,3,D,E]

binds X to f [A, B, 3 , 4 , 5] , which is then unified with f [1, B, 3, D, El, binding A to
1, D and E to 4 and 5, respectively, thus specializing the X value to f [1, B, 3 , 4 , 5] .

An analogous finite-domain example,

b n d [X , d o m [1 , 2 , 3]] i s d o m [2 , 3 , 4 , 5]

binds X to d o m [1 , 2 , 3] , which is then unified with d o m [2 , 3 , 4 , 5] , thus special-
izing the X value to dora [2 ,3] .

A complementary finite-exclusion example,

b n d [X , e x c [1 , 2 , 3]] i s d o m [2 , 3 , 4 , 5]

binds X to exc [1 , 2 , 3] , which is then unified with dom [2 , 3 , 4 , 5] , thus special-
izing the X value to dora[4, S].

If the unification partner of an occurrence binding is directly given, here
as the i s - rhs (right-hand side), the bnd structure can always be equivalently
replaced by an initializing ('pre-typing') i s call:

One could also use an infix notation like v : t for increased conciseness. If t was
the sort-marked predicate $p, bnd[v,$p] would then shorten to v:$p. The current
implementation still has restrictions wrt the t's allowed in bnds. Section 5.2 will detail
on the elimination of occurrence bindings.

44

X is f[A,B,3,4,5], X is f[I,B,3,D,E]
X is dom[l,2,3], X is dom[2,3,4,5]
X is exc[l,2,3], X is dom[2,3,4,5]

For buds in clause heads, however, the unification partner is not directly given,
as will be illustrated by the relational examples in section 5.2.

The binding construct, pairing a variable with a value, can again be assigned
to a variable. Actually, in our implementation it is generated from dom/exc-
bound variables at the end of reference chains to keep track of domain/exclusion
specializations (while non-ground structures can be specialized via direct in-place
assignments).

5 Domains/Exclusions in Relation Definitions

5.1 Facts and dom/exc R e d u c t i o n s

Starting with domains, the fact with a single-occurrence variable X,

1 ike s (john, bud [X, dora [ann, mary, sus an]]).

is equivalent to the fact using the domain anonymously (regard "X" as "_"):

likes (john, dora [ann ,mary, susan]).

Both can be equivalently queried by ("7." precedes comments)

l i kes (john ,mary) 7, success
l i ke s (j ohn ,peggy) 7. f a i l u r e
likes(john,Whom) 7. success: Whom = dora[ann,mary,susan]
likes(john,dom[mary,peggy,susan]) 7. success
Iikes (j ohn, bud [Whom, dora [mary, peggy, sus an]])

7. success: Whom = dora[mary,susan]
likes(john,exc[mary,peggy]) 7. success
likes (john, bud [Whom, exc [mary ,peggy]])

7. success: Whom = dom[ann,susan]

We can reduce the dora fact, obtaining the three 'multiplied out' facts

likes (john, ann).
likes(john,mary).
likes (john, susan).

Note that the queries would be answered equivalently. However, 'intensional'
answers (delivering one closed dora structure) would become 'extensional' answers
(enumerating several constants); so the bud/dora query, instead of binding Whom
to dora[mary, susan], would first bind Whom to mary, and then, via backtracking,
to susan.

45

If we let clsil ik (z) denote a clause with term z at some position i l , . . . , ik
(il = 0 being the head, il = 1 the first premise, .. 7 i2 = 0 being i l ' s oper-
a tor /constructor , i2 = 1 its first argument, ..., etc.) and c l s~ (z) a clause not
having the te rm z at any position, then a general mul tou t algori thm can be de-
fined recursively via an equation schema (treating queries as answer-head rules):

mul tou t (c l s~ (dora[c1, . . . , en])) = cls~ (dom[c l , . . . , Cn])

mul tout (c l s i , i~ (cl))

multout(cls , 1 , , (domte l , . . . , On])) = mul tout (c ls i l ik (Cn))

For example, m u l t o u t (l i k e s (j o h n , dora[area, mary, susan])) matches the second
equation via the instantiation multout(clso,2(dom[axm, mary, susan])), whose
rhs 's through the first equation lead to the three domless facts shown above.

Continuing with exclusions, the fact with a single-occurrence variable X,

likes (john, bud [X, exc [mary, claire, linda]]).

is equivalent to the fact using the exclusion anonymously (since "X" is "_"):

likes (john, exc [mary, claire, linda]).

Both can be interchangeably queried by

likes(john,mary) Y. failure
likes(john,peggy) 7. success
likes(john,Whom) Y. success: Whom = exc[mary,claire,linda]
likes(john,dom[mary,peggy,susan]) 7. success
likes (john, bud [Whom, dora [mary, peggy, sus an]])

7. success: Whom = dora[peggy,susan]
likes(john,exc[mary,peggy]) '/. success
i ikes (john, bud [Whom, exc [mary, peggy]])

~. success: Whom = exc[peggy,mary,claire,linda]

If we have a 'closed universe' of a finite number, say 8, of individuals,
e.g. {ann , claire, john , l inda, mary , peggy, susan , t ina } , we could reduce the exc
fact, obtaining the five 'complemented out ' facts

likes (john, ann) .
likes (john, john).
likes (john, peggy).
likes (john, susan).
likes (john,tina).

where the bnd/dom query would now first bind Whom to peggy, then, via back-
tracking, to susan. (These facts are also the multiplied out form of a dora fact.)

If the 'non-Horn ' extension of a (classic, strong) negation construct is avail-
able for facts, e.g. via f a l s e - v a l u e d functions in RELFUN, one could also ap-
proximate the exc fact in an 'open universe', with infinite complements, by

7 Since the last premise may constitute the value of a functional clause, the multout
algorithm below will also work for function definitions.

46

likes(john,dom[mary,claire,linda]) :- ! ~ false.
likes(john,X).

Queries as shown above could now bind a second argument Whom to the dora by
(successfully!) returning f a l s e , but would, e.g., also return a bindingless f a l s e
for mary (rather than yielding unknown due to unification failure). The impurity
of the cut-protected 'catch-all' fact seems to favor our proposal to express such
special cases of negation by the special-purpose construct exr directly in clause
heads, permitt ing non-Horn clauses as "Horn clauses + exclusions".

5 . 2 C l a u s e s a n d b n d - t o - i s R e d u c t i o n s

A typed version of a well-known PROLOG program contains a rule with a non-
single-occurrence variable X, whose head occurrence is domain-bound:

l i k e s (j o h n , b n d [X , d o m [a n n , m a r y , s u s a n]]) : - l i k e s (X , w i n e) .
l i k e s (dora [mary, peggy, susan] , wine) .

The query

l i k e s (john,Whom)

here binds Whom to dora[mary, susan] . The query (indefinite even wrt john)

1 ikes (dora [f r e d , j o h n] , bad [Whom, dora [ann, sus an, t i n a]])

binds Whom to s u s a n (not selecting f r e d or john from the anonymous dora).
A 'negatively' typed version of the program again contains a rule with a

non-single-occurrence variable X, whose head occurrence is exclusion-bound:

likes(john,bnd[X,exc[mary,claire,linda]]) :- likes(X,wine).
likes (exc [mary, peggy, susan], wine).

The query

likes (j ohn , Whom)

now binds Whom to exc [peggy, susan, mary, claire, linda]. The query

i ik e s (dom If red, john] ,bnd [Whom, d om [ann, sus an, t in a]])

binds Whom to dora [ann, tina] (again leaving "fred or john" anonymous).
A binding construct bnd[v, t] in a clause head can always be replaced by v

by introducing a new premise v i s t. If v i s t is further transformed to t '(v),
applying a unary predicate t ' corresponding to ~, the entire reduction is similar
to the reduction of a sorted logic to an unsorted one.

Thus, the bad/dora rule is equivalent to

likes(john,X) :- X is dom[ann,mary,susan], likes(X,wine).

and, with t ' "- ann -mary -o r - susan , to

47

likes(john,X) :- ann-mary-or-susan(X), likes(X,wine).
ann-mary-or-susan(dom [ann, mary, susan]) .

Also, the bnd /exc rule is equivalent to

likes(john,X) :- X is exc[mary,claire,linda], likes(X,wine).

and, with t' = not-mary-claire-and-linda, to

likes(john,X) :- not-mary-claire-and-linda(X), likes(X,,ine).
not-mary-clair e-and-linda(exc [mary, claire, i inda]).

The reduced form can perform ' type' checking only a f t e r unification, once
the former bnd variable is bound. Unlike the transformation (in section 4) of

bnd[X,dom[l,2,3]] is domE2,3,4,5] Y. fact p(bnd[X,dom[l,2,3]]).
bnd[X,exc[l,2,3]] is dom[2,3,4,5] Y, fact p(bnd[X,exc[1,2,3]]).

to the 'pre-typing' (domain/exclusion-initializing, not possible for clause heads
as indicated by the "W'-eomments)

X is dom[l,2,3], X is dom[2,3,4,S] 7. X is dom[l,2,3] not in p(X).
X is exc[1,2,3], X is dom[2,3,4,5] Y, X is exc[l,2,3] not in p(X).

the above bnd-to-is reduction thus performs 'post-typing' (domain/exclusion-
specializing, generally applicable), as in

X i s d o m [2 , 3 , 4 , 5] , X i s dora [I ,2 ,3] 7. r u l e p(X) : - X i s d o r a [I , 2 , 3] .
X i s d o m [2 , 3 , 4 , 5] , X i s e x c [1 , 2 , 3] 7. r u l e p(X) : - X i s e x c [1 , 2 , 3] .

Unfortunately, post-typed clauses no longer permit the selectivity of typed
(e.g. domain-constrained or sorted) unification and WAM-indexing and of typed
anti-unification (for generalization, see section 7). Also, at least if compared with
the ":"-infix syntax of bnd as usable for our versions of the PROLOG example,

likes(john,X:dom[ann,mary,susan]) :- likes(X,wine) .
likes(john,X:exc[mary,claire,linda]) :- likes(X,wine).

the is-reduced formulations are less readable.
Combining post-typing with the reformulation of an is-assigned exclusion

as a conjunction of solved disequalities (eft (2) in section 3), we can repeatedly
transform any n-ary-exc-head clause

p (. . . , X : e x c [c l , . . . , c n] , . . .) : - ql(...) qz(...).

to an equivalent unary-exc-body clause

p(..., X, ...) :-X is exc[cl] X is exc[cn] , ql(-..) qz(...).

(for anonymous exclusions we choose a new variable for "X") , 8 representing

p (. . . , X , ...) : - X # c 1 X • c , , ql(...) qz(.. .).

where the non-Horn-clause character engendered by the exc terms is revealed
by the "#" constraints preceding the ordinary premises.

s While we may also combine post-typing with the reformulation of an is-domain as
a disjunction of solved equalities (cf. (1) in section 3), we can directly apply the

48

6 Finite-Domain/Exclusion Functional Programming

Having introduced finite domains and exclusions into relational programming as
terms that can be values of logical variables, we now transfer them to functional
programming as terms that can be arguments and values of functions. (Similarly,
the binding construct can be employed in function arguments and values.)

Domains and exclusions thus become first-class citizens of relational-
functional languages such as RELFUN.

6.1 D o m a i n s / E x c l u s i o n s as F u n c t i o n A r g u m e n t s

The use of finite domains as a r g u m e n t s of functions works like their use in rela-
tions. For instance, the two directed equations (" : -~" is a left-to-right directed

separates (dom [canada, mexico, usa] , japan) : -& pacific.
s eparat es (dom [canada, mexico, us a],
dom [denmark, france, germany, italy, spain, sweden, uk]) : -& atlantic.

use 'anonymous' dora arguments for compactly defining a separates function.
(They could be multiplied out to 24 domless equations, analogous to the 24 facts
in section 7.)

The query

s eparat e s (bnd [Source, dora [canada, usa, panama]] ,

Destination)

binds Source to dom[canada,usa '] , D e s t i n a t i o n to japan, and returns
p a c i f i c ; on backtracking it rebinds D e s t i n a t i o n to the European subdomain
and returns a t l a n t i c .

Analogously, finite exclusions act as function arguments as was shown for
relation arguments. For instance, the s a f e - d i v i d e function

saf e-divide (Nominator, bnd [Denominator, exc [0]]) : -~
/(Nominator ,Denominator).

or, using a post-typing function definition (" : - " and "~" permit intervening
relational premises),

safe-divide(Nominator,Denominator) :- Denominator is exc[O]
/(Nominator,Denominator).

m u l t o u t algorithm (cf. section 5.1) to any n-ary-dom-head clause

p(...,X:dom[cl cn]) : - q i (. . .) q z (. . .) .

to obtain n equivalent do,,less clauses

p(.... X : c l ) : -ql(. . .) , , . . , q z (, .) p(.... X:cn,. . .) : -ql(. . .) qz(:..).

(for anonymous domains we just omit "X:").

49

'excludes' Denomina tor -named arguments which would lead to division by zero.
Thus, the query

safe-divide(8,4)

returns 2 because 4 ~ 0 is true. On the other hand, the query

safe-divide(8,0)

yields unknown (rather than an error from the " /"-bui l t - in) because 0 # 0 is
false.

Many function definitions, e.g. factorial and f ibonacc i (below)over the nat-
urals, become more declarative than in P R OLO G by excluding, in a defining
clause, arguments of earlier clauses: the definition thus needs no cut and in fact
has disjoint, order-independent ('OR-paral lel ') clauses. The f i b definition can
even be shortened to two clauses via complementary dora and exc arguments:

f i b (dom[0 ,1" l) : - g 1.
fib(bnd[N,exc[O,l]]) :-~ +(fib(-(N,2)),fib(-(N,l))).

6.2 F u n c t i o n s w i t h D o m a i n / E x c l u s i o n V a l u e s

The use of finite domains as values of functions works as follows. Like any other
term, a domain term can be specified as (part of) the returned value in a function
definition. Such a function then returns the finite domain to its caller as a 'closed'
te rm representing a finite number of non-deterministic values, which without
domain terms available would typically be enumerated via backtracking.

For instance, the directed equations

direction(old)
direction(new)
direction(all)

:-~ dom[east,west].
:-~ dom[north,south].
:-~ dom[north,west,south,east].

use dom values for compact ly defining a direction function. The first clause, e.g.,
can be regarded as a 'closed' form of the non-deterministic, two-clause function
definition produced by multout (section 5.1):

direction(old) :-~ east.
direction(old) :-~ west.

A main call unifies returned domain terms just like for anonymously specified
domains. For instance, using the variable-length t u p function for list building,

tup(direction(old),direction(new))

just like

tup(dom[east,west],domKnorth,south])

50

returns [dom [eas t , west] , dora [north, south]].
In particular, a domain functionally returned to the top-level gives the user

a more compact representation of results than their enumeration, much like a
domain assigned to a relational request variable.

We may also call domain-valued functions within is-calls. For example, while
the query

D is direction(old), D is direction(new)

fails (the domains are disjoint), the query

D is direction(all), D is direction(new)

succeeds, temporally binding D to dom [north, west, south, eas t] , but then spe-
cializing it to dora [north, south].

The is-embedded non-ground functional query

[new,dom[west,north]] is tup(Which,direction(Which))

succeeds by binding, as its second attempt, Which to new and building the list
[new,dora [north , south]], whose most general 'instantiation' in common with
the is-lhs (left-hand side) is the domless ground list [new,north].

Analogously, an exclusion term can be (part of) the returned value of a
function. For instance, the definition

permitted(butcher-shop) :-~ exc [dog].
permitted(pet-shop) :-~ exc [cat,dog] .

prohibits certain entries to butcher and pet shops: the non-ground call

permitted(Where)

enumerates the exclusion values exc [dog], binding Where to butcher-shop, and
exc [cat ,dog], binding Where to pet-shop.

Two such permi t ted calls may be embedded into an is-call:

[cat,dom[kid,dog]] is tup(permitted(Where) ,permitted(Where))

This succeeds by specializing the is-lhs to [ca t , k id] , consistently binding
Where to butcher-shop.

Finally, a function can also return a mix of domains and exclusions. For
example, the dishes (dis)liked by several people may be defined thus:

dish (john) : -$ dom [chilli, pizza, sushi, chop-suey] .
dish(mary) :-~ exc[sushi] .
dish(fred) :-~ exc [spaghetti,pizza].
dish(tina) :-~ dom[sushi, chop-suey,hamburger] .

For constraining the set of candidate restaurants, they could perform
intersection-difference operations equivalent to

[D,D,D,D] is tup(dish(john) ,dish(mary) ,dish(fred) ,dish(tina))

binding D to the (fortunately unique) solution chop-suey.

51

7 Domain and Exclusion Anti-Unif ication

In section 5.1 we have defined the multout algori thm for 'mul t ip lying ou t ' fi-
nite domains from clauses into an extensional form, and noted that the general
reduction of finite exclusions would involve a strong form of negation.

Conversely, the automat ic generation of intensional, domain/exclusion-using
clauses from ordinary ones constitutes an interesting generalization task. In par-
ticular, a set of ' s imilar ' clauses can often be generalized by individually generat-
ing a finite domain in each distinguishing argument position, thus 'compressing'
the clauses' information. Generalizing more than one argument position at a t ime
(giving rise to new combinations when multiplying out) amounts to ' inducing'
new information from the clauses.

For instance, inverting two multout t ransformations, the 24 relational(ized)
separates facts

separates (pacific, canada, japan).
separates (pacific, mexico, j apart).
separates (pacific, usa, japan).
separates (atlantic, canada, denmark).
separates (atlantic, canada, france).
separates (atlantic, canada,germany).
separates (atlantic, canada, italy).
separates (atlantic, canada, spain).
separates (atlantic, canada, sweden).
separates (atlantic, canada, uk).
separates (atlantic ,mexico, denmark).
separates (atlantic, mexlco, france).
separates (atlantic ,mexlco, germany).
separates (atlantic ,mexlco, italy).
separates (at lantic ,mexlco, spain).
separates (atlantic, mexlco, sweden).
s eparat es (atlantic, mexlco, uk).
separates (atlantic, usa, denmark).
separates(atlantic ,usa,france).
separates (atlantic, usa, germany).
separates (atlantic ,usa, italy).
separates (atlantic, usa, spain).
separates (atlantic, usa, sweden).
separates (atlantic ,usa,uk).

can be generalized (compressed) to the two facts 9

9 If some (interactive/automatic) analyzer notices that a certain domain such as
do,,[canada,mexico,usa] occurs repeatedly in a program, it may be useful to
have it defined more globally as a predicate (with a user-provided name) such as
america(dora[canada,mexico,usa]) and replace the domain by the predicate name
used as a "$"-m~rked sort, e.g. in the clause Beparates (paci f i c , Samerica, j apart).

52

s epar at es (pac if ic, dora [canada, mex ico, us a], j apan).
separates (atlantic,dora [canada, mexico, usa],
dom [denmark, france, germany, italy, spain, sweden, uk]).

which are relationalized versions of the separates function in section 6.1. 10
A simple method for this (least general) generalization is pairwise domain

anti-unification of the input facts. For ease of presentation we will assume that
clauses are represented as structures, e.g. regarding an a tom (fact) as a struc-
ture whose constructor stands for the predicate. Domain anti-unification of two
structures works like classic anti-unification [11] (in our implementat ion, [5],
(nested) structures having different constructors or arities yield a new variable)
with the following modifications. For a (named or anonymous) variable and a
domain it yields a variable in the manner classic anti-unification handles vari-
able/constant pairings. For different constants it yields a d o m term containing
these constants, not a (sometimes overly general) new variable. (For a constant
and a structure it has to yield a new variable since currrent dora terms cannot
contain structures.) Generally (constants can be treated as singleton domains),
domain anti-unification of two dora terms yields their union (unification: inter-
section). Identical dora (later: exc) terms can directly yield one copy unchanged,
short-cutt ing spurious unions (later: intersections).

The complementary exclusion anti-unification for a (named or anonymous)
variable and an exclusion yields a variable in the manner classic anti-unification
handles variable/constant pairings. It yields the intersection (unification: union)
of two exc terms. For an exclusion and a constant (singleton domain) it yields the
e x c term minus the constant. Generally, the domain-exclusion anti-unification
of adom and an exc term, in any order, yields the exc te rm with the elements
of the dora term set-theoretically subtracted (unification: domain with exclusion
subtracted). An empty-exclusion outcome, as usual, represents the always suc-
cessful anonymous variable. Altogether, the domain/exclusion complementar i ty
commutes nicely with the unification/anti-unification duality.

Let us start an example for domain anti-unification with, say, the first two
input facts:

s e p a r a t e s (p a c i f i c , c a n a d a , j a p a n) .
s e p a r a t e s (p a c i f i c , m e x i c o , j a p a n) .

A comparison of the equivalent notations ' d o r a [. . .] ' and ' $. . . ' reveals our con-
vention that domains/exclusions do not carry a 'typing symbol' such as the "$"
for sorts: their dom/exc-constructor marks them as types with 'built-in' unification
behavior; on the other hand, "$'-less predicate names are just constants unifying
with themselves. Domains/exclusions exhibit their built-in properties in all places
they are permitted as first-class citizens. Making them passively passable data struc-
tures (without list-coding as in appendix A), e.g. for amalgamated object/meta-level
programming, is as hard as for logical variables, requiring a kind of quote operator.

10 In RELFUN the r e l a t i o n a l i z e algorithm can be used to make relational/functional
knowledge more accessible to such inductive-LP methods, which we study wrt efforts
in knowledge Validation and Exploration by Global Analysis (VEGA).

53

Anti-unification generalizes them via a domain in the second argument:

separates (pacific, dom [canada,mexico], japan).

This intermediate result domain-anti-unified with the third input fact,

separates(pacific,usa,japan). ~ usa = dom[usa]

leads to the completely generalized pacific fact above. Similarly, the remaining
input facts, via three groups of textually ordered domain-anti-unification steps,
generalize their third argument to a common domain:

separates (atlantic, canada,
dora [denmark, france, germany, italy, spain, sweden, uk]).

s eparat es (atlantic, mexico,
dom [denmark, france, germany, italy, spain, sweden, uk]).
separates (atlantic ,usa,
dom [denmark, france, germany, italy, spain, sweden, uk]).

The completely generalized atlantic fact above is then obtained as for the
pacif ic side. (Equivalently, the second argument could be generalized first.)

Suppose we have one additional input fact, n

separates (atlantic, panama, denmark).

For group formation on the third argument, domain anti-unification would leave
this fact as a singleton group since denmark is the only European partner speci-
fied for panama. Now, the four resulting groups differ in two arguments, not just
in one. Still domain-anti-unifying them would generalize the second argument
and 'absorb' denmark into the domain of the third argument:

separates (atlantic, dom [canada, mexico, usa, panama] ,
dom [denmark, france, germany, italy, spain, sweden, uk]).

This generalized atlantic fact expresses more information than the input facts,
namely an induction from Denmark to the other European countries (which
happens to be empirically true); again multiplying out the result makes these
induced facts explicit:

separates (atlantic, panama, france).

separates (atlantic ,panama, uk).

However, since (domain) anti-unification can find a generalization for each pair
of structures, its use most be controlled. An example of overgeneralization would
result from further domain-anti-unifying the completely generalized p a c i f i c and
a t l a n t i c facts above, generating a single fact expressing much more than the 24
inputs via geographically vacuous Pacific/Atlantic and Japan /Europe domains.

An example for exclusion anti-unification can take two versions of a fact from
section 5.1 as input:

11 Such a separa tes enrichment was proposed by Manfred Meyer and Knut Hinkel-
mann. Thanks also to Otto Kfihn, Michael Sintek, and Panagiotis Tsarchopoulos.

54

likes(X,exc[mary,claire,linda]). ~ Everybody likes all except MCL
likes(john,exc[mary,tina]). ~ John likes all except Mary ~ Tina

Anti-unification generalizes them via an intersection of the exclusions in the
second argument:

l ikes (X,exc[mary]) . Everybody likes all except Mary

This is the least general generalization of the input facts since exactly the subex-
clusion common to both facts is kept. In cases where we have a closed universe,
say {ann, claire, john, linda, mary, peggy, susan, tina} of section 5.1, the inputs
can be rewritten as complementary domain facts:

l i kes (X,dom[ann , john ,peggy , susan , t ina]) . ~ (*)
l i k e s (j o h n , d o m [a n n , c l a i r e , j o h n , l i n d a , p e g g y , s u s a n]) .

Domain anti-unification via union generalizes them to

likes(X,dom[ann,claire,john,linda,peggy,susan,tina]).

which is the complement of the exclusion-anti-unification result above.
Finally, domain-exclusion anti-unification of the input facts

likes(X,exc[mary,claire,linda]).
likes(john,dom[mary,tina]). ~ (**)

via subtraction generalizes them to

likes(X,exc[claire,linda]).

Here, the exclusion is minimally weakened (its extension being minimally en-
larged) to accomodate what is specified by the domain. This can again be il-
lustrated for the case of a closed universe: anti-unify (*) with (**) and re-
complement the result. Such least general generalizations by domain-exclusion
anti-unification thus remove dom-exc contradictions in a set of clauses, e.g.
about John's liking of Mary in the above input facts; similarly, exclusion anti-
unification removes the less obvious exc-exc contradictions concerning constants
that occur in only one of the exclusions, e.g. about John's liking of, say Claire,
in the previous input facts. This may be exploited for 'theory revision' [12] of
knowledge bases containing exclusion terms.

8 O p e r a t i o n a l S e m a n t i c s

Since all user-defined relations and functions are invoked through unification,
we were able to handle the relational-functional domain extensions in a uniform,
efficient manner by building our first-class domain and exclusion notions, as
well as the larger part of our bnds, into the (pure LISP) unification routine
u n i f y of the definitional interpreter of RELFUN. (A smaller, less interesting part
of occurrence bindings is built into the term-instantiation routine, not treated

55

here.) In appendix A we use a meta-interpreter approach for specifying the
operational semantics of the extended u n i f y via RELFUN clauses only relying on
non-extended unification. This will contain enough detail both to document the
actual RELFUN implementation and to permit transfers to other LP languages.

While constants will stand for themselves, non-constant terms will be coded
as ground lists as shown by the table below, where "'" indicates recursive coding.

c o n s t a n t

I d e n t i f i e r
I d e n t i f i e r * l e v e l

[al , �9 �9 . ,an]
c o n s t r u c t o r [al , . . . , an]

dom[cl,...,Cn]

e x c [C l , �9 �9 . , Cn]
bnd Iv, t]

c o n s t a n t

[va r i , i d e n t i f i e r]

[va r i , i d e n t i f i e r , level]

[tup, a t , . . . , aln]
[c o n s t r u c t o r ' , a l l , . . . , aln]

[dom, ci, �9 �9 �9 Cn]

[e x c , c 1 , . . . , C r t]

[bnd, v I , t I]

Substitutions will be represented as lists of pair lists of variables and their val-
ues of the form [[v~, t ~] , . . . , [Vn, ' t ,] , ' [b o t t o m]] , i.e. the empty substitution
becomes [[bottom]] (not [] , see below).

For instance, the call

unify([bnd,[vari,x],[exe,a,b,e]], [dom,b,c,d,e], [[bottom]])

successfully returns the substitution [[[v a r i , x] , [d o m , d , e]] , [bot tom]] .
In appendix A, the u n i f y function takes two terms X and Y and a substitu-

tion Environment (initially often empty), and returns the substitution extended
by the mgu of X and Y in Environment (on success) or [] (on failure). It calls
u n i f y - u a with u l t ima te -assoc-dere fe renced X/Y arguments for case analysis.
This workhorse decomposes one or two bnds into their variable and expression
parts for u n i f y - b n d , where a missing bnd (variable) is indicated by [] . Mixed
dora/exc arguments are handed to dora-exc, performing (set-as-list) subtraction.
Homogeneous doras are handed to d o r a - i n t e r s e c t i o n for (set-as-list) intersec-
tion. In both cases (only) the non-emptiness of the result list is checked (so this
can be optimized). Homogeneous excs are successful in any case. Plain partner
arguments to donas and excs are checked via raeraber calls simplifying earlier cases
with singleton donas reduced to the plain argument. The last u n i f y - u a clause
does u n i f y on constructors (incl. tup) and calls u n i f y - a r g s (not expanded here)
for corecursive processing of their arguments. The u n i f y - b n d function essentially
parallels the dora and exr cases of u n i f y - u a , but hands subtraction, intersec-
tion, and union results to u n i f y - b n d - e n v for extension of the Environment
argument, using the variable(s) of the bnd(s). 12 Such bnds for dora/exc-variable

12 Thus, while the update of non-ground structures in relational languages leads to
bindings of free inner variables, the update of dora and exc structures leads to bindings
shadowing previous ones, as known from function calls and l e t blocks in interpreters
for functional languages. In a (WAM) compiler implementation we could get the
efficiency of in-place assignment via real in-place deletion/addition of elements of
dora/exc structures allocated on the heap.

56

updates may be generated by the function ultimate-assoc: it returns the deref-
erenced value of a variable in Environment, except if the value is a dora or an
exc, in which case it creates a bnd pair of the variable immediately preceding in
the reference chain and of the d o r a or exc expression.

While RELFUN's generalized is-primitive also automatically profits from
the dom/exc-enhanced unification, for ordinary built-in relations and functions
the actual arguments that are finite domains have to be 'multiplied out ' (built-in
calls cannot have exclusion arguments); for built-in (constant-valued) functions
the values then have to be recollected into a new domain structure.

As we have seen in section 5.1, the multout transformation could be per-
formed statically for user-defined operations, too, thus eliminating the domain
extension for a non-enhanced LP implementation. However, this would lose the
combinatorial efficiency advantage of finite domains. Also, their complementarity
with finite exclusions, not allowing this treatment, would become occluded.

For a model-theoretic characterization [9] of programs containing first-class
finite domains, the multout transformation could also be exploited semantically.
Of course, a characterization via a domain-extended Herbrand base would be
more 'direct'. And again, leaving domains in the semantic kernel would allow to
exploit the domain/exclusion complementarity.

9 C o n c l u s i o n s

Let us briefly summarize our notion of finite domains and exclusions:

- They are useful even without constraint (delay!) techniques because their
backtracking-superseding 'closed' representation leads to

�9 smaller proof trees (efficiency),
�9 abstracted, intensional answers (readability).

- We have generalized them to first-class citizens (values of logical variables
and of functions, usable anonymously as arguments and inside structures,
no 'floundering' for non-singleton domain results).

- Their complementarity wrt unification (most general specialization) 'changes
signs' wrt anti-unification (least general generalization).

- Their operational semantics and interpreter implemention is given by ex-
tensions of the unification routine of LP languages (specified here via meta-
unification).

The examples of this paper have indicated ways of employing our finite do-
main/exclusion concept for the compact representation of first-order knowledge.
In RELFUN, domain/exclusion terms can also be used in the operator position,
thus permitting a higher-order notation for knowledge like "Functions factorial ,
f ibonacci, or exponential applied to 0 return 1" (domain anti-unification also
generalizing operators/constructors could extract this from three multiplied out
functional clauses):

d o m [f a c , f i b , e x p] (0) :-~ 1. 7. F :dom[exp , s in] (0) g ives 1, F = e x p

57

It will be instructive to observe which particular use of our domain/exclusion
extension of LP is most profitable for a real-world representation task, e.g. in the
areas of materials engineering [3] or calendar management (e.g. just unify two
agents' restrictions, "All dates except May 12 and 23" and "Only May 9-13":
exc [12-may, 23-may'] is dom[9-may 13-may]).

An area for further theoretical work would be the extension of Herbrand
models for finite domains and, more demanding (perhaps via T e .~ w [9]), fi-
nite exclusions. Concerning domain/exclusion anti-unification, it will be inter-
esting to see how further inductive-LP or machine-learning methods based on
classic anti-unification may profit from the domain/exclusion extension, us-
ing our recent LISP implementation [5] of the rules introduced in section 7.
On the unification side, an efficient WAM compiler/emulator extension for
our (variable-length!) finite domains and exclusions should be written, build-
ing on the RELational /FUNctional machine [1], FIDO III [7, 15], and FLIP
[14], all in COMMON LISP: WAM instructions for unifying constants such as
g e t _ c o n s t a n t would need a membership/non-membership test case for dom/exc
structures, new instructions get_dom/get_exc could unify dom/exc structures,
performing, e.g., intersection/union for other dom/exc structures (perhaps main-
taining canonically ordered elements), etc. Also, it could be studied how our
specialized finite domains/exclusions could be fruitfully c h a r a c t e r i z e d as a
CLP(f /)) - l i ke instance of the constraint-logic programming scheme [8], and if
they could be usefully c o m b i n e d with our RELFUN-implemented finite-domain
constraints FINDOM [13] or those in FIDO [10], or with concrete domains [6],
or other, more general constraint formalisms.

Finally, let us explore a possible non-ground extension of the t reatment of
solved disequations, e.g. X 7~ 1, as exclusion bindings, e.g. X i s exc [1], if only
to confirm that ground exclusions in fact constitute the 'local opt imum' sug-
gested by section 3: Can we treat unsolved disequations, e.g. X ~ Y, as exclu-
sion bindings with non-ground rhs's, e.g. X i s exc[Y] and/or Y i s exc[X]?
Well, we could store both binding directions, but let us choose one direction, say
X i s e x c [Y], and put this into the substitution. If further computation instan-
tiates Y to a constant, say 1, perhaps via a binding chain, the disequation reduces
to a solved form, X i s exc [1], treated as usual. If X thus specializes to a con-
stant, 1, we can 'swap' the disequation to a solved form, Y i s exc [1], within the
substitution. For an added disequation, say the unsolved X i s exc[Z] , the two
bindings may be simplified to one, here X i s exc [Y, ZJ. For Y • exc [Z], after
swapping, they can be joined to Y i s exc IX,Z/; this avoids (possibly circular)
instantiations like X s exc [exc [Z/I , non-equivalent to X • exc [Z] because
"~" is not transitive. If any variable of such a (generated) non-singleton, non-
ground exclusion becomes instantiated, this exclusion becomes partially solved,
now constraining unifiable values (e.g. s For example, X • exc [Y,Z],
Z i s 2 or X • excl 'Y,2] excludes the binding X • 2. If such non-ground
exclusions (generally, types) can treat a larger class of constraints as bindings
directly put into the substitution, unlike constraints as delayed goals, they will
thus require very careful substitution updates and uses.

58

A The RELFUN Meta-unify

Since this RELFUN unification meta-specification in RELFUN is deterministic
(fortunately), there are many cuts (unfortunately) [2], which are, however, not
needed for obtaining the first (and only) solution, just for preventing (meaning-
less) attempts to search for more solutions. Using RELFUN's r e l a t i o n a l i z e
command, this un i fy function would become a relation, also runnable in PRO-
LOG, binding an additional first argument to the result substitution.

unify (X, Y, Environment) :-&

unif y-ua(ultimat e-assoc (X, Environment),

ultimate-assoc (Y ,Environment),

Environment).

unify-ua([bnd,Xvar,Xexpr] , [bnd,Yvar ,Yexpr] ,Environment) : -

! & unify-bnd (Xexpr, Yexpr, Xvar, Yvar, Environment).

unify-ua([bnd,Xvar,Xexpr] ,Y ,Environment) : -

! & ~nify-bnd (Xexpr, Y, Xvar, [], Environment).

unify-ua(X, [bnd,Yvar,Yexpr] , Environment) : -

)& unify-bnd(X,Yexpr, [] ,Yvar,Environment).

unify-ua(X,Y,Environment) :- equal(X,Y) !& Environment.

unify-ua([vari ~ Namel], Y,Environment) : -

! & [[[vari ~ Namel] , Y] ~ Environment] .

unify-ua (X, [vari I Namel] , Environment) : -

! R [[[vari [Namel] , X] l Environment] .

unify-ua([dom ~ Delem] , [exc ~ Eelem] , Environment) : -

! & conjn(dom-exc ([dom [Delem] , [exc [Eelem]) , Environment) .

unify-ua ([exc [Eelem] , [dom ~ Delem] , Environment) : -

! & conj n (dom-exc ([dom [Delem] , [exc [Eelem]) , Environment) .

unify-ua ([dom ~ Xdelem], [dom [Ydelem], Environment) : -

! & conjn (dom-intersect ion ([doml Xdelem] , [doml Ydelem]),

Environment).

unify-ua([exc [Xeelem], [exc [Yeelem], Environment) : - ! & Environment.

unify-ua ([dom I Delem] , Y, Environment) : -

! & r n (membern (Y, Delem), Environment).
unify-ua (X, [dora [Delem] , Environment) : -

! & conjn (membern (X, Delem), Environment).

unify-ua ([exc ~ Eelem] , Y, Environment) : -

) & conj n (neon (membern (Y, Eelem)) , Environment) .

unify-ua(X, [exc [Eelem] ,F~nvironment) : -

} & conjn (ne~ (membern (X, Eelem)), Environment).

unify-ua(X,Y,Environment) :-atom(X) !& [].

unify-ua(X,Y,Environment) :-atom(Y))& [].

unify-ua ([Xf irst I Xrest] , [Yf irst I Yrest] , Environment) : -

! New-environment is unify(Xfirst,Yfirst,Environment) &

conjn (New-environment ,unif y-args (Xrest, Yrest ,New-environment)).

unify-args ([], [] ,Environment) : - ! & Environment.

unify-args([],Y,Environment) :- !& [].

unify-args(X,[],Environment) :-!& [].

59

vertical-bar treatment omitted: generate list from "["-rest
unify-args([XfirstmXrest],[Yfirst[Yrest],Environment) :-

! New-environment is unify(Xfirst,Yfirst,Environment) &
conjn(New-environment,unify-args(Xrest,Yrest,New-environment)).

unify-bnd([domJDelem],[excJEelem],Xvar,Yvar,Environment) :-
! Differ is dom-exc([domJDelem],[excJEelem]) &
conjn(Differ,unify-bnd-env(Differ,Xvar,Yvar,Environment)).

unify-bnd([excJEelem],[domJDelem],Xvar,Yvar,Environment) :-
! Differ is dom-exc([dom[Delem],[excIEelem])
conjn(Differ,unify-bnd-env(Differ,Xvar,Yvar,Environment)).

unify-bnd([domJXdelem] ,[domIYdelem] ,Xvar,Yvar,Environment) :-
! Inter is dom-intersection([domlXdelem],[domIYdelem]) &
conjn(Inter,tmify-bnd-env(Inter,Xvar,Yvar,Environment)).

unify-bnd([excJXeelem],[exc]Yeelem],Xvar,Yvar,Environment) :-
!& unify-bnd-env(exc-union([excJXeelem], [excJYeelem]),

Xvar,
Yvar,
Environment).

unify-bnd([domJDelem],Y,Xvar,Yvar,Environment) :-
neq([varilNamel],Y) !&
conjn(membern(Y,Delem),unify-bnd-env(Y,Xvar,Yvar,Environment)).

unify-bnd(X,[dommDelem],Xvar,Yvar,Environment) :-
neq([varimNamel],X) !&
conjn(membern(X,Delem),unify-bnd-env(X,Xvar,Yvar,Environment)).

unify-bnd([excmEelem],Y,Xvar,Yvar,Environment) :-
neq([varilNamel],Y) !&
conjn(negn(membern(Y,Eelem)),

unify-bnd-env(Y,Xvar,Yvar,Environment)).
unify-bnd(X,[exclEelem],Xvar,Yvar,Environment) :-

neq([varilNamel],X) !~
conjn(negn(membern(X,Eelem)),

unify-bnd-env(X,Xvar,Yvar,Environment)).
unify-bnd([varimNamel],Y,Xvar,Yvar,Environment) :-

! New is unify([varilNamel],Y,Environment) &
conjn(New,unify-bnd-env([variINamel],Xvar,Yvar,New)).

unify-bnd(X,Y,Xvar,Yvar,Environment) :-
! New is unify(X,Y,Environment) &
conjn(New,unify-bnd-env(Y,Xvar,Yvar,New)).

unify-bnd-env (Val, [vari [Xvarnamel] , [vari l Yvarnamel] , Environment) : -
! & appfun (conjn(negn (equal ([vari I Xvarnamel] , [vari I Yvarnamel])),

[[[vari I Xvarnamel] , [vari [Yvarnamel]]]) ,
[[[vari ~ Yvarnamel], Val] I Environment]).

unify-bnd-env (Val, Xvar, Yvar, Environment) : -
!~ appfun(appfun(conjn(Xvar, [[Xvar,Val]]),

conjn (Yvar, [[Yvar, Val]])),
Environment).

60

dom-intersection([domiXdelem],[dom[Ydelem]) :-&
mk-dom(intersection(Xdelem,Ydelem)).

exc-union([exc[Xeelem], [exc]Yeelem]) :-& mk-exc(union(Xeelem,Yeelem)).
dom-exc([dom[Delem],[exc[Eelem]) :-& mk-dom(set-difference(Delem,Eelem)).

ultimate-assoc([variINamel],Environment) :-

!& ultimate-assoc-binding([vari[Namel],
assoc([variiNamel],Environment),
Environment).

ultimate-assoc(X,Environment) :- !& X.

ultimate-assoc-binding([vari[Namel],[],Environment) :- !& [varilNamel].
ultimate-assoc-binding([vari[Namel],

[[variiNamel], [domiDelem]],
Environment)

�9 - !& [bnd,[vari~Namel],[dom~Delem]].
ultimate-assoc-binding([vari~Namel],

[[vari~Namel],[exciEelem]],
Environment)

:- !& [bnd,[vari]Namel],[exciEelem]].
ultimate-assoc-binding([vari]Namel],[[vari[Namel],Y],Environment) :-

!& ultimate-assoc(Y,Environment).

mk-dom([]) :- !& [].
mk-dom([D]) :- !& D.
mk-dom([D[Ds]) :-& [dem,D[Ds].

mk-exc([]) :- !&
mk-exc(Eelem) :-& [exc]Eelem].

neq(X,X) :- !& false.
neq(X,Y).

negn([]) :- !.
negn(X) :-& [].

membern(E,[]) :- !& [].
membern(E,[E[Rest]) :- !& [EiRest].
membern(X,[Y[Rest]) :-& membern(X,Rest).

as soc (N , []) : - !& [] .
assoc(N,[[N,V]iAr]) : - !& [N,V].
assoc(N, [Af lAr]) : -~ assoc(N,Ar) .

conjn(X,Y) a c t s l i k e i f neq ([] ,X) then Y e l s e []
appfun i s the normal f u n c t i o n a l append

Z equa l , i n t e r s e c t i o n , un ion , s e t - d i f f e r e n c e are b u i l t - i n s : ground args

6]

References

1. Harold Boley. A Relational/Functional Language and its Compilation into the
WAM. Technical Report SEKI SR-90-05, University of Kaiserslautern, Department
of Computer Science, April 1990.

2. Harold Boley. Extended Logic-plus-Functional Programming. In Proceedings of
the Pnd International Workshop on Extensions of Logic Programming, ELP '91,
Stockholm 1991, volume 596 of LNAL Springer, 1992.

3. Harold Boley, Ulrich Buhrmann, and Christof Kremer. Towards a Sharable Knowl-
edge Base on Recyclable Plastics. November 1993. To appear in: TMS'94 Sym-
posium on Knowledge-Based Applications in Material Science and Engineering,
Feb/Mar 1994, San Francisco, USA, TMS, Warrendale PA.

4. Alain Colmerauer. Introduction to Prolog III. In ESPRIT '87, pages 611-629.
North Holland, 1987.

5. Cornelia Fischer. PANTUDE - - An Anti-Unification Algorithm for Expressing
Refined Generalizations. DFKI Kaiserslautern, February 1994.

6. Philipp Hanschke. A Declarative Integration of Terminological, Constraint-based,
Data-driven, and Goal-directed Reasoning. Research Report RR-93-46, DFKI
KaJserslautern, October 1993.

7. Hans-Gfinter Hein. Propagation Techniques in WAM-based Architectures - - The
FIDO-III Approach. DFKI Technical Memo TM-93-04, DFKI Kaiserslautern, Oc-
tober 1993.

8. Joxan Jaffar and Jean-Louis Lassez. Constraint Logic Programming. In Pro-
ceedings of the 14th ACM Symposium on Principles of Programming Languages
(POPL), Munich, Germany, pages 111-119. ACM, January 1987.

9. John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Hei-
delberg, New York, 1987.

10. Manfred Meyer and Jfrg Miiller. Solving Configuration Tasks Efficiently Using
Finite Domain Consistency Techniques. International Journal of Applied Intelli-
gence, 1994. To appear.

11. Gordon D. Plotkin. A Note on Inductive Generalization. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 5, pages 153-163. Elsevier North-
Holland, New York, 1970.

12. Luc De Raedt. Interactive Theory Revision - An Inductive Logic Programming
Approach. Academic Press, London, 1992.

13. Michael Sintek. FINDOM - - Finite Domains in RELFUN Via Simulated Reas-
signment Variables. DFKI Kaiserslautern, June 1992.

14. Michael Sintek. FLIP: Functional-plus-Logic Programming on an Integrated Plat-
form. 3rd Workshop on Functional Logic Programming, Schwarzenberg, Germany,
January 1994.

15. Werner Stein. Nutzung globaler Analysetechniken in einem optimierenden Com-
piler fiir die Constraint-Logic-Programming-Sprache FIDO III. Diplomarbeit, Uni-
versit~t Kaiserslautern, FB Informatik, Juli 1993.

16. Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, Ma., 1989.

