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Abs t rac t .  Birkhoff's HSP theorem is that the models of a set of alge- 
braic equations form a variety, i.e. a category of algebras which admits 
homoInorphic images, subalgebras and products. We show here first, that 
every equational set of retract structures in combinatory logic is a va- 
riety, and second, that every set of combinators, closed under certain 
operations, is equational. It follows that the models of cumula.tive logic 
programs form an equational variety. 

1 Motivat ion 

The solutions of a set of equations form a structure, which is closed under the 
operations of building substructures, homomorphic images and products of so- 
lutions. This was first shown by G. Birkhoff [5] in 1935 for algebraic equations. 
We examined here the characterisation of solutions of cum'ulat.ive, logic programs. 
As in the case of symmetric search trees, where this knowledge can be used to 
cut symmetric branches, knowledge about the structure of the solutions of a 
cumulative logic program can speed up their computation. 

2 Cumulat ive  Logic Programs and Cornbinatory Models 

To perform transformations on arbitrary knowledge bases, (even ones containing 
rule terms) and to allow more than one argument to such transformations, we 
have to build a cumulative hierarchy of rules. Therefore, the language of cumu- 
lative logic programs was introduced [6], which is based on the language of logic 
programs with the following extensions: Clauses are written as {b l , . . . ,  bk) --* h, 
where the head h and the body {b l , . . . ,  bk} are either atomic ibrrnulas or again 
clauses. 

This cumulative formation of rules to an arbitrary Revel has its mathematical 
counterpart in graph:~models DA. 

D e f i n i t i o n  1. Let A be a set of atomic formulas. "D A :-~ ( 2 G(A) ; o ) is a graph 
model over A, where G(A) is defined recursively: 

Go(A) := A 
G~+I(A) := G,,(A) t3 {(, --~ a :  a E G~,(A), c~ C_ G~,(A), ~ finite} 

G(A) := U~, Gr, (m) 
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Note that  within this cumulative hierarchy, pure logic programs are simply sub- 
sets of G1 (A). The inclusion of implications in goal formulae, as proposed in [ 9] 
by Miller et al, leads then to subsets of G ( A )  of the form 

{ ~ - + ( ~ + ( . . . - - + ~ ) . . . ) ,  . . .} 

where ai (1 < i < n) are finite subsets of A. 
Graph  models are rich enough in structure to form models for knowledge 

bases of arbi trary complexity, where even t ransformations of flmctions (such as 
derivation or fixed point operation) are included as elements. [ 1 ] 

The  application operation o is defined a s :  

V o W  := {a : c~ ~ a ~  g , c ~ c  W }  

The result of applying V to W depends on the elementary instructions p --+ r 
of V, which give output  r any time the input W contains p. The application 
operation can be used to explain the execution of pure logic prograrns as a 
solution process for a corresponding fix-point equation as in the case of pure 
logic programs, the application operation o corresponds to Kowalski 's semantics 
operator  Tp as defined in [8], i.e. for a combinator  I/" and a set W- of ground 
terms we obtain 

v o w = :5,~ ( w )  

where Pv is the logic program derived t'rom combinator  V. 

I t ' s  a well-known fact that  these structures ( 2 c:(A) ; o ) build co'mbin(H, or# 
algebras. 

D e f i n i t i o n 2 .  [ 3 ] An a p p l i c a t i v e  s t r u c t u r e  flA := (M; .) is an algebraic st;ruc- 
ture with carrier set M and a binary opera t ion . ,  which we call applicat.iou. By 
c o m b i n a t o r y  a l g e b r a  we denote an applicative structure M := (M; .} which is 
e o m b i n a t o r y  c o I n p l e t e ,  which means tha.t for every term t ( V l , . . . ,  va:) (built 
up from elements of M a.nd variables by means of the applica.l.ioiL - and p,.r<t- 
theses), an element T C M exists such that  g m l , . . . ,  rnk E M : 

T �9 Trll " ' ' 1 7 Z k  = t(rnl,.. , ,  rnk) 

L e m m a 3  SchSnf inke l ,  C u r r y .  An applicative structure 3A is combinatory 
complete iff there exists K and S such that  

~ ' V l ~ V  2 : I ~ V l Y  2 ~- V I 

VVl, v2, v'3 : ,5"Vl V2Va = VlVa(V2V:s) 

In order to present a readable and comprehensive t reatment  of the oh.icct.s 
in a graph model DA the following notation will be used: 
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Variables: a, b, c , . . .  
7", S , I~ ,  . . . 

/9, t r ,  7": . . . 

v , w  
Terms: U V W  

We define 

for elements of A 
for elements of G(A) 
for finite subsets of G(A) 
for elements of DA 
for (U o V) o W, i.e. we employ left-associativity and 
omit o 
for a ---, (p --* r); right-associativity for arrow terms 
corresponds to the lefl,-associativity for the application 

e := {(,~ --, (p ---, ,-)): ,- E ~} 

s := { 0  ---' (,~ ---' (p ~ ,))  : 3po, . . . ,  p,, c p, 3 , - , , . . . ,  r,, : 
Pi --* ri e cr (1 < i < n), (P0 --* ( { r l , . . . ,  r',} --, r')) E r} 

With this we obtain 

L e m m a 4 .  Every graph model is a combinatory algebra. 

D e f i n i t i o n 5 . . M  := (M;  . , K , S , L )  is a c o i n b i n a t o r y  m o d e l  if 3A := 
( M ; . ,  K, S) is a combinatory algebra with combinators Lk (k E J?/) satisfy- 
ing the axioms: 

Vu, v l , . . . , v k  E M :  L k u v l . ' . v k  = u v l "  vk (1) 

V u l , u 2 E M :  ( L k u l  = L k u ~  

V V l , .  � 9  Vk E M : U l V  1 " "Ok = tL2~)l  " ' ' Y k  ) ( 2 )  

As can easily be seen, the graph model combinators 

Lk+l : :  {p0 --~ ( " " - -*  (pk --* r ) . . . ) :  

qpC C Pi (1 < i < k), Pi --* ( " "  "-~ (P~ --+ r ) . . . )  C P0 } 

have the above mentioned properties (1) and (2), which means that  DA is indeed 
a combinatory model. 

When querying a Prolog program, the resolution mechanism implicitly sear- 
ches for the least fixed point of a program equation v = F �9 v. By combinatory 
completeness, we can state a combinator Y with the property: 

Y v  = v ( Y v )  

which guarantees solutions for every fix-point program-equation in any graph 
model. 

Equations of cumulative logic programs are solved explicitly using the algo- 
rithms formulated in [10] in the case of fix-point equations, or in more general 
cases using the semi-algorithm as sketched in [7] 

A problem is in general a set, of equations < a,b > where a and b are 
combinators (programs). Solutions of a problem are, therefore, again elements 
of the graph model, which means, again cumulative logic programs. In genera.l 
we get an (program-)approximation to a solution in the sense of [6], in more 
special cases the solutions can be found in the ground set A [10]. 
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3 Definit ions 

In the  or ig ina l  T h e o r e m  of  Birkhoff, the  s igna tu re  of the  Mgebras  has  to  be fixed 
to define the  l anguage  of  the  equat ions .  In  an ana logous  way, we first have to  
d e t e r m i n e  the l anguage  of  the  considered equat ions .  

D e f i n i t i o n 6 .  Let M be a c o m b i n a t o r y  model .  Let  O :=  {Oj : j 6 J }  be a 
set of  d i s t ingu ished  combina to r s  in A t .  s is cal led 0 4 e r ' m  if s E O, s = K or 
s = S,  and  if  sl ,  s'z are O- te rms ,  then ( s i s2 )  is also a O- t e rm.  

A pa i r  < s , t  > is cal led O-equalion, if s and  t are O- t e rms ,  or if there  is a. 
k E A r wi th  s = Lks'  and t : Lkt ' ,  where s '  and  t '  are O- t e rms .  

Because of  c o m b i n a t o r y  comple teness ,  every t e r m  t can be wr i t t en  in the  
form t % l ' " v k ,  where v l , , . . . , v k  are the  var iab les  con ta ined  in t. We will, 
therefore,  res t r ic t  our  a t t en t ion  to O-equa t ions .  

In the  first sect ion,  r e t rac t ions  will p l ay  the  role of the  so lu t ion  sets (as do 
a lgebras  in the  or ig inal  t heo rem of Birkhoff) .  

D e f i n i t i o n T .  Let .M be a c o m b i n a t o r y  model .  A c o m b i n a t o r  x in Ad is cal led 
r'etraction, if for all v 6 AJ:  

x(xv)  : xv  

W i t h  ,'etr'ac~ of :,: we denote  the set, r e t ( x ) : =  {v E _/14 : xv = v}. 

We can now bui ld  res t r ic ted  quantif ier  e l imina to r s  over r e t r a c t i o n s  For a.n 
a r b i t r a r y  re t rac t ion  :r we denote  by 

L= := B L ( C B x ) ,  and L~ :=  B ( B L ( C B x ) ) ( B L ~ )  

where B and  C are combina to r s  defined as: 

and  

Then ,  we can show: 

Vvl,v'2,v3 : Bvlv2v3 = vl(v2v3) 

VVl,~)2,v 3 : Cylv2Y 3 = ~)i~)3"u2 

L e m m a  8. For any r e t r ac t ion  x, L ~" is a no rma l i s i ng  combina. tor  for the  r e t r ac t  
of  ~-, which means  t ha t  for all k E tvV: 

w , ,  : : 
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By these restricted quantifier el iminators,  we can also el iminate variables in 
equat ions like s ( z v x )  = t(xv~)(zv2),  because: 

: : 

I((S(2"U1))(:I;V2) : t(2;Yl)(2:'02) 
r B I ( s ( x v l ) ( X V 2 )  = t ( x v l ) ( X V 2 )  

r  L '(BKs) = 

which means  we can restrict our a t tent ion on equat ions wi thout  quantifiers. 
The  examined equat ions will be over a fixed language s :=  0 U {K, S} and 

variables, which will be el iminated by L-combinators :  

D e f i n i t i o n 9 .  A retract ion x is called a so lu t ion  of a t0-equation < L k s ,  L k t  > ,  

if L ~ s  = L~ t  which is equivalent to: 

V v , , . . . ,  ,,,~ : x ( 4 x v , ) . . .  (:~v~)) = x ( t ( x v l ) . . .  (~-v,~)) 

or literally, a retract ion x is a solution of < L k s ,  L k t  > if the following holds: 
for all v l , . . . , v k  E ret(x),  if S V l . . . v k  C ret(x)  and t v l . . . v k  E ret(x) then 
sv l  . . . vk = t v l  �9 �9 vk must  hold. 

Example .  Let s and t be combina tors  of the form: 
s :-- {q}--+a, {vI  ---, ({v} ---+ v) : a E A }  
t :=  {{c~} ---, c~: c~ C_ G ( A ) ,  c~ finite } 
A re t ract ion x is then a solution of < s, t > if the elements of  ret(x) are of 

the form {{a}, {{a} --+ a } , . . . } .  

N o t e  10. To keep the formulas  readable, we introduce the following abbreviat ion:  
Let x be a retraction,  s a cornbinator  and V l , . . . , v k  any variables. Then,  we 
write s ( g g ) f o r  s ( x v l ) - . . ( x v k ) .  

4 B i r k h o f f ' s  T h e o r e m  f o r  R e t r a c t  E q u a t i o n s  

Our  target  will be to show Birkhoff 's  theorem for equations with retract-solutions 
in a combina to ry  model  M .  Solutions of  such equations are originally algebras 
or (relational) s tructures of some special type. Our approach will be different: 
we examine equat ions whose solutions are retractions.  These retract ions are not 
usually closed under  O-terms,  which means tha t  solutions need not  be st, ructures 
in the usual sense. 

In [11] it is shown how to represent any algebraic or relational s tructure in a 
combina to ry  model  using retractions. Our approach is therefore a. generalisation 
of Birkhoff 's  original theorem, 

Assume x is a retract  solution of some set of  equations _P. First, we investi- 
gate  the question of  how to find new solutions of F f rom solutions x. For this 
we define subretract ions,  homomorph ic  images and products  of  retractions. 
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D e f i n i t i o n l l .  y is called a O-subretruction of x, if 

Vv:  y(yv) = yv (3) 

W :  :~(y~) = yv (4) 
and  for all Oj ff O, V v l , . . . , v k :  

x ( O j ( ~ ) )  = y(O~(~))  (5) 

O-subre t rac t ions  are retract ions (3), which define subsets of the re t ract  of z 
(4) and  which preserve O-equat ions  (5). Hence, as can easily be obserVed, they 

satisfy the following lemma:  

L e m m a 1 2 .  Let x be a re t ract ion and  y a O-subre t rac t ion  of x. If z is a 
solut ion of some O-equat ion  < Lks, Lkt >,  then y is a. sohl t ion too. 

Proof. VVl , . . . ,  vk : 
x ( s ( ~ ) )  = ~ ( ~ ( ~ ) )  

x ( s ( ~ ( ~ ) ) )  = x ( t ( x ( ~ ) ) )  
~ , ( s (~) )  = x ( t ( ~ ) )  

y ( s ( v ) )  = y ( s ( v ) )  

[] 

In a next step we define O-hornornorphisms and  show tha t  O-homomo'rph~ic 
images of a solut ion a: are also solutions:  

D e f i n i t i o n l 3 .  Let z and y be re t ract ions  in M and ~ C M a ccmflfinator. 
is called a O-homomorphism from x to y if for all 0 E O: 

:j(o(~,(~:v))) = v ( ~ , ( o ( ~ - ) ) )  (~;) 

is called a O-epimorphism, if for all Oi,O j E O: 

v v ~ , . . . ,  ~ : ~j(o~(~,(:,:~))) = y(0 j (~ (~ :~) ) )  

y(0~ ( ~ ) )  = y(0~ ( ~ ) )  (7) 

A combina to r  p is a O-homomort )h isnl  if it is co inpat ib le  with O-cornbina, tors 
in ret(y) (6). However, to be a O-ep imorphism,  ~ needs not  be onto ret(y).  

Wi th  these definit ions we can show: 

L e m m a  14. Let x and  y be re t ract ions  and  ~, a O-ep imorph i sm from :c to y. 
If x is a solut ion of a O-equat ion  < Lks, Lkt >,  then so is y. 

Proof. Assume x is a solut ion of some O-equa t ion  < Lks, Lkt >, so by dr 
of L holds for all v l , . . . ,  v~: : 

~ , ( ~ ( ~ ) )  = ~ , ( t (~) )  

and 
y ( ~ ( ~ . ( ~ ) ) )  = y ( ~ , ( ~ ( ~ ) ) )  

As ~ is a O-homomorph i sm,  we can infer 
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which is equivalent to 

and by (7) 

= 

LB~,~(Bkys) B~,~ k = L k (B ~ )  

L~(Sk ys) : L~(BkTfi) 

we conclude tha t  y is also a solution. [] 

A third possibili ty to find new solutions is by forming products of given 
solutions. 

D e f i n i t i o n l h .  Let J and {x (J j )  : j E M]  be retractions,  y is called a O-pro- 
duct of  {x (J j )  : j E M )  if the following equat ions are satisfied: 
for all v: 

y(y ) = (8) 

for all 0 6 0 and all v l , . . . , v k :  

y(O(yvl ) . . . (yvk ))(Jj)  

: x(J j ) (O(x(J j ) (v l  ( J j ) ) ) . . .  (x(Jj)(vk (Jj)))) (9) 

and 
LJ(y(OO-)-v))) = y(O(~)) (i0) 

To be a O-produc t  of a given set of retractions,  y itself has to be a retract ion 
(8). The  equat ions  in (9) and (10) confirm tha t  the B- te rms  in the projectious 
y(J j )  of y have the same normal  form as those in x(J j ) .  These conditions are 
sufficient to satisfy the following lemma.  

L e m m a l 6 .  Let {x (J j )  : j 6 M }  be a set of  solutions of  some O-equat ion 
< Lks, Lkt >. If  y is a O-produc t  of  {x(Yj)  : j 6 M )  then y is also a solution. 

Proof. Let < Lks, Lkt > be a B-equat ion  such tha t  {x (J j )  : j 6 M}  are 
solutions of  it. Hence: 

Vj 6 r e t ( J ) , V v l , . . . ,  vk : 

(x j ) (s ( (x j ) (v~j) ) .  .. ((xj)(vkj)))  = (x j ) ( t ( ( . v j ) (v l j ) ) . . .  ((xj)(v~j))) 

By equat ion (9) we can infer for all v l , . . . ,  vk: 

V j :  y(s(~-~))(Jj) = y(t(~]5))(Jj) 

By definition of  L j this is equivalent to: 

L J (y( s(~-)-g) ) ) : L J (y( t(~j-ff) ) ) 

and as the O- te rms  are in normal  form over J we conclude: 

y(s(~)) = y(s(~)) 

thus, the produc t  y is also a solution of  < Lks, Lkt >. [] 
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4.1 P r o o f  o f  a H S P - T h e o r e m  f o r  R e t r a c t - S o l u t i o n s  

Now, we have found operat ions,  which preserve O-equat ions.  It  is much more  d i f  
ficult, however, to ascertain whether or not  these three opera t ions  (O-subretrac-  
tion, O-homomorph i sm,  O-product )  are sufficient to const ruct  all solutions of a. 
given set of  equations. The  following theorem provides a.n answer: 

T h e o r e m l 7 .  Let M :=  ( M ; . , K , S , L )  be a combina to ry  model.  Given a. 
set K; :=  {xi : i C I} of retract ions in M, K. is equat ional  iff /C is closed under 
O-subretract ions ,  O-epimorphisms and O-products .  

Pro@ We will split the proof  into l emmas  18 and 19. Let l"(xi) be the set of 
O-equat ions,  of which xi E/C is a solution. We define F(/C) :=  NieiF(xi). Let. 
y be a solution of F(/C). M is not empty,  so is ret(y) either, because for all v 
in M, yv is an element of  ret(y). 

We define k~ to be the following set of  combinators :  

We choose a retract ion X with the proper ty  ]ret(x)] _> I'Pl. Withou t  loss o[ 
generality, we can assume tha t  X is an enumera t ion  of  ~ so ~ = {~oi : i E X}, 
Let x x be a power of .ix.. We then define the following combina tor :  

r := ~i(yu) 

In a next step we describe the image of r in xx: Let v0 be an element o[ 
ret(y). 

{ xX~ 3v, u = r  

~:~(r else 

L e m m a  18. z is a O-subret ract ion of x x. 

Pro@ We first show tha t  z is a retraction: 

z ( z ~ ) =  

{ z ( ~ )  3~,,, = r 
z( ~:~ ( o( r ) ) ) or 
z(~(r else 

As x•162 = r  the assumpt ion is clear. 
In the second step, we show tha t  z is a O-subret ract ion.  We have to show 

tha t  for all 0 E O and all Vl,. . . ,vk: 

z(0(ZVl)... (zvk)) = z(0(r (r for some w l , . . . ,  w~. 



32 

Z( O( r  ) ) " " " ( r  ) ) ) = Z( ~)( O(yWl ) " " " ( y w k  ) ) ) 

= ~ ( r  ( y ~ ) ) )  

= ~ ( 0 ( r  (r 

= ~ ( ( z v ~ ) . . .  ( z v ~ ) )  

[:3 

I t  r ema ins  to be shown t h a t  y is a h o m o m o r p h i c  image  of  the  r e t r ac t ion  z. 
We define: 

[ y~, 3v, u = r  
r  := [ y(8(r 3v l , . . . ,  vk, 3s ~ 0 u = ~ ( s ( ~ ) )  

L e m m a 1 9 .  r is a O - e p i m o r p h i s m  f rom z to  y. 

Proof .  Let  u and v be c o m b i n a t o r s  in re t (y)  wi th  u ~ v. By defini t ion of r we 
can also infer t h a t  Cv r Cu, which means  t h a t  x • 1 6 2  5k x X ( r  

Assume  t h a t  y(s(~7-~)) ~ y(t(ij-g)) for some O - t e rms  Lks  and  Lk t .  As y 
is a so lu t ion  of F(/( ;)  we can also infer t h a t  .~-X(s(x--~v)) r x• hence 
z ( s ( - ig ) )  r z(t(2--g)), f rom where we can infer, t h a t  r is well defined. Obviously,  
r is also a O - e p i m o r p h i s m .  

[] 

This  comple tes  the  p roof  for T h e o r e m  17, as we have cons t ruc ted  a O-subre t -  
r ac t ion  z of  a O - p r o d u c t  x • and  a O - h o m o m o r p h i s r n  r f rom z to y. 

5 B i r k h o f f ' s  T h e o r e m  f o r  C o l n b i n a t o r  S o l u t i o n s  

In a second approach ,  we drop  the condi t ion  t h a t  so lu t ions  have to be re t rac-  
t ions,  i.e. every c o m b i n a t o r  (or every cumula t i ve  logic p r o g r a m )  is a d m i t t e d  a.s 
a so lu t ion  (or as an a p p r o x i m a t i o n ) .  

The  in tended  mean ing  of  such a so lu t ion  (set)  is the  fol lowing:  Let  x be any 
combina to r ,  a c o m b i n a t o r  a is an e l eme n t  of a set ~ if a can be wr i t t en  as 
a = a~x.  Or to p u t  i t  s imply :  

:=  {a.~: : a C D }  

This  gives a genera l i za t ion  of  the r e t r ac t - cons t ruc t i on  we used in the  last  
sect ion.  Let  x be any re t rac t ion ,  then  xa  is an e lement  of the  re t rac t  of x. 
However,  x a  can be wr i t t en  as x a  = C l a x  and  because  a I = C I a ,  a is shown 
to be an e l emen t  of  ~. 

Therefore ,  the  equa t ions  we examine  will be of the  form < s, t > ,  where a 
c o m b i n a t o r  x is a so lu t ion  of  this  equa t ion ,  if x satisfies sa: = i x .  
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As in the  previous  section,  we first t ry  to find ope ra t i ons  which preserve O- 
equat ions .  Roughly  speaking ,  these are  mu l t i p l i c a t i ons  fi 'om the r ight  and  f rom 
the  left,. The  s t r eng th  of  c o m b i n a t o r y  logic al lows us to deduce some resul ts  f rom 
these two ope ra t ions  a l ready.  

D e f i n i t i o n 2 0 .  Let 0 be a set of d i s t ingu i shed  c o m b i n a t o r s  and  F a.ny set; of 
O-equa t ions ,  i.e. 

F _C { < s , t > :  s , t  O-te rms}  

Now, a combina to r  x is a solution of  F if x satisfies sa: = Ix  for every pa i r  
< s , t  > in F.  

This  is a more  genera l  defini t ion t han  the one we had  before,  because  for every 
t e r m  of  the  form x(s(~-~)) we can (by c o m b i n a t o r y  comple teness )  f ind a. t e rm of 
the  form s 'x ,  which is equivalent  to x ( s ( ~ ) ) .  

If  sx  = t x  then  for all c o m b i n a t o r s  v and #, v ( s x ) #  = v(t:,:)p holds.  Th is  
leads  to  the  defini t ion of O-res t r ic t ions .  

D e f i n i t i o n 2 1 .  y is cal led a O-restr ic t ion of x if there  are c o m b i n a t o r s  l~, p, so 

t h a t  for all O - t e r m s  s: 

sy  = 

Obviously ,  the  following l e m m a  is true: 

L e m l n a  22.  If  a cornbina tor  x is a so lu t ion  of a set of equa t ions  F ,  then ew~ry 
res t r i c t ion  of x is a solut ion,  too. 

Prvcf .  Let < s , t  > be a O-equa t ion  anti assume x to be a so lu t ion  of this  
equa t ion .  Then:  

v . ,  t,, .(s:,-)# = 

=~ sy = t y  

x is always a O-res t r i c t ion  of itself. We can show this  by choosing / / =  t~ = N,  
because  for all s, K ( s x ) K  = sa:. 

We will call a comb ina to r  ~ h o m o m o r p h i c  on z if ~ commut.es on the O- 
elements  of x. 

D e f i n i t i o n 2 3 .  A c o m b i n a t o r  ~ is a O-homomor 'phism on :c it' ~ sa,tisfies for 
all O - t e r m s  u: ~(u:~) = u ( ~ : )  

p x  is then called the  O-homomorph ic  image of p.  
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Every  h o m o m o r p h i s m  on x leads  to a O- res t r i c t ion  of x. Because ~(sx)  is 
equal  to  K ( ~ ( s x ) ) I  for all O - t e r m s  s, and  as K(~a(sx))I is equal  to B K ~ ( s x ) I ,  
we can choose v = B K ~  and # = I and  o b t a i n  s(~x)  = v ( sx )# .  

Therefore ,  we can s ta te :  

L e m m a 2 4 .  I f  y is the  h o m o m o r p h i c  image  of  a c o m b i n a t o r  x (and of  a O- 
h o m o m o r p h i s m  ~) ,  then  y is a O- res t r i c t ion  of  x. 

L e m m a 2 5 .  Let  x be a so lu t ion  of  any O-equa t ion  < s, t > and  ~ a O-homo-  
m o r p h i s m  on x. If  y = ~x  is the  h o m o m o r p h i c  image  of  9,  then  y is a so lu t ion  

of  < s , t > .  

Proof. Let s and  t be any O - t e r m s  such t ha t  x is a so lu t ion  of  < s , t  > .  

= = 

= 

:=~ sy = ty 

[] 

We will  call  a c o m b i n a t o r  y a p roduc t  of  a set of combina to r s  { x j  : j E J} ,  
if i ts  projections (yj),  j E J behave  on O- t e rms  the same  way as (:r j ) ,  j E J .  

D e f i n i t i o n 2 6 .  Let  J be any r e t r ac t ion  and {x j  : j E J}  a set of combina to r s  
in D. y is cal led a O-product of { x j  : j E J}  if for all  O - t e rms  s: 

LJ (sy) = sy (12) 

and 
LJ(sy)  = L~(Bsx)  (13) 

These  two condi t ions  are sufficient to show the fol lowing l emma:  

L e m m a 2 7 .  I f  {x j  : j E J} are so lu t ions  of any O-equa t ion  < s , t  > and y is 
a O - p r o d u c t  of  { x j  : j E J } ,  then  y is also a so lu t ion  of < s , t  > .  

Pro@ Assume  y to be a O - p r o d u c t  of the  set of combina to r s  {x j  : j C J } ,  and  
s and  t two O- te rms ,  so t ha t  for all j in J ,  x j  is a so lu t ion  of  < s, t  >:  

•j- 

because  by equa t ion  (12) sy 

s(x(  J j ) )  = t(x( J j ) )  

Vj : ( sy ) (J j )  = ( ty ) (J j )  

LJ (sy) = L 1 (ty) 

sy = ty 

and ty are in nor lna l  form. 
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P r o o f  o f  the  H S P - T h e o r e m  

We have shown tha t  every B-restr ict ion,  every O-homornorph ic  image, a.nd 
every O-produc t  of solutions of O-equat ions are new solutions. In the next theo- 
rem we will show tha t  the converse is also true. We begin with some definitions. 

Let ~) be the set of O- terms and x a combinator .  We define ~ to be the 
following set of combinators :  

= = . j ,  e D} 

Let ~ be a retract ion with Iret(n)l > lqh~l. 
For j E n let z j  be the image of O under  ~j , i.e. 

sz(, j) := (=  

Some of  the ~j may  occur more than once if Iret(n)l > lqhxl. 

L e m m a 2 8 .  Let ]C : = { x j  : j  E n }  be a s e t  of  combina tors  in D, F the set of 
O-equat ions  which are satisfied by /C and x the O-produc t  of  ]C. Let ~.~. and 
z j  be the combinators  as defined above and 5 the O-produc t  of these z j ,  j E n. 
Every solution y of F is then a O-homomorph ic  image of 2. 

Proof. Define r as the following homomorph i sm:  

: =  ( = ) 

We have to show tha t  r is well defined. 
Assunle sz = tZ for any O-terms  s and t. By definition of 2 we fitld: 

s ~ = t ~  ~ V j :  s z ( n j ) = t e ( , ~ j )  

v j :  = 

Now, assume sx  r tx .  We choose 9~i with u = # = I f  and fin(1 lJ(s:~:)p. 
u(l~x)#. We can then infer s~ r t.~, but  this is a contradict ion.  

So sac = ta- mus t  be true and, fltrtherrnore, s 9 = t 9 also, as y is a solut.ion 
of F .  So r is well defined. [] 

Finally, we cart show: 

T h e o r e m  29. Let 7) := ( D ; . ,  K, S, L) be a cornbinatory rnodel and K :=  {:cj : 
j C J}  a set of combinators  which is closed under O-restrictions,  O-l~ror aml 
O - h o m o m o r p h i c  images. 

Let F be the set of O-equat ions which are satisfied by all of these combina tors  
in K. If  y is a solution of the equations F ,  then y is an element of ]C. 

Pro@ Let, x be a O-produc t  of {x j  : j E J} .  Defn ing  2~ the same way as 
above, every z (n j )  is a B-restr ict ion of the p roduc t  x. So ~ is a O-produc t  of 
B-restr ic t ions of a'. 

y is then the O-homomorph ic  image of ~ where the homomor l )h ism .~ is 
defined as before. 
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